Program Design & Data Structures (Course 1DL201)
Uppsala University — Spring 2018
Homework Assignment 3: Data Compression

Prepared by Johannes Borgstrom and Tjark Weber

Lab: Friday, 26 January, 2018
Submission Deadline: 18:00, Friday, 2 February, 2018
Lesson: Wednesday, 14 February, 2018

Resubmission Deadline: 18:00, Wednesday, 21 February, 2018

Data Compression

A binary digit or bit is the basic unit of information in computing. A bit can only have one of
two values, 0 (False) or 1 (True). On today’s computers, all data (e.g., numbers, characters,
strings) is ultimately encoded in bits.

Computer hardware, e.g., hard disks, can only store a limited number of bits. Also computer
networks can only transmit a limited number of bits per second. When we want to store
or transmit information, it is therefore often desirable to use an encoding that reduces the
number of bits in the representation of the data. This is the purpose of data compression.
Data compression is widely used to reduce the size of audio and video files, web pages, email
attachments, messages sent by spacecrafts, and in many other applications.

For this assignment, we will focus on lossless compression. Lossless compression allows the
original data to be reconstructed perfectly from the compressed data.

Huffman Coding

Huffman coding is a lossless compression technique based on the observation that certain charac-
ters typically occur much more often than others in a (natural-language) messageE] For instance,
in a typical English text, the character e would appear much more often than the character z.
Instead of using a fized-length encoding that uses the same number of bits to represent each
character, we can thus reduce the number of bits required to represent the message by using
a variable-length encoding that assigns shorter codes to more common characters, while less
common characters are assigned longer codes.

Huffman coding determines an optimal code for each character. It employs the following
algorithm, which was developed by David A. Huffman (1952) while he was a PhD student
at MIT, and is now used as a building block in many other compression algorithms, including

Z1P, GZIP and JPEG.

1. Count the number of occurrences of each character in the message.

For instance, if the message is the string “this is an example of a huffman tree”
(without the quotes), we obtain the following character counts:
space‘a‘e‘f‘h‘i‘m‘n‘s‘t‘l‘o‘p‘r‘u‘x

7 o J4al4af3]2|2]2]2]2]2|1|1]1][1]1]1

'Here, we will focus on compressing strings as messages. Huffman coding can similarly be used for other data.

2. From these character counts, build a Huffman tree. A Huffman tree is a full binary tree
such that

e each leaf is labeled with a character;

e cach sub-tree (i.e., each leaf and each node) is labeled with the count of all characters
in that sub-tree; and

e sub-trees with larger character counts do not occur at a lower level of the tree than
sub-trees with smaller character counts.

Figure[I]shows a possible Huffman tree for the string “this is an example of a huffman
tree”.

To be more specific, a Huffman tree for given character counts can be built by using a
priority queue (whose data items are Huffman trees). The priority of each tree in the
queue is given by the character count at its root node. Starting from an empty priority
queue, the algorithm proceeds as follows:

(a) For each character z with associated count ¢, insert a tree that consists just of a leaf
labeled with x and ¢, into the priority queue.
Figure [2| shows a possible priority queue for the string “this is an example of a
huffman tree” after all characters have been inserted as leafs.

(b) If the priority queue contains at least two trees, remove the two trees with minimal
priority, say t; with priority c¢; and to with priority co. Merge them into a single tree
by adding a new root node (labeled with ¢; +¢2) whose sub-trees are ¢; and to. Insert
the new tree into the priority queue.

Figure [3] shows the priority queue from Figure [2] after this merge operation has been
applied once.

Continue with step (b).

(c) Otherwise, the only tree in the priority queue is the desired Huffman tree.

A Huffman tree defines a binary code (i.e., a list of bit values) for each character that appears
in the tree as follows. Label each edge to a left sub-tree with 0 (False) and each edge to a right
sub-tree with 1 (True) (see Figure[d). The Huffman code of a character x is the sequence of 0/1
labels from the root to the leaf that contains x.

For instance, given the Huffman tree in Figure EL e is encoded as [0,0,0], n is encoded as
[0,0,1,0], o is encoded as [0,0,1,1,0], etc.

Compression To compress a message (i.e., a list of characters), we first build a Huffman
tree for the message. We then traverse the Huffman tree to build a code table that maps each
character to its Huffman code.

Using this code table, we look up the Huffman code for each character in the message, and
simply concatenate all codes to obtain the encoding of the message.

For instance, given the Huffman tree in Figure[l] the encoding of “this is an example of
a huffman tree” would be a bit list starting with [0,1,1,0,1,0,1,0,1,0,0,0,...].

Decompression To decompress a sequence of bits into the original message, we also need to
know the Huffman tree that was used for compression. The algorithm for decompression then
proceeds as follows:

1. Start at the root of the Huffman tree.

2. For each bit in the sequence:

® O ®
1@ (2] g
12 @ (2 @] G2 @ @2
ol1) D) @

Figure 1: A possible Huffman tree for the string “this is an example of a huffman tree”.

Lo (wfy) (x]1) (p4) (1) (012 (] (m[(i[2) [R2) (sT2) [£]3) (eT4) (al4)

Figure 2: A possible priority queue for “this is an example of a huffman tree” after in-
sertion of each character (step (a) of the algorithm).

(<[[py) [r]1) (nT2) (]2 [(mT2J(i2) (B]2) (sT2) [o[t) (w()f[3)

Figure 3: The priority queue from Figure [2 after the merge operation (step (b) of the algorithm)
has been applied once.

0/\1 0/ \1 0/\1

1
ol @ (212 7
0 1 0 1 0/\1 O 1 0 1
2 @ (2 @B @2 @ &
0 1 0 1 0 1
of1 =) Pl D
Figure 4: A possible Huffman tree for the string “this is an example of a huffman tree”

with edge labels shown: 0 for left sub-trees, 1 for right sub-trees. Note that the labels are only
shown for clarity—it is not necessary to actually store them in the tree data structure.

(a) If it is a 0, go to the left sub-tree. If it is a 1, go to the right sub-tree.

(b) When we have reached a leaf, return the corresponding character. Go back to the
root of the tree and decompress the remaining bits in the sequence.

Work to be Done
For this assignment, you will implement Huffman coding in Haskell.
1. Download the files Table.hs, PriorityQueue.hs and BinomialHeap.hs from the Student
Portal. The polymorphic type PriorityQueue a of priority queues holding data of type a

(with priorities of type Int) has the following interface:

-— the empty priority queue

empty :: PriorityQueue a
{- isEmpty q
RETURNS: True if and only if q is empty
-}
isEmpty :: PriorityQueue a -> Bool

{- insert q (x,p)
RETURNS: the queue q with element x inserted at priority p
-}

insert :: PriorityQueue a -> (a, Int) -> PriorityQueue a

{- least q
PRE: q is not empty
RETURNS: ((x,p), q’), where x is an element of minimum priority in q,
p is the priority of x, and q’ is q without x
-}

least :: PriorityQueue a -> ((a, Int), PriorityQueue a)

2. Download the file Huf fman.hs from the Student Portal. Define a data type Huf fmanTree
to represent Huffman trees, add missing comments, and implement the following functions
(empty implementations are already provided):

{- characterCounts s
RETURNS: a table that maps each character that occurs in s to the
number of times the character occurs in s
-}

characterCounts :: String -> Table Char Int

{- huffmanTree t
PRE: t maps each key to a positive value
RETURNS: a Huffman tree based on the character counts in t
-}
huffmanTree :: Table Char Int -> HuffmanTree

{- codeTable h

RETURNS: a table that maps each character in h to its Huffman code
-}
codeTable :: HuffmanTree -> Table Char BitCode

{- compress s
RETURNS: (a Huffman tree based on s, the Huffman coding of s under
this tree)
-}

compress :: String -> (HuffmanTree, BitCode)

{- decompress h bits
PRE: bits is a concatenation of valid Huffman code words for h
RETURNS: the decoding of bits under h

-}

decompress :: HuffmanTree -> BitCode -> String

Make sure that compression and decompression are inverse operations, i.e., that

let (h, bits) = compress s in decompress h bits
evaluates to s for all possible input strings. Pay special attention to edge cases, such as
"t oor "xxx", and if necessary adjust your implementation so that it handles these cases
correctly.

Submit (your modified version of) Huffman.hs via the Student Portal. Do not change the file
name.

Running and Testing

There are (at least) two ways of loading your program into GHCi:
e Type ghci Huffman.hs in a shell.
e Type ghci in a shell. Then type :1 Huffman.hs.

After modifying and saving your code in an editor, enter :r within GHCi to reload the file.

Several test cases have been provided for you in the file Huffman.hs. These can be run by
entering runtests in the GHCi shell. You are strongly encouraged to add further test cases to
test your code more thoroughly. (When we mark your code, we will in any case run a fresh copy
of the test cases provided.)

Grading

Your solution is graded on a U/K/4/5 scale based on two components: (1) functional correctness
and (2) style and coding convention.
1. Functional correctness:

Your program will be run on an unspecified number of grading test cases that satisfy all precon-
ditions but also check boundary conditions. Each test case is based on different inputs (messages
etc.) than the ones provided.
We will run these tests automatically, so be careful to match exactly the imposed file names,
function names, and argument orders—that is, don’t change what we’ve provided for you.
Advice: Run your code in a freshly started Haskell session before you submit, so that decla-
rations that you may have made manually do not interfere when you test the code.

The grade for this component is determined as follows:

e If your solution was submitted by the deadline, your file Huffman.hs loads in GHCi and
it passes at least 4 of the 6 provided test cases in Huffman.hs, you get (at least) a K for
functional correctness.

Otherwise (including when no solution was submitted by the deadline), you get a U grade
for the homework assignment.

e If your program additionally passes at least 75% of the grading test cases, you get (at
least) a 4 for functional correctness.

e If your program passes all grading test cases, you get a 5 for functional correctness.

2. Style and comments:

Your program is graded for style and comments according to our Coding Convention. The
following criteria will be used:

e suitable breakdown of your solution into auxiliary/helper functions,
e function specifications and variants,

e datatype representation conventions and invariants,

e code readability and indentation,

e sensible naming conventions followed.
The grade for this component is determined as follows:

e If your program’s style and comments are deemed a serious attempt at following these
criteria, you get (at least) a K for style and comments. Otherwise, you get a U grade for
the homework assignment.

e If you have largely followed these citeria, with very few major omissions or errors, you get
a 4 for style and comments.

e If you have followed these criteria with at most minor omissions or oversights, you get a 5
for style and comments.

Final Grade

Component grades are converted to a final grade on the usual scale U/3/4/5 as follows:

1. You need to pass both components (functional correctness and style and comments) in
order to pass this assignment.

2. A K grade in either component means that you are required to attend the lesson discussing
the assignment and to subsequently resubmit the assignment.

After resubmission, your entire assignment will be re-graded. Component grades of K will
improve to 3 if you provide a mostly correct solution (cf. the criteria for grade 4); you
cannot get a better grade than 3 in a component where you originally got a K. Component
grades of 4 or 5 remain unchanged if your resubmission still meets the relevant grading
criteria, but may be lowered otherwise (e.g., if your revised program no longer follows the
coding convention).

3. Your final grade is the arithmetic mean of the two component grades.

Modalities

e The assignment will be conducted in groups of two students. Groups have been assigned
via the Student Portal. If you cannot find your partner by Tuesday, 23 January, please
contact Andreas Léscher <andreas.loscher@it.uu.se>. You will then be assigned a new
partner (if possible).

e Assignments must be submitted via the Student Portal. Only one solution per group shall
be submitted. Ensure that both group members’ names appear on all submitted artefacts.

By submitting a solution you are certifying that it is solely the work of your group, except where
explicitly attributed otherwise. We reserve the right to use plagiarism detection tools.

Good luck!

