Program Design & Data Structures (Course 1DL201)
Uppsala University Autumn 2017 /Spring 2018
Homework Assignment 1: Computational Linguistics

Prepared by Dave Clarke and Johannes Borgstrém

Lab: Friday, 24 November, 2017
Submission Deadline: 18:00, Monday, 4 December, 2017

Lesson: Wednesday, 13 December, 2017
Resubmission Deadline: 18:00, Monday, 18 December, 2017

Computational Linguistics

Computational Linguistics is the discipline that studies natural language from a computational
perspective by using computational models to analyse vast volumes of text in order to understand
how language is used, among other things. Corpus Linguistics is one particular branch of Com-
putational Linguistics that heavily uses computational techniques to understand the meaning of
words from the contexts in which they are used. Specifically, Corpus Linguistics is interested
in collocations, sequences of words that appear together more often than one would expect by
chance. For example, one would expect to see strong tea in texts more often than powerful
tea, yet powerful computer would appear more often than strong computer—ultimately stating
something interesting to Computational Linguists about the difference in meaning of strong and
powerful. Two important special cases are sequences of words that often appear at the beginning
or end of sentences.

Goal

The goal of this assignment is to write a few Haskell functions for a computational linguistics
toolbox.

The following are the core data types to be used in your program:!

type Sentence = [String]

type Document = [Sentence]

type WordTally = [(String, Int)]

type Pairs = [(String, String)]

type PairsTally = [((String, String), Int)]

Type Sentence represents sentences as lists of words—one can assume that raw documents have
been preprocessed and the words have been extracted. Type Sentence represents documents
as lists of sentences. The WordTally data type can be used to record word counts. Data type
Pairs is used for lists of words that are adjacent to each other in the text. Finally, PairsTally

1The keyword type introduces a synonym for an existing type. For instance, declaration type Sentence =
[String] allows the programmer to use Sentence interchangeably with [String].



is similar to WordTally except that it is used to record the number of occurrences of pairs of
words.

The functions to be implemented (described in the next section) take a document and compute
word counts, pairs of words that occur together, and simple statistics about those. The first
couple of chapters of Jane Austin’s Pride and Prejudice are available (variable austin in module
PandP) to experiment with.

Work to be Done

Download the files from directory “Home Assignment 17 on the Student Portal: PandP.hs
contains preprocessed text from Pride and Prejudice, and CompLing.hs is for your solution.
CompLing.hs also includes a number of tests to help develop your implementation.

You are required to implement the following functions (empty implementations are provided
in the file CompLing.hs):

1. Function wordCount :: Document -> WordTally computes a tally of all the distinct words
appearing in the document. For example, the text "A rose is a rose. But so is a rose."
is encoded in Haskell as the list of sentences
[["a", "rose", "is", "a", "rose"], ["but", "so",
for this document is:

is", "a", "rose"]]. The tally

e a—3
e rose — 3
e is—2
e but — 1
e so — 1

This result could be represented in Haskell as follows, though the order of elements in the
list is not specified:

[(llrosell’ 3), (Ilall’ 3)’ (Ilisll, 2), (llbutll, 1)’ ("SO", 1)]

2. Function adjacentPairs :: Document -> Pairs results in a list of all adjacent pairs of
words appearing in the document, with duplicates present.

For instance,

adjacentPairs [["time", "for", "a", "break"], ["not", "for", "a", "while"]]

== [("time" , "for") , ("for" , na") , ("a" , "break") , ("not" , "for") , ("for" , "am , ("a" , "while")]

3. Similarly functions initialPairs :: Document -> Pairsand finalPairs :: Document -> Pairs
result in a list of all pairs of words appearing at the start (or end) of sentences in the doc-
ument, with duplicates present.

For instance,

initialPairs [["time", "for", "a", "break"], ["not", "yet"]]
i [("time","for"),("not", "yet")]

finalPairs [["time", "for", "a", "break"], ["mot", "yet"]]
- [("a","break"),("not", Ilyetll)]



4. Function pairsCount :: Pairs -> PairsTally computes a tally of all pairs, such as
those computed by adjacentPairs.

For instance, pairsCount [("big","bear"), ("bear","big"),("big","dog")] would re-
sult in the tally:

e big, bear — 2
e big, dog — 1

Note that here, we do not care about the order of words in a pair. For instance, we consider
("big","bear") and ("bear","big") to both represent the same pair of words, so they
must not both appear in the tally.

How this tally is represented in Haskell is a design decision, meaning that either:
[(("bear","big"),2), (("big","dog"),1)]

or

[(("big","bear"),2), (("big","dog"),1)]

or any reordering of these, are all valid ways of representing the tally.

5. Function neighbours :: PairsTally -> String -> WordTally takes a tally of pairs,
such as computed by the pairsCount function, and a word and gives all the words that
appear with that word in the tally of pairs along with the number of occurrences.

For instance,
neighbours [(("bear","big"),2),(("big","dog"),1)] "big"

should return [("bear",2),("dog",1)] or some reordering of this list.

6. Function mostCommonNeighbour :: PairsTally -> String -> Maybe Stringreturnsthe
word that occurs most frequently with a given word, based on a tally of pairs. The Maybe
data type is used to represent the result:

e If the word does not appear in the tally, the result is Nothing

e If the word appears in the tally, and the neighbour with the largest count is "foo",
then the result is Just "foo". If more than one word appears in neighbours with
equal highest count, then the result is Just x, where x is one of those words.

The Maybe data type is described in the next section.

The Maybe data type

The Maybe data type is used for the result of functions that do not always return a valid result.
It is declared in the standard library as

data Maybe a = Just a | Nothing

A valid result is indicated as Just x, for some value x, and no valid result is indicated as Nothing.



Running and Testing

There are (at least) two ways of loading your program into ghci:
e Type ghci CompLing.hs in a shell.
e Type ghci in a shell. Then type :1 CompLing.hs.

After modifying and saving your code in an editor, enter :r within ghci to reload the file.

Ten test cases have been provided for you in the file CompLing.hs. These can be run by
entering runtests in the ghci shell. Feel free to add further test cases to test your code more
thoroughly.

Grading

Your solution is graded on a U/K/4/5 scale based on two components: (1) functional correctness
and (2) style and comments.

1. Functional correctness:

Your program will be run on an unspecified number of grading test cases that satisfy all precon-
ditions but also check boundary conditions. Each test case is based on queries to some (possibly
empty) document using the functions provided.

We reserve the right to run these tests automatically, so be careful to match exactly the
imposed file names, function names, and argument orders—that is, don’t change what we’ve
provided for you.

Advice: Run your code in a freshly started Haskell session before you submit, so that decla-
rations that you may have made manually do not interfere when you test the code.

The grade for this component is computed as follows:

e If your solution was submitted by the deadline, your file CompLing.hs loads in ghci and it
passes 70% of the test cases provided in CompLing.hs, you get (at least) a K for functional
correctness. Otherwise (including when no solution was submitted by the deadline), you
get a U grade for the homework assignment.

e If your program additionally passes at least 80% of the grading test cases, you get (at least)
a 4 for functional correctness.

e If your program passes all grading test cases, you get a 5 for functional correctness.

2. Style and comments:

Your program is graded for style and comments according to our Coding Convention. The
following criteria will be used:

e suitable breakdown of your solution into auxiliary/helper functions,
e function specifications and statements of purpose,
e datatype representation conventions and invariants,

e code readability and indentation,



e sensible naming conventions followed.
The grade for this component is computed as follows:

e If your program’s style and comments are deemed a serious attempt at following these
criteria, you get (at least) a K for style and comments. Otherwise, you get a U grade for
the homework assignment.

e If you have largely followed these criteria, with very few major omissions or errors, you get
a 4 for style and comments.

e If you have followed these criteria with at most minor omissions or oversights, you get a 5
for style and comments.

Final Grade
Component grades are converted to a final grade on the usual scale U/3/4/5 as follows:

1. You need to pass both components (functional correctness and style and comments) in
order to pass this assignment.

2. A K grade in either component means that you are required to attend the lesson discussing
the assignment and to subsequently resubmit the assignment.

After resubmission, your entire assignment will be re-graded. Component grades of K will
improve to 3 if you provide a mostly correct solution (cf. the criteria for grade 4); you
cannot get a better grade than 3 in a component where you originally got a K. Component
grades of 4 or 5 remain unchanged if your resubmission still meets the relevant grading
criteria, but may be lowered otherwise (e.g., if your revised program no longer follows the
coding convention).

3. Your final grade is the arithmetic mean of the two component grades.

Modalities

e The assignment will be conducted in groups of 2. Groups have been assigned via the Student
Portal. If you cannot find your partner until Tuesday, November 18, please contact Andreas
Léscher <andreas. loscher@it.uu.se> to assign you a new partner—if possible.

e Assignments must be submitted via the Student Portal. Only one solution per group
needs to be submitted. Ensure that both team members’ names appear on all submitted
artefacts.

We assume that by submitting a solution you are certifying that it is solely the work of your group,
except where explicitly attributed otherwise. We reserve the right to use plagiarism detection
tools and point out that they are extremely powerful. You have already been warned about the
consequences of cheating and plagiarism.

Good luck!



