
PKD 2013/2014

FML: a VM implemented in SML

Henrik Sommerland, Oskar Ahlberg, Aleksander Lunqvist

March 6, 2014

Abstract

For our project we have decided to build a virtual machine(VM)[1] in
SML. The name FML is just an arbitrary three letter name and has no
meaning or interpretation. The VM is a RISC[2] machine using a Von-
Neumann architecture[12]. It has a very minimalistic instruction set. The
design of FML resembles those of older 8-bit architectures such as the
MOS 6510[3] and the Z80[4] microprocessors commonly in use during the
late 70s and early 80s. The FML machine has no “bus width” and works
exclusively with signed integersi. The lack of a physical bus enables the
VM to do things which an ordinary CPU could not achieve such as reading
from two registers at the same time. Even though the cpu have very few
opcodes[11] (only 27) a very effective instruction set architecture[5] makes
these operations very flexible and there are roughly 600 valid instruction
codes. It is also noteworthy that FML is asynchronous[?] and has now
predefined clock frequency.ii

There are features in the machine specificationsiii which will enable
interfacing the machine with peripheral components such as I/O, displays,
timers and much more.

So even though FML is a very minimalistic machine it is quite power-
ful. We have also built a fully featured assembler[17] for the FML machine.

This document is written in a informal way to facilitate the readers pos-
sible lack of familiarity with computer architectures and assembly code.
See the appendix for more detailed descriptions.

iThe details of the integers used are dependent on which SML implementation is used
iiAlthough for debugging purposes one can use both manual stepping and a fixed update

speed.
iiiAlthough these are not as of yet implemented

1

Contents

1 Our work 4
1.1 Personal notes . 5

1.1.1 Henrik Sommerland . 5
1.1.2 Oskar Ahlberg . 6
1.1.3 Aleksander Lundqvist . 6

2 Usage 7

3 The VM 7
3.1 General . 7

3.1.1 Instruction Set Architecture 9
3.2 The components . 10

3.2.1 Register . 10
3.3 Implementation . 10

3.3.1 Stack . 10
3.3.2 Ram . 10
3.3.3 Program Counter . 10

4 Utilities 10
4.1 Datatypes used by VM . 11

4.1.1 flag . 11
4.1.2 vm . 11

4.2 Functions used by VM . 11
4.2.1 init . 11
4.2.2 getCode . 11
4.2.3 step . 11
4.2.4 flagToString . 12
4.2.5 dumpToFile . 12
4.2.6 dump . 12
4.2.7 loop . 12

4.3 Work done by step . 12
4.3.1 Flowchart . 12
4.3.2 Features yet to be implemented 13

5 Assembler 13
5.1 General . 13
5.2 Implementation . 14

5.2.1 General . 14
5.2.2 Flow chart . 15

5.3 Intermediate Structure . 19
5.4 Usage . 19

2

6 Summary 19
6.1 Work to be done . 20
6.2 Highlights . 20

7 Appendix 20
7.1 VM specifications . 20

7.1.1 Structure . 20
7.1.2 ISA . 21
7.1.3 Instruction types . 23
7.1.4 Opcodes . 25

7.2 Assembler usage guide . 25
7.2.1 Syntax . 25
7.2.2 Usage . 26

7.3 Components.sml description . 30
7.3.1 Introduction . 30
7.3.2 The Ram structure . 30
7.3.3 The Stack structure . 31
7.3.4 The Register structure . 32
7.3.5 The Program Counter structure 32

7.4 Step funtion flowchart . 35

3

1 Our work

We have tried to work as independent as possible. This has of course led to
some difference in how we have commented the code, some slight differences in
naming and indentation. The way we have chosen to describe how our programs
work differs a bit depending on who wrote the code for the given part of the
VM.

We have not been using any form of unit testing. But instead we have
done a series of more and more complicated online tests. This due to the
scale and the complexity of the various functions and algorithms of the project.
We have also tried to write defensive code. This reduces the need for testing
since errors are caught at runtime and a useful error message gets printed.
For the more complicated parts of the program this also minimizes the risk of
errors propagating throughout the code since they will be caught early. But of
course there will still be bugs present which might be hard to catch. This is
especially the case in this project due to its complexity. it is very difficult to
write automated tests which gives full code coverage for this kind of project and
besides there is no waterproof testing framework. Some bugs will always find
there way trough the tests and have to be detected trough online testing.

We have continuously have meetings both with just us in the group and also
some with our assigned TAiv. These meetings have primarily been about inform-
ing each other about how the VM works and how the various components of it
should be implemented. We have then had an ongoing discussion on facebook
regarding details and problems which we have encountered. The workload as
not been completely balanced but that is due to the fact that one of the group
members have had the possibility to work on this project full time.

We have been using Git[7] as a source code management system. We have
been using BitBucket[8] to host the project and throughout all of the develop-
ment process the repository has been hidden and only we in the group and our
TA have had access to the code.

We are using an array in the current implementation of the memory for the
VM. Now we know that it is stated in the project description that the project
should be written in a functional and pure way and avoid side effects. We dis-
cussed with both Dave Clarke and Tjark Weber about using a “monad like”
structure to hide the side effects of the array handling and they said that it was
okay. The structure handling the memory is written in such a way that any
other part of the program implementing the memory structure will not be able
to see that there are any side effects. I.e there are no semantically observable
side effects of the memory structure. All of the code would look exactly the
same from “the outside” regardless of how we implemented the memory. And
thus the program is pure[9] disregarding I/O handling.

ivOur TA has during this project been Tobias Neil

4

1.1 Personal notes

In this section we will give some informal personal notes regarding our parts in
the project and how we have experienced working together.

1.1.1 Henrik Sommerland

I have been in charge of designing the VM and writing the assembler. I have also
written some signatures for the others in the group to help them get started.
I began work very early, as soon as we had gotten permission to start on the
project. I began by writing the specifications for the VM.

Even though I have never had any formal education in how computer ar-
chitecture work I have learnt a lot about it on my own. When I was younger
(around 17) I designed a 8-bit cpu from TTL logic chps (the 7400 series[10]).
It was during this time I learned how to build a cpu. So the design of the
FML machine was for me very straight forward and intuitive. I have done all
of the design myself and I have not copied anything from books or any previous
designs. Although my way of thinking and reasoning about cpu architectures
comes primarily from my own work and the designs of older 8-bit cpus. The
design of the cpu took roughly one or two days to finish and then there has been
a continuous process of ironing out bugs and inconsistencies.

Then I started to write the assembler. From the start I had a pretty good
idea about what I wanted the assembler to do and I had a pretty good idea how
to implement it. I wrote the assembler in about three days and I then had a
fully working assembler.

After I had completed the assembler I sat out to start testing it and to write
the documentation for it. As I wrote the documentation and did more extensive
testing of the assembler I worked out the last few bugs and ambiguities in the
code.

Then I started to write signature files and such for the others in the group
to get to work on. I also started to write on the major report for the entire
program whilst guiding the others in the group.

In general I have found this project to be incredibly fun and interesting.
This will sound very sad (which it is) but doing things like this (and climbing)
is what makes life worth living. In the beginning I was worried that the others
in the group where not going to be able to understand how it all worked and
even though it’s really hard to explain something complex which is crystal clear
in my head to other people the others in the group have been very enthusiastic
and have really pulled trough for this mammoth of a project. I know I have
done more work than the others in the group but this is primarily due me only
taking this course at the moment and the fact that I find doing projects of this
nature so much fun and it has been entirely my own choice.
I know I might have gotten a bit carried away with this project. I’m actually
on medication not to do stuff like this.

5

1.1.2 Oskar Ahlberg

This project has been a learning experience, to be honest I have had a hard
time keeping up with the other members of the group a lot of new ground has
been covered. I feel that it has been a mutual working environment lending
a hand where I can. At a whole its been hard work to keep the pace to have
something to hand in. I’m looking forward to presentation and the discussion
about the project. Lets look on the workload I have had a supporting role
in the group, and I have worked closely with Aleksander, but the project lead
has been Henrik it was his idea and the design of the base of the project is
his doing .We have had at least a meeting a week and had contact via social
media, texts and phone. The whole project has been managed via BitBucket
and the version/change log, the depository was set up as privet for the duration
of project. We all have access to it as well the TA who was allocated to us. All
the work that has been done, has been filed in files according to name in the
./projekplaning/dagboker

The work, We have a divide in the amount of work that was done due to
different time constraints e.g. one of the members of this project group was able
to commit all his time to the project. And me and Aleksander have worked as a
pair on parts of the project, where Aleksander was manning the keyboard and
I was checking code and documentation online when we had problems with the
code.

As an conclusion of the Personal note, The complexities level on the project
is average to high, depending what part of the project. It has been fun and
challenging and at some times it feels like we took on to much work but we pulled
throe, and was able to create one of the coolest thing I have had the privilege
of working on. Also it has been a privilege to work with these gentlemen.

1.1.3 Aleksander Lundqvist

I joined this group by chance, they had just lost a member and I was looking
for a group during a break on a lecture. Now when we’re about to reach the
end of the project I fully realize that I had no idea what I was getting myself
into. And I’m very happy to have joined this group and to have worked on this
crazy project.

It’s obvious that the workload of the project hasn’t been equal between
us. Henrik wrote the specification for the project, the signatures we used to
create structures and the entire assembler, and has also been a great source of
help when we’ve been stuck or even just not fully understood his specifications.
Despite all that, we haven’t been slacking off. This has been a huge project and
has required quite a bit of studying up on things that have not been covered
by the class, such as monads. When I finally got the monster of a function
Vm.step to compile I felt triumphant. 130 lines of code. That was amazing. It
didn’t matter that I knew that it most likely was a buggy mess (this happened
to be true), when it compiled I felt like we actually would be able to finish the
project, even if not all features was implemented.

6

I have done most of my work by pair-programming with Oskar. During this
time it has mostly been my hands on the keyboard, but having Oskar there
to discuss with has been invaluable. And when I’ve been bug fixing he has
contributed to the documentation, the part that is by far my weakest point in
the project.

2 Usage

To use the VM one first must compile a program. This dome trough first writing
ones program in a file called in.asm and then one just runs the Assembler.sml

file in either Poly or SML/NJ. If the code is valid the assembler will write the
output to a file called out.fml.

After this one can just run the program by running the VM.sml file. The
program will then run until the VM halts if no error is encountered.
To make proper use of this machine one should be familiar with assembly pro-
gramming and one should also read the VM specification and the assembler
usage guide thoroughly.

3 The VM

Here is an informal description of the workings of the machine. For a more
detailed description see the VM specifications in the appendix.

3.1 General

The FML machine is built up as a very simple von-neumann architecture[12].
The machine consists only of a few major components. It’s noteworthy that
there is no instruction decoder present. This is since all of the instruction
decoding and handling takes place within the software implementation of the
machine. The size of the memory the machine has available is arbitrary and
is defined at the initialization of the machine. Below will follow a dataflow
diagram of the machine, describing all of the components and how they can
communicate.

7

Figure 1: Dataflow diagram of the FML machine

Now this image might be a little bit confusing. One should consider the two
read rectangles DATA and ADDRESS as “virtual buses”[13]. One can interpret
the picture as: X can both read and write from other components and be used
for addressing. Below will follow brief descriptions of the components. More in
depth descriptions are given in the appendix.

X and Y
These are the two general purpose registers[14] which can be read, written
to and used for addressing.

S
This is the general purpose stack. It can be both read and written to.
Every time some thing gets written to the stack it gets pushed onto the
stack and every time something is read from the stack the stack gets
popped. The stack can not be used for addressing.

A
This is only a virtual register. It is read only and can be used for address-
ing. This is only used if an instruction uses a non-register argumentv.

Q1 and Q2

These are the two interrupt registers. These are very special and can only
be written to. They will hold the addresses to which the machine should
jump if an peripheral component makes a interrupt request[15].

PC
This is the program counter. It keeps track on where in the memory the

vA non-registry argument is a argument which is not any of the registers, the stack, or
something from the memory. The value of A will (if used) be at the memory cell directly
following the one at which the program counter is.

8

instructions are being read from. It also handles the both the subroutine
jumps and the conditional breaking.

J
This is the jump stack. This stack is used to store the return addresses for
subroutine jumps. This stack can only be manipulated by the program
counter.

ALU
This is not really a ALU[16]. The machine does not have a separate ALU
component but this is just here to illustrate that the all of the components
which can be read from can be used as arguments for arithmetic and logical
operations. All of the results from the arithmetic and logical operations
are always put on the stack.

RAM
This is the random access memory of the machine.

3.1.1 Instruction Set Architecture

The ISA[5] of the VM is built in a special but simple fashion. Each instruction
corresponds to a six digit integer where each digit corresponds to specific infor-
mation regarding different types of opcodes. The digits counting from right to
left is:

First Second argument

Second First argument

Third Arithmetic operations

Fourth Logic operations

Fifth Jump operations

Sixth Special

This system of encoding information into each digit of the instruction makes the
implementation of the instruction decoder and the construction of the assembler
much easier. It allows for all the operation types to be grouped into numerical
ranges and it gives a lot of flexibility. Note that some of the instructions may
be invalid and some might be nonsensical but the instruction controler crashes
if a invalid instruction is encountered. The assembler is written in such a way
that it can only generate valid instructionsvi. So an example would be: 000401.
Where the 4 tells us that we should perform a modulo operation, the 0 says that
the second argument is the Xregister and the last 1 says that the first argument
is the Yregister. Notice that the order of the last two digits is reversed in
respect to the order of the arguments in the operation. This is due to a design

viAlthough with the current implementation of the VM this is not necessarily true

9

choice made early in the design phase. It makes the instructions code a bit more
confusing to read but it makes the assembly code become far more intuitive.
For a more detailed description of the ISA see the VM specifications in the
appendix.

3.2 The components

We will now go through the general workings of Components.sml, this file and
including functions are the structures of the Registers, Stack, Ram and Program
Counter, the functions are more specified in the appendix.

3.2.1 Register

Register is used in the implementation for the wm as a register to save the values
of x and y, to be able to handle all the different arithmetical operations. This
is also used to create the IRQ registers in the Pc Data type.

3.3 Implementation

3.3.1 Stack

The stack handles the work progression with a LIFO[21] structure this is a
integral part of the VM implementation both to keep track of return addresses
and as a storage.

3.3.2 Ram

the ram memory works as a random access memory, it is set at a size at the
start of the VM, and where we stores data in between operations.

3.3.3 Program Counter

The program counter handles the pointer to the memory to see what is to
be done, as well handles the IRQ registers, the jumpstack as well as the re-
turn jumps that redirects the pointer back to the original address on the jump
stack. This is the main function of the file all other functions are included in
this structure. The encapsulated functions and the infrastructure of the the
ProgramCountercanbeseenintheAppendixonComponents.

4 Utilities

For this program we have written some utility files. The IO.sml and the
StringUtills.sml files just contains general helper functions and thus play little
importance in the larger scheme of things. These two files will not be described
here.
We will though give a shorter description of the OpcodeResolve.sml file. This

10

is an important file since it works vii as a interface for both the assembler and
the VM. If both the assembler and the VM adheres to this structure the as-
sembler will not generate any instructions not accepted by the VM. In general
the ResolveOpcode structure just contains a lot of “lookup tables” in which
one can find important information regarding the different instructions and op-
codes, such as which number corresponds to what type of operation, which
arguments are allowed for each operations and so forth. Since this structure
was not properly used in the VM implementation there are still some things
left to write for it, such as a series of reverse lookup functions and checking for
invalid instructions.

4.1 Datatypes used by VM

4.1.1 flag

The flag is used to represent a part of the state in the VM. Flag decides if the
VM is running, halted, interrupted or has overflown.

4.1.2 vm

vm is the state of the VM. It also works as a snapshot of the VM at any given
time.

4.2 Functions used by VM

4.2.1 init

init takes an (int list * int) as argument and initializes a VM. The RAM in the
VM will have a size of the integer and with the tail of the int list loaded to start
at the address of the head of the list. The pointer and all register will be at 0
and stacks will be empty. The VM starts in a RUNNING state.

4.2.2 getCode

getCode can not be used outside of the Vm-structure.
getCode takes an integer and returns it as a list of integers where the length

of the list is the number of numbers in the integer. This is so later functions
can more easily decode operations.

4.2.3 step

step a VM and runs it one cycle if the VM is RUNNING, otherwise it returns
the VM unaltered. It has a number of help functions.

check5 and check4 checks the operation list to see if they are well formed.

viiIt was supposed to work like this but due to an implementation fault in the VM it does
not.

11

isarg checks if either read or write is an argument to be declared on the next
”line”, that is, it checks if should move the pointer 1 or 2 steps.

resolver and resolvew gets the values of the read and write arguments.
step’ does all the actual work; decodes operations, commits operations,

makes calculations and returns the next state of the VM.

4.2.4 flagToString

flagToString can not be used outside of the Vm-structure
It is used to convert flag to a string to be used in the dump-functions.

4.2.5 dumpToFile

Dumps the state of the VM to a text-file. The text is easily readable for easy
debugging.

4.2.6 dump

Dumps the state of the VM as easily readable text in the prompt.

4.2.7 loop

Uses step recursively on a VM until the flag isn’t RUNNING.

4.3 Work done by step

4.3.1 Flowchart

A very simplified flowchart of the work done by step is included. The flowchart
is simplified because a flowchart showing everything is unreadable.
Step does not actually end the loop if the VM isn’t running, it returns it unal-
tered. The loop function deals with the loop ending.
The flowchart shows that the function checks if the instructions are valid at the
start of each loop, that is not the case. Invalid functions can raise exceptions
at several points in the cycle.
The flowchart represents how the VM should work, not how it actually works.
This is because certain features haven’t been implemented. More on this in the
section ”Features yet to be implemented”.

12

Figure 2: Flowchart for the step function. See appendix for larger version.

4.3.2 Features yet to be implemented

There are some features that are not yet implemented due to time constraints.
Any attempt to use addresses in memory as a read or write to a function will
raise an exception. That is, using integers 3-5 as read/write will crash the VM
Use of IRQ registers as write will raise an exception. Using integers 6-7 as write
will crash the VM.
The logical operations AND, ORR, XOR and NOT will raise an exception.
Using integers 6-9 to choose a logical operation will crash the VM.
Moving from stack can’t be done to X, because of a bug.
Jumps can only be done to X.

5 Assembler

5.1 General

The assembler which we have written for the FMl machine is a very basic yet
powerful assembler. The assembler doesn’t do much more than address resolu-
tion, catching invalid opcodes and arguments. It also enables the use of both
label pointers and value pointers. The main tasks of the assembler is the in-
struction code generation and address resolution. The syntax of the assembler
is inspired by the syntax for the MOS 6510 assembly language and primarily
the syntax of the Turbo Assembler[19] for the Commodore 64[18]. The assembler

13

is now fully functional and we don’t see any need to augment it or redesigning
any aspects of it. The assembler should only generate valid instructions but due
to a major design error in the implementation of the VM this is not necessarily
true any more. Below a short example of a assembly program will follow:

% This a simple program which fills a part

% of the memory with 100 consecutive integers

% trough rellative addressing.

#start

MOV 0 x

@start_address

MOV start_address y

#loop

MOV x $y

INC x

INC y

BLE x 100

JMP loop

HLT

A line starting with a # declares a label. The address of the label will corre-
spond to where in the code the the label gets declared. A line starting with a @

declares a value. The address of the label will be assigned independent of where
in the code it appears.

For a more in depth description of the assembly language see the Assembler
part of the appendix.

5.2 Implementation

5.2.1 General

The assembler works in a fairly straight forward way. The first step in the
process of assembling is the lexical analysis[20] in which the lines in the text file
gets tokenized. In this stage an “intermediate structure” viii gets constructed.
This is an object which contains all of the labels, values and a list of the tokenized
lines. The list of the tokens contains tuples of (label,offsett,token) where
the label is the last declared label and the offset is how many addresses away
from that line the current token is. All of the labels and values will not be
assigned an address in this phase. It is in this phase where the opcodes and their
arguments gets converted in to there corresponding numerical instruction code.
It is also during this phase in which the syntax gets checked. If a syntax error
is encountered the assembler will stop immediately. When the lexical analysis
has been completed a check for duplicate pointer declarations is performed.

viiiThe use of the word structure here is a bit ambiguous since it actually is a structure in
sml. But in this text it will refer to an abstract structure of data.

14

The next phase in the assembly is the address resolution phase. This is done
in two phases, in the first one the labels gets resolved and in the second the
values gets resolved. It begins by first resolving the labels. This is done by first
giving the assembler a base address which is the address of the first label. As of
now the first non comment line in the input file has to be a label since every line
has to have a label assigned to it. Then the address resolving function continues
down the intermediate structure and remembers which line it is at and what
it’s last read label was. When it runs into a new label-token it will set the new
label to it’s current address and then continue on until it has gone trough the
entire intermediate structure. After the labels have been resolved the assembler
starts to resolve the values. This is done in a very straightforward way. The
assembler just looks at the last address of the last entry in the output of the
first pass and looks at the last address, adds one to it and the just places all the
the values in after that address in the same order as they appeared in the file.
After all the addresses have been resolved the assembler runs trough the list of
tokens and replaces every pointer token with it’s correct address.

After this is completed the assembler finalizes the code by converting every-
thing into a list of integers which then gets outputted to a file. And that is how
assembly code gets turned in to machine code.

The assembler runs in linear time with respect to the number of lines in the
code. This is under the assumption that the number of lines are far greater than
the number of values and labels in the code. This is a safe assumption for any
reasonably written code. We see no need to try to optimize the performance of
the assembler.

5.2.2 Flow chart

Below a flow chart will follow for how the assembler the assembles the assembly
code.

15

Figure 3: Dataflow diagram of the assembler
16

Figure 4: Dataflow diagram of the tokenization phase

17

Figure 5: Dataflow diagram of the label address resolution

18

We have not included a flowchart for the address resolution of the values or
the finalization part since these are trivial.

5.3 Intermediate Structure

One of the most important parts of the assembler implementation is the Intermediate
structure and especially the Inter datatype. There might be some confusion
regarding the intermediate structure since it is a sml structure which describes
an abstract structure.It is in this datatype that the tokenization of the code gets
stored. It composed of three major components. The first is the label_list in
which all of the label declarations are stored. At first the address are set to NONE

this indicates that their addresses have not yet been resolved. The value_list

works in the same way as the label_list. Then we have the token list

which is a list of tuples of the form (label_name, offsett, token). The
label_name is the label which is associated with the token. The assigned label
will be the last label declared before the token is encountered. The offsett is
an int corresponding to the distance from the assigned label that the token was
encountered. offsett is vital in the address resolution of the tokens.

5.4 Usage

To use the assembler properly one has to know how to write assembly code
and understand the detailed workings of the machine. We recommend studying
both the VM specifications and the assembler documentation in the appendix
before you start to write programs for the machine.

The working of the assembler program is very straight forward. just write
your assembly code in a file called in.asm and run the Assembler.sml file in the
sml interpreter of your choosing and if there are no errors encountered during
the assembling of the program the assembled program will be outputted to a
file named out.fml.

6 Summary

In general this project has been a great success considering the scale of the
project and the time constraints. We have designed a very sleek, efficient and
minimalistic VM. Even with it’s minimal set of operations, programming for it
is much fun and quite straight forward compared to more complicated machine
languages. This is mainly due to the general purpose stackix. We have managed
to write a fully functional and fully featured assembler which enables the writing
of programs of unbounded complexity I.e there is no design flaw in the assembler
which would make it practical to write more elaborate programs in it.

ixMany of the older 8-bit micro processors did not have a general purpose stack which
made programming for them somewhat cumbersome

19

6.1 Work to be done

There are still a few untied strings to be tied up and folds to be flattened. The
VM implementation is as of now largely incomplete and only handles a small
subset of all the operations. It also needs to be rewritten in order to use the
ResolveOpcode structure in order to ensure compatibility with the assembler.

After the VM implementation is fully functional it would be nice to write
some peripheral components for handling output, input and timing.

And maybe one day we will write a high level language for the machine.
After all of this is done and we have gotten permission from the lecturers

the entire project will be made available as open source.

6.2 Highlights

What are we really proud of this project. First of all that we actually did itx.
Secondly the fact that the VM is very minimalistic and yet powerful. This
is primarily due to the way the instruction are encoded into integers and also
trough the existence of the general purpose stack.

The assembler turned out much better than we had originally imagined.
And when the OpcodeResolve structure gets implemented properly it will only
generate valid instructions.

7 Appendix

7.1 VM specifications

7.1.1 Structure

The VM consists of 9 components. Two general purpose registers(X , Y), one
general purpose stack (S), One virtual read only register (A), One jump stack
J, Two IRQ address registers (Q1 , Q2), One “ALU”, One program counter
(PC) and of course a random access memory.

7.1.1.1 The general purpose registers
The two general purpose registers X and Y are both capable of being used for
all arithmetic operations and their values can also be used as addresses. These
two registers can be incremented and decremented.

7.1.1.2 The stack
The stack S is a standard LIFO stack of unlimited size. The stack can not be
used for addressing. One can not read the top of the stack without popping it.
If one tries to get a value from an empty stack an exception will be raised and
the VM must halt.

xIt contains roughly 1600 lines of code!

20

7.1.1.3 The Argument Register
Now this is just a virtual read only register. The argument A is only accessible
if the instruction being executed takes a predefined argument. The argument
will be the value of the memory location after the location at which the PC
is currently pointing. No well formed instruction should refer to A unless it is
supposed to.

7.1.1.4 The Jump Stack
The jump stack J is not accessible by anything besides the PC. The program
counter is of infinite size. The jump stack is responsible for keeping track of
the return address when a subroutine is performed. Every time someone issues
a subroutine jump the current address will be pushed onto the stack. When
a return jump is issued J gets popped and it’s value gets assigned to the PC.
The top entry on the stack can not be accessed without popping the stack. If
someone tries to execute a return jump if the jump stack is empty a exception
shall be raised and the VM must crash.

7.1.1.5 The IRQ registers
The IRQ registers Q1 and Q2 are two pointers to the memory. These are two
write only registers and can only be read by the PC. The IRQ registers can
be assigned values like all the other registers. If a interrupt is issued the PC
will be assigned to the value of the corresponding IRQ register and the current
value of the PC will be pushed onto J.

7.1.1.6 RAM
The RAM in this machine works pretty much like any other random access
memory. If any instruction tries to write or read from addresses lying outside
of the size of the ram the VM should crash.

7.1.2 ISA

Every opcode is represented by a integer where each digit provides information
about what the VM is to do in that step. The digits are from right to left as
follows.

First Read location

Second Write location

Third Arithmetic operations

Fourth Logic operations

Fifth Jump operations

Sixth Special

Below is a table describing what each digit value corresponds to:

21

Value 0 1 2 3 4 5 6 7 8 9
Read X Y S MX MY MA A
Write X Y S MX MY MA Q1 Q2 A
Arit INC DEC ADD SUB MUL DIV MOD

Logic EQL GRT LES BRL BRR AND ORR XOR NOT

Jump JMP BEQ BLE BGR JSR RET

Special H see POP

Here MX, MYand MAis to be read as address of X, Y and A. All arithmetic
and logic operations operations writes their output to the stack.
Here some examples follows:
000042 → Move value at S to memory cell at the address stored in Y.
000401 → Get X mod Y and write result to S
020046 → Skip next instruction if MY is equal to A

22

First I would like to mention that 000000 will be the NOP operation since it
would translate to just moving X to X . We can now group the instructions in
to numerical ranges:

000000 NOP

000001-000076 Move operations
000100-000776 Arithmetic operations
001000-009076 Logic operations
010000-070000 Jump operations
100000 Special

As is apparent from this list many values would yield invalid or nonsense oper-
ations. The instruction decoder must take this into consideration.

Below will follow specifications for all the instruction types.

7.1.3 Instruction types

Every instruction will take exactly one cycle. Almost every instruction needs
only one memory cell and should increment the PC by one. Any operation
using a argument I.e A will occupy two memory cells and increment the PC by
two.
Using jump operations may affect the PCin other ways. No operation except
moves to the IRQ registers (Q1 and Q2) are allowed. If any other operation
where to try to access the IRQ registers the opcode is invalid and the VM should
crash.

7.1.3.1 Move operations
The only invalid move operations are those where the second digit is a 8 since
one can not write to A. Although some are nonsensical such as 000011 since it
would move Y to Y .

7.1.3.2 Arithmetic operations
The increment(++) and decrement(−−) operations only take one write argu-
ment and the read argument should be ignored. Incrementing or decrementing
a register or memory cell updates the value stored in that registry directly and
does not affect any thing else.
The other arithmetic operations takes the write digit as the first argument to
the operation and the write operation will be the second argument. The result
of the operation is always stored on the stack.
If one tries division by zero a exception should be thrown and the VM shall
crash.

7.1.3.3 Logic operations
The logic operations work in the same way as the arithmetic operations. The
comparison operations will return 0 if the result is false and 1 otherwise. Any
logic operation where the 3:d digit is non zero is an illegal instruction and a
exception should be thrown and the VM shall crash.

23

7.1.3.4 Jump operations
The standard address jump (J) will jump the PC to the address given by it’s
read digit.
The conditional breaks takes the write digit as it’s first argument and the read
digit as it’s second argument. If the test fails the PC will skip the next instruc-
tion. This will require some tricks to implement. The VM must , at runtime,
identify weather or not the following instruction takes up one or two memory
cells.

A JSR (subroutine jump) will take a argument in A and move the PC there
and it will also put it’s current value on J.
A return jump will jump to the address at the top of J plus one or two depend-
ing on weather a non register argument is used. xi and then pop the stack.If the
jump where to be empty the VM should crash and an exception should be raised.

7.1.3.5 Special
The Halt operation which just stops the VM and raises an exception.
And the SEM or Stack empty operation which returns 1 if the stack is empty
and 0 else. The POP just pops the stack. I.e removing the top object.

xiIf the return jump where to return to the value at the top of the stack it where to return
to the address where the subroutine jump is and thus get stuck in a loop

24

7.1.4 Opcodes

Below a short summary of all the available opcodes will follow.
Mnemonic Description X Y S A MA MX MY Args
NOP No Operation x x x x x x x 0
MOV Move operations b b b r b b b 1
INC Increment b b x x x x x 1
DEC Decrement b b x x x x x 1
ADD Add r r b r r r r 2
SUB Subtract r r b r r r r 2
MUL Multiply r r b r r r r 2
DIV Division r r b r r r r 2
MOD Modulus r r b r r r r 2
EQL Equal r r b r r r r 2
LES Less r r b r r r r 2
GRT Greater r r b r r r r 2
BRL Rotate L r r b r r r r 1
BRR Rotate R r r b r r r r 1
AND And r r b r r r r 2
ORR Or r r b r r r r 2
XOR Xor r r b r r r r 2
NOT Not r r b r r r r 2
JMP Jump r r x r r r r 1
BEQ Jump Equal r r r r r r r 2
BLE Jump Less r r r r r r r 2
BGR Jump Greater r r r r r r r 2
JSR Subroutine Jump r r x r r r r 1
RET Return Jump x x x x x x x 0
HLT HALT x x x x x x x 0
SEM Stack Empty x x w x x x x 0
POP Pop Stack x x w x x x x 0

7.2 Assembler usage guide

In this part of the appendix a brief explanation of how the assembly language
works is given here.

7.2.1 Syntax

The syntax for the assembly code is pretty straight forward. Each declaration
is written on a single line. There are a few reserved identifiers:

25

Identifier Name Description
%<text> Comment Will be ignored by the assembler
#<name> Label Declares a label called <name>

@<name> Value Declares a value called <name>

:<data> Raw input Returns <data> as is
$<a> address Dereferences a

x x The X register
y y The Y register
s s The stack S
q1 IRQ1 The Q1 register
q2 IRQ2 The Q2 register

The names given to labels and values can contain any characters except for
whitespace ones.
Operations are declared in a straightforward approach as:
<opcode> <arg1> <arg2>

which arguments are allowed are dependent upon the opcode.
Any non whitespace character can be used for names of labels and values.
Each file has to start with a label.

7.2.2 Usage

7.2.2.1 General
One noteworthy thing to point out is the limitations on the arguments. Due
to limitations in the VM only one “none registry” argument can be used for
any operation. A “non registry” argument is one which is either a number or
a a pointer. Dereferencing a pointer is a registry operations so they are valid.
Below follows some examples:

#label

@value

MOV label value This is not accepted

MOV $label $value This is perfectly fine

MOV 10 value This is invalid

MOV 10 $value But this is

ADD 1 10 This is invalid

ADD $1 $10 This is valid

ADD 1 $1 So is this

7.2.2.2 Registers
The usage of the registers is pretty straight forward. One has to remember that
q1 and q2 are write only registers and that s cant be used for addressing so $s

is not allowed and will generate a syntax error. It is also good to keep in mind
that all operations reading from the stack will consume what is on top of the
stack.

26

7.2.2.3 Pointers
Using pointers is fairly straight forward. Although one has to keep in mind how
the addresses are resolved. All pointers will be resolved after the tokenization
for the code. First the labels will be resolved and then the values. This means
that the first value will lie after the last line of code. Since the address of a
label depends on where in the code their addresses are easy to reason about.
However for values things are bit different. Since values will be given addresses
which are “independent” of where in the code they appear it is hard to reason
about the address of a value. Although the value pointers are resolved in order
the first value declared will lie immediately after the last line of code and the
last value declared will lie “at the end” of the memory used by the program.
This can be exploited to use relative addressing. Although great care has to be
taken.

it’s important to remember that all pointers are referred to throughout the
entire program therefore it’s not allowed to define two pointers with the same
name. If this where to be allowed it would generate unpredictable behaviour so
instead the assembler will return a assembler error.

labels and values are interchangeable. Since opcodes takes pointers as argu-
ments and has no idea weather or not they are labels or values. From this the
need for caution arises. Since one can use value pointers as arguments to jump
operation like this:

@bad_idea

ADD x y

MOV s x

MUL x y

JMP bad_idea

Since it is not known what where bad_idea points jumping to it is suicidal.
Since pointers are just numbers under the hood one needs to take into ac-

count weather or not one uses them for their address or for their values. Here
is some examples

@pointer

% This stores x in pointer

MOV x value

% This stroes x in the address which is

% stored at pointer

MOV x $value

% This adds one to the value stored at

% pointer

ADD $pointer 1

% This adds one to the address of pointer

ADD pointer 1

Pointers are immutable and once they has been declared they can not be
changed. One has to do some tricking to achieve relative addressing using labels
or values.

27

7.2.2.4 Labels
Labels are declared using the # identifier. Labels are resolved first and their ad-
dresses correspond to location in the code where they are written. For example:

MOV x y

#loop

INC x

MOV x s

JMP loop

In this code loop points to the address where INC x is stored. In the tokeniza-
tion of the assembly code the lines where a pointer is defined will be ignored
and the address where the next instruction or raw entry occurs. This can lead
to that poorly written code becomes ambiguous. For example:

MOV x y

#loop

#silly

INC y

Here loop and silly will both point to the same address which is silly.
Because tokenization of the code happens before the address resolving a label

will be “in scope” throughout the entire code. So this code is perfectly valid:

MOV x y

JMP ahead

INC x

ADD x y

#ahead

ADD s x

The JMP ahead will jump to ADD s x even though the ahead flag is defined after
the jump. This was not a concious design choice but it is actually quite useful
since one can define subroutines anywhere in the code which can be accessed
form anywhere in the code.
One possible pitfall arises due to the fact that the assembler does not know the
difference between a label and a value after their addresses has been resolved.
So this code is valid assembly code:

#loop

ADD s x

MOV s $loop

JMP loop

Although what this will do is that it will change what is at the address of loop.
But there ADD s x lies! This is what is known as self-modifying code and it’s
the spawn of Satan and should be avoided like one avoids Miami beach during
spring break. Although in some cases the interchangeability of value and label
can be very useful if one wants to have “arrays” in ones code. This is easily
achieved like this:

28

#array

:0

:1

:2

:3

Here array can be used as a pointer to the array. One can then manipulate the
array trough using relative addressing of array like this:

ADD 2 array

MOV s y

MOV 5 $y

#array

:0

:1

:2

:3

This code would change the 2 into a 5. But great care needs to be taken since
one could easily end up outside of the “array” and corrupt the program.

7.2.2.5 Values
Values are far more straight forward than label. One only has to take into
account that what address a value is given is somewhat independent of where
in the code it gets defined.

7.2.2.6 Jumping
Doing ordinary jumps using the JMP operation is very straight forward. The
machine will just jump to the address given to the JMP operator.

But for conditional branching things become a little bit less obvious. If the
test given to a conditional test fails the machine will skip the next instruction.
Lets illustrate this with a few examples:

MOV 10 x

BLE x 2

JMP this_does_not_happen

BGR x 2

JMP this_happens

Subroutine jumps work in a very straight forward fashion. You just make
a subroutine call using JSR <address> and then you use the RET operations
to return to the address immediately after the one from which the jump was
issued. One has to be careful not to execute a RET jump unless one has actually
made a subroutine jump. The VM will crash if a return jump is issued and the
jump stack is empty.

29

7.2.2.7 Arithmetic and logic operations
The arithmetic and logic operations are quite straight forward. The arguments
given to the operations appear as they would in the normal case. So ADD x y is
x+y and MOD x y is x mod y. All of these operations (except for INC and DEC)
store their result on the stack.

7.3 Components.sml description

Due to miscommunication a radically different description of how the Compo-
nents.sml file works was written and have been included here as an appendix.

7.3.1 Introduction

This file and including functions are the structures of the Registers, Stack, Ram
and Program Counter

We have refrained to make examples for the functions due to the rudimentary
nature of them and some that have a complexity that an example would make
it indecipherable . And to go on to test cases for the whole program we have the
running machine that will take a program and run it with a predictable result.
So to conclude this section, see the sections below

7.3.2 The Ram structure

7.3.2.1 Synopsis
signature RAM
structure Ram :>RAM

The Ram structure provides a base of the functions of a ram memory. This
structure acts as something akin to a “monad”. It hides all of the side effects
sued for the array handling.

7.3.2.2 INTERFACE
type memory = int array
val initialize : int → memory
val getSize : (memory) → int
val write :(memory * int * int) → memory
val read : (memory * int) → int
val load : (memory* int list) → memory
val writeChunk : (memory * int * (int array)) → memory
val readChunk : (memory * int * int) → int array
val dump : memory → string

7.3.2.3 Description
val initialize : int → memory
Initialize the ram to a memory with the size of int, when int ¿ 0
val getSize : (memory) → int

30

Gets the size of the memory
val write :(memory * int * int) → memory
write takes a memory and writes a new value of int at the pointer of the first
int and returns the memory
val read: (memory * int) → memory
read takes a memory and reads the value of the place of int
val load: (memory * int list) → memory
load takes a list of values and loads them to the memory
val writeChunk: (memory* int *(int array)) → memory
writeChuck takes a memory and a start pointer and adds a chunk to the memory
val readChunk: (memory * int *int) → int array
readChumk takes a memory and reads a chunk form first int to the last int and
gives the values as an int array
val dump: memory → string
dump takes a memory and returns the value as strings

7.3.3 The Stack structure

7.3.3.1 Synopsis
signature STACK
structure Stack :>STACK
The Stack structure provides a base for the stack part of the Pc structure.

7.3.3.2 INTERFACE
datatype stack = Stack of (int list)
val empty : stack
val push : stack * int → stack
val pop : stack → stack
val top : stack → int
val isEmpty : stack → bool
val dumpStack : stack → string

7.3.3.3 Description
val empty : stack
is a definition of a empty Stack
val push : stack * int → stack
takes a stack and adds the value of int to the stack.
val pop : stack → stack
takes a Stack and pops the first element of the stack.
val top : stack → int
takes the stack and returns the first element of the stack
val isEmpty : stack → bool
takes a stack and checks if it is empty if it is then true else false.
val dumpStack : stack → string

31

takes a stack, then pops the stack until it’s empty and returns all values as
string

7.3.4 The Register structure

7.3.4.1 Synopsis
signature REGISTER
structure Register :¿ REGISTER

The Register structure provides a base structure of the different register that
is contained in the Pc as well the Virtual machine. The vm has two different
registers.

7.3.4.2 INTERFACE
datatype reg = Reg of int
val setData : (reg * int) → reg
val getData : reg → int
val increment : reg → reg
val decrement : reg → reg
val dumpRegister : reg → string

7.3.4.3 Description

val setData : (reg * int) → reg
Setups a new Register
val getData : reg → int
Gets the value of the reg as an int
val increment : reg → reg
Takes a reg and increment it with one.
val decrement : reg → reg
Takes a reg and decrements it with one.
val dumpRegister : reg → string
Takes the register and adds all elements to a string.

7.3.5 The Program Counter structure

7.3.5.1 Synopsis
signature PROGRAMCOUNTER
structureProgramCounter :> PROGRAMCOUNTER

TheProgramCounterstructurecontrolstheexecutionflowoftheVM

32

7.3.5.2 INTERFACE
datatype pc = Pc of (int * Stack.stack * Register.reg * Register.reg)
val incrementPointer : (pc * int) → pc
val jump : (pc * int) → pc
val subroutineJump : (pc * int) → pc
val return : pc → pc
val interrupt : (pc * int) → pc
val dumpPc : pc → string

7.3.5.3 Description
val incrementPointer : (pc * int) → pc
Takes a Pc and adds a int ¿ 0
val jump : (pc * int) → pc
Takes a Pc and jumps the pc counter to the value of int ¿ 0
val subroutineJump : (pc * int) → pc
Takes a Pc and preforms SubrutineJump with the value of int ¿ 0 and adds the
value of the pointer + 1 to the stack
val return : pc → pc
Takes a pc and gets the value from the pointer and pops the stack with the
value
val interrupt : (pc * int) → pc
if the value of a is 1 or 2, then the value of i is added to s
val dumpPc : pc → string
Takes a pc and dumps the content of the pc as a string (the Pc contained a
pointer, Stack, and tow registers)

33

34

7.4 Step function flowchart

Figure 6: A larger version of the step flowchart.
35

References

[1] http://en.wikipedia.org/wiki/Virtual_machine

Retrieved: March 6, 2014

[2] http://en.wikipedia.org/wiki/RISC

Retrieved: March 6, 2014

[3] http://en.wikipedia.org/wiki/6510

Retrieved: March 6, 2014

[4] http://en.wikipedia.org/wiki/Z80

Retrieved: March 6, 2014

[5] http://en.wikipedia.org/wiki/Instruction_set_architecture

Retrieved: March 6, 2014

[6] http://en.wikipedia.org/wiki/Asynchronous_Processor#

Asynchronous_CPU

Retrieved: March 6, 2014

[7] http://en.wikipedia.org/wiki/Git_(software)

Retrieved: March 6, 2014

[8] http://bitbucket.org

Retrieved: March 6, 2014

[9] http://en.wikipedia.org/wiki/Functional_purity

Retrieved: March 6, 2014

[10] http://en.wikipedia.org/wiki/7400

Retrieved: March 6, 2014

[11] http://en.wikipedia.org/wiki/Opcode

Retrieved: March 6, 2014

[12] http://en.wikipedia.org/wiki/Von_Neumann_architecture

Retrieved: March 6, 2014

[13] http://en.wikipedia.org/wiki/Data_bus

Retrieved: March 6, 2014

[14] http://en.wikipedia.org/wiki/Register_(computing)

Retrieved: March 6, 2014

[15] http://en.wikipedia.org/wiki/Interrupt_request

Retrieved: March 6, 2014

[16] http://en.wikipedia.org/wiki/Arithmetic_logic_unit

Retrieved: March 6, 2014

36

http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/RISC
http://en.wikipedia.org/wiki/6510
http://en.wikipedia.org/wiki/Z80
http://en.wikipedia.org/wiki/Instruction_set_architecture
http://en.wikipedia.org/wiki/Asynchronous_Processor#Asynchronous_CPU
http://en.wikipedia.org/wiki/Asynchronous_Processor#Asynchronous_CPU
http://en.wikipedia.org/wiki/Git_(software)
http://bitbucket.org
http://en.wikipedia.org/wiki/Functional_purity
http://en.wikipedia.org/wiki/7400
http://en.wikipedia.org/wiki/Opcode
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Data_bus
http://en.wikipedia.org/wiki/Register_(computing)
http://en.wikipedia.org/wiki/Interrupt_request
http://en.wikipedia.org/wiki/Arithmetic_logic_unit

[17] http://en.wikipedia.org/wiki/Assembler_(computing)#Assembler

Retrieved: March 6, 2014

[18] http://en.wikipedia.org/wiki/Commodore_64

Retrieved: March 6, 2014

[19] http://turbo.style64.org/

Retrieved: March 6, 2014

[20] http://en.wikipedia.org/wiki/Lexical_analysis

Retrieved: March 6, 2014

[21] http://en.wikipedia.org/wiki/LIFO_(computing)

Retrieved: March 6, 2014

37

http://en.wikipedia.org/wiki/Assembler_(computing)#Assembler
http://en.wikipedia.org/wiki/Commodore_64
http://turbo.style64.org/
http://en.wikipedia.org/wiki/Lexical_analysis
http://en.wikipedia.org/wiki/LIFO_(computing)

	Our work
	Personal notes
	Henrik Sommerland
	Oskar Ahlberg
	Aleksander Lundqvist

	Usage
	The VM
	General
	Instruction Set Architecture

	The components
	Register

	Implementation
	Stack
	Ram
	Program Counter

	Utilities
	Datatypes used by VM
	flag
	vm

	Functions used by VM
	init
	getCode
	step
	flagToString
	dumpToFile
	dump
	loop

	Work done by step
	Flowchart
	Features yet to be implemented

	Assembler
	General
	Implementation
	General
	Flow chart

	Intermediate Structure
	Usage

	Summary
	Work to be done
	Highlights

	Appendix
	VM specifications
	Structure
	ISA
	Instruction types
	Opcodes

	Assembler usage guide
	Syntax
	Usage

	Components.sml description
	Introduction
	The Ram structure
	The Stack structure
	The Register structure
	The Program Counter structure

	Step funtion flowchart

