
 ﴾/﴿

View Markdown source ﴾https://www.schoolofhaskell.com/tutorial‐raw/4/29607dda3950552237ecdc82079df1fa3c292a4b﴿
5  (/auth/login)

submit

Previous content: 9. Evaluator ﴾https://www.schoolofhaskell.com/user/school/starting‐with‐haskell/basics‐of‐haskell/9_Evaluator﴿

Next content: 11. State Monad ﴾https://www.schoolofhaskell.com/user/school/starting‐with‐haskell/basics‐of‐haskell/12‐State‐Monad﴿

Go up to: Basics of Haskell ﴾https://www.schoolofhaskell.com/school/starting‐with‐haskell/basics‐of‐haskell﴿

See all content by Bartosz Milewski ﴾https://www.schoolofhaskell.com/user/bartosz﴿

School of Haskell ﴾https://www.schoolofhaskell.com/﴿ /  Starting with Haskell ﴾https://www.schoolofhaskell.com/school/starting‐with‐haskell﴿ /  
Basics of Haskell ﴾https://www.schoolofhaskell.com/school/starting‐with‐haskell/basics‐of‐haskell﴿ /  
10. Error Handling ﴾https://www.schoolofhaskell.com/school/starting‐with‐haskell/basics‐of‐haskell/10_Error_Handling﴿

Interactive code snippets not yet available for SoH 2.0, see our Status of of School of Haskell 2.0 blog post
﴾https://www.fpcomplete.com/blog/2016/01/soh‐status﴿

10. Error Handling
5 Mar 2015 Bartosz Milewski ﴾https://www.schoolofhaskell.com/user/bartosz﴿

  ﴾https://twitter.com/home?status=https://www.schoolofhaskell.com/school/starting‐with‐haskell/basics‐of‐
haskell/10_Error_Handling﴿    ﴾http://www.facebook.com/sharer/sharer.php?u=https://www.schoolofhaskell.com/school/starting‐
with‐haskell/basics‐of‐haskell/10_Error_Handling﴿    ﴾https://plus.google.com/share?url=https://www.schoolofhaskell.com/school/starting‐with‐
haskell/basics‐of‐haskell/10_Error_Handling﴿

Sections
Either May Be
Better than
Maybe
Abstracting
the Either
Pattern
The Either
Monad
Type Classes
Solution to the Expression Problem
The Monad Typeclass
Exercises
The Symbolic Calculator So Far

Show me how you handle errors and I'll tell you what programmer you are. Error handling is fundamental to all programming. Language

support for error handling varies from none whatsoever (C) to special language extensions (exceptions in C++, Java, etc.). Haskell is unique

in its approach because it's expressive enough to let you build your own error handling frameworks. Haskell doesn't need built-in

exception support: it implements it in libraries.

We've seen one way of dealing with errors: calling the error  function that terminates the program. This works �ne for runtime

assertions, which alert us to bugs in the program. But many "errors" are actually expected. We've seen one such example:

Data.Map.lookup  fails when called with a key that's not present in the map. The possibility of failure is encoded in the Maybe  return type of

lookup . It's interesting to compare this with similar functions in other languages. In C++, for instance, std::map  de�nes multiple

accessor functions varying only in their failure behavior:

at  throws an exception

find  returns an empty iterator

operator[]  inserts a dummy value using a default constructor for it.

The last one is the most bizarre of the three. Since the array access operator must return a reference, even if the key is not found, it has to

create a dummy value. The behavior of at  is potentially dangerous if the client forgets to catch the exception. Of the three, find  is the

safest, since the return type suggests to the client iteration rather than straight dereference; and iteration normally starts with checking

for termination.

In functional programming, failure is another way of saying that the computation is partial; that is, not de�ned for all values of arguments.

In Haskell we always try to use total functions -- functions de�ned for all values of their arguments. If the domain of a computation is

known at compile time, we can often de�ne a restricted data type to be used for its arguments; for instance, an enumeration instead of an

integer. This is not always possible or feasible, so the other option is to turn a partial function into a total function by changing its return

type. C++ method find  does this trick by returning an iterator (it always returns an iterator for any value of its argument); Haskell lookup

does it by returning a Maybe .

This trick of returning a di�erent type in order to turn a non-functional computation into a pure function is used extensively in Haskell

and �nds its full expression in monads.

"Computation" or "notion of computation" often describes what we want to do in terms that may or may not have immediate pure

function implementation: that is values in, values out. Transforming computations into functions is what functional programming is all

about.

 Either May Be Better than Maybe

https://www.schoolofhaskell.com/
https://www.schoolofhaskell.com/tutorial-raw/4/29607dda3950552237ecdc82079df1fa3c292a4b
https://www.schoolofhaskell.com/auth/login
https://www.reddit.com/r/fpcomplete/submit?url=https%3A%2F%2Fwww.schoolofhaskell.com%2Fschool%2Fstarting-with-haskell%2Fbasics-of-haskell%2F10_Error_Handling
https://www.reddit.com/r/fpcomplete/submit?url=https%3A%2F%2Fwww.schoolofhaskell.com%2Fschool%2Fstarting-with-haskell%2Fbasics-of-haskell%2F10_Error_Handling
https://www.reddit.com/r/fpcomplete/submit?url=https%3A%2F%2Fwww.schoolofhaskell.com%2Fschool%2Fstarting-with-haskell%2Fbasics-of-haskell%2F10_Error_Handling
https://www.reddit.com/r/fpcomplete/submit?url=https%3A%2F%2Fwww.schoolofhaskell.com%2Fschool%2Fstarting-with-haskell%2Fbasics-of-haskell%2F10_Error_Handling
https://www.schoolofhaskell.com/user/school/starting-with-haskell/basics-of-haskell/9_Evaluator
https://www.schoolofhaskell.com/user/school/starting-with-haskell/basics-of-haskell/12-State-Monad
https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell
https://www.schoolofhaskell.com/user/bartosz
https://www.schoolofhaskell.com/
https://www.schoolofhaskell.com/school/starting-with-haskell
https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell
https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/10_Error_Handling
https://www.fpcomplete.com/blog/2016/01/soh-status
https://www.schoolofhaskell.com/user/bartosz
https://twitter.com/home?status=https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/10_Error_Handling
http://www.facebook.com/sharer/sharer.php?u=https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/10_Error_Handling
https://plus.google.com/share?url=https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/10_Error_Handling


The trick with Maybe  is a bit limited. All we know about the failure is that it occurred. In practice, we'd like to know more. So the next step

in error handling is to use the Either  data structure de�ned in the Prelude:

data Either a b = Left a | Right b

Either  is parameterized by two types, not one. A value of the Either  type either contains a value of type a  or of type b . We can

discriminate between the two possibilities by pattern matching on either constructor. Either  is mostly used as a generalization of Maybe

in which Left  not only encodes failure but is accompanied by an error message. Right  encodes success and the accompanying value. So

a  is often �xed to be a String .

Here's how we can use Either  to encode the failure of a lookup without terminating the whole program:

lookUp :: String -> SymTab -> Either String (Double, SymTab) 
lookUp str symTab =  
    case M.lookup str symTab of 
      Just v  -> Right (v, symTab) 
      Nothing -> Left ("Undefined variable " ++ str)

Now the burden is on the caller to pattern match the result of any such call and either continue with the successful result, or handle the

failure. More often than not, the error is just passed unchanged to the caller, and so on; and somewhere at the top of the call tree, displayed

to the user (remember, the very top is always an IO  function).

It's a know phenomenon that error propagation spreads like a disease throughout the code. You could have seen that in C and sometimes

even in C++, when exceptions are not an option. And indeed, you can create the same mess in Haskell. Here's a naive implementation of the

evaluator of SumNode , which checks for errors that can happen in the evaluation of its children, and propagates them if necessary:

evaluate :: Tree -> SymTab -> Either String (Double, SymTab) 
 
evaluate (SumNode op left right) symTab =  
    case evaluate left symTab of 
      Left msg -> Left msg 
      Right (lft, symTab') -> 
        case evaluate right symTab' of 
          Left msg -> Left msg 
          Right (rgt, symTab'') -> 
            case op of 
              Plus  -> Right (lft + rgt, symTab'') 
              Minus -> Right (lft - rgt, symTab'')

Notice the creeping indentation. I'm showing you this code so that you know what awaits you if you refuse to learn about monads. However

ugly this code is, it works, so the principle is right. We just need some monadic sugar to make it palatable.

Errors are propagated up, until they are �nally dealt with in the main IO loop:

loop symTab = do 
   str <- getLine 
   if null str 
   then 
      return () 
   else 
      let toks = tokenize str 
          tree = parse toks 
      in 
          case evaluate tree symTab of 
          Left msg -> do 
              putStrLn $ "Error: " ++ msg 
              loop symTab -- use old symTab 
          Right (v, symTab') -> do 
              print v 
              loop symTab'

The nice thing is that, since we keep around the old copy of the symbol table, we can start the next iteration after a failure as if nothing

happened. It's as if one transaction had been aborted and another started from the the same state.



import Data.Char 
import qualified Data.Map as M 
 
data Operator = Plus | Minus | Times | Div 
    deriving (Show, Eq) 
 
data Token = TokOp Operator 
           | TokAssign 
           | TokLParen 
           | TokRParen 
           | TokIdent String 
           | TokNum Double 
           | TokEnd 
    deriving (Show, Eq) 
 
operator :: Char -> Operator 
operator c | c == '+' = Plus 
           | c == '-' = Minus 
           | c == '*' = Times 
           | c == '/' = Div 
 
tokenize :: String -> [Token] 

 Abstracting the Either Pattern

Looking at the code above, you can see a pattern arising. First of all, we have all these functions that return their results wrapped in the

Either  type. Every time we get an Either  value, we pattern match it and fork the computation: When the result is Right  we make the

value in it available to the rest of the computation. If the result is Left , we skip the rest of the computation and propagate the error. We

would like to capture this pattern. We'd like to isolate the boilerplate code, leaving "holes" for the client-provided variables. One such hole

is to be �lled by the initial Either  value. The tricky part is the "skip the rest of the computation" part of the pattern. This can be done if the

pattern has another hole for "the rest of the computation" so that it can either execute it or not.

Let's �rst identify this pattern in the evaluation of a unary node:

The �rst pattern �ller is the value returned by evaluate tree symTab . The "rest of the calculation" �ller is the code:

case op of 
   Plus  -> Right ( x, symTab') 
   Minus -> Right (-x, symTab')

We can abstract this code into a lambda function. Notice that this code uses x  and symTab' , which were extracted from the �rst �ller. So

when we abstract it, the resulting lambda function should take this tuple as an argument:

\(x, symTab') -> case op of 
   Plus  -> Right ( x, symTab') 
   Minus -> Right (-x, symTab')

The parameter op  is captured by the lambda from the outer environment -- remember, lambdas are closures: they can capture values

from the environment in which they are de�ned.

Let's call this new pattern bindE  and implement it as a function of two arguments. Here's how we would call it from the evaluator:

evaluate (UnaryNode op tree) symTab = 
    bindE (evaluate tree symTab) 
          (\(x, symTab') -> 
              case op of 
                Plus  -> Right ( x, symTab') 
                Minus -> Right (-x, symTab'))

This is just a straight call to bindE  with two arguments -- the second one being a multi-line lambda function.

The implementation of bindE  is pretty straightforward. It just picks the common parts of the pattern and combines them in one function.

It deals with the tedium of pattern matching the �rst argument and propagating the error. In case of success, it calls the continuation with

the right arguments:

bindE :: Either String (Double, SymTab)  
      -> ((Double, SymTab) -> Either String (Double, SymTab)) 
      -> Either String (Double, SymTab) 
bindE ev k = 
    case ev of 
      Left msg -> Left msg 
      Right (x, symTab') -> k (x, symTab')



Have a good look at the signature of bindE . Again, the second argument to bindE  is the function that encapsulates the rest of the

computation. It takes a pair (Double, SymTab)  and returns another pair encapsulated in Either . This function argument is often called a

continuation, because it continues the computation. The corresponding argument is often named k  (think kontinuation; c  would be too

generic a name).

This pattern can be further abstracted by parameterizing it on the type of the contents of Right . In fact we need this if we want to include

addSymbol  in our scheme (see the unit in the return type):

addSymbol :: String -> Double -> SymTab -> Either String ((), SymTab)

If we want to bind the result of, say, UnaryNode  evaluator to addSymbol , the input will be of type Either String (Double, SymTab)  and the

result of type Either String ((), SymTab) , so bindE  really needs two type parameters, a  and b :

bindE :: Either String a 
      -> (a -> Either String b) 
      -> Either String b 
bindE ev k = 
    case ev of 
      Left msg -> Left msg 
      Right v -> k v

Notice that as long as the client only uses bindE  to deal with Either  values, they don't have to deal with them directly (e.g., pattern

match), except when they have to create them; and in the �nal unpacking, when they want to display the error message. The creation of

Either  values can also be abstracted by providing two more functions, return  and fail :

return :: a -> Either String a 
return x = Right x 
 
fail :: String -> Either a 
fail msg = Left msg

We can use these functions in the implementation of lookUp

lookUp :: String -> SymTab -> Either String (Double, SymTab) 
lookUpb str symTab =  
    case M.lookup str symTab of 
      Just v  -> return (v, symTab) 
      Nothing -> fail ("Undefined variable " ++ str)

We can also replace all Right  constructors that are used to return values by calls to return . This way the client code can be written

without any knowledge of the fact that values are encapsulated in the Either  type.

Here's, for instance, an improved version of the UnaryNode  evaluator, this time with no mention of Either  or any of its constructors:

evaluate (UnaryNode op tree) symTab = 
    bindE (evaluate tree symTab) 
          (\(x, symTab') -> 
              case op of 
                Plus  -> return ( x, symTab') 
                Minus -> return (-x, symTab'))

Maybe it doesn't seem like these transformations buy us much in code size or readability, but they are a step in the direction of hiding the

details of error handling.

But we can do even better, once we realize that we have just de�ned a monad.

 The Either Monad

A monad in Haskell is de�ned by a type constructor (a type parameterized by another type) and two functions, bind and return (optionally,

fail). In our case, the type constructor is based on the Either a b  type, with the �rst type variable �xed to String  (yes, it's exactly like

currying a type function). Let's formalize it by de�ning a new (paremeterized) type:

newtype Evaluator a = Ev (Either String a)

The newtype  declaration is a compromise between type  alias and a full-blown data  declaration. It can be used to de�ne data types that

have only one data constructor that takes only one argument -- Ev  in this case. ( newtype  is preferred over similar data  declaration

because of slightly better performance characteristics.)

The �rst change to our code will be to replace the type signature of evaluate  from:

evaluate :: Tree -> SymTab -> Either String (Double, SymTab)



to:

evaluate :: Tree -> SymTab -> Evaluator (Double, SymTab)

We can now rede�ne bindE , return , and fail  in terms of Evaluator . Then we have to tell Haskell that we are de�ning a monad. Why

does Haskell need to know about our monad? Because with this knowledge it will allow us to use the do  notation -- that's the sugar we've

been craving.

Monad  is a typeclass -- I'll talk more about typeclasses soon. For now, it's enough to know that, in order to tell Haskell that we are de�ning

a monad, we need to instantiate Monad  with our Evaluator . When instantiating a Monad  we have to provide the appropriate de�nitions of

bind, return and, optionally, fail. The only tricky one is bind, since Monad  de�nes it as an in�x operator, >>=  (pronounced bind). Operators

are just functions with funny names composed of special characters. An in�x operator is a function that takes two arguments, one on the

left and one on the right. Without further ado, here's the instance declaration for our �rst monad:

instance Monad Evaluator where 
    (Ev ev) >>= k = 
        case ev of 
          Left msg -> Ev (Left msg) 
          Right v -> k v 
    return v = Ev (Right v) 
    fail msg = Ev (Left msg)

These are exactly the de�nitions we've seen before, except for the additional layer of the Ev  constructor. Notice that I used in�x notation

in de�ning operator >>= . Its left argument is the pattern (Ev ev) , and its right argument is the continuation k .

Let's see how this new monad works in the evaluator of SumNode  -- �rst without the do  notation:

evaluate (SumNode op left right) symTab =  
    evaluate left symTab >>= \(lft, symTab') -> 
        evaluate right symTab' >>= \(rgt, symTab'') -> 
            case op of  
              Plus  -> return (lft + rgt, symTab'') 
              Minus -> return (lft - rgt, symTab'')

Notice that the second argument to the �rst >>=  is a lambda that continues up to the end of the function. Inside its body there is another

>>=  with its own lambda. Notice also that the innermost lambda has access not only to rgt  -- which is its argument -- but also to the

external lft  and op , which it captures from its environment.

Here's the same code in do  notation:

evaluate (SumNode op left right) symTab = do 
    (lft, symTab')  <- evaluate left symTab 
    (rgt, symTab'') <- evaluate right symTab' 
    case op of  
      Plus  -> return (lft + rgt, symTab'') 
      Minus -> return (lft - rgt, symTab'')

As you can see, the do  block hides the binding >>=  between the lines, it automatically converts "the rest of the code" to continuations,

and it lets you treat the arguments to lambdas as if they were local variables to be assigned to. It's this syntactic sugar that makes do

blocks look so convincingly imperative, even though they are purely functional in nature.

Compare this with our starting point:

evaluate (SumNode op left right) symTab =  
    case evaluate left symTab of 
      Left msg -> Left msg 
      Right (lft, symTab') -> 
        case evaluate  right symTab' of 
          Left msg -> Left msg 
          Right (rgt, symTab'') -> 
            case op of 
              Plus  -> Right (lft + rgt, symTab'') 
              Minus -> Right (lft - rgt, symTab'')

That's de�nitely progress. If we could only get rid of this noise of threading symTab  all over the place. Oh, wait, that's the next tutorial and

another monad.

Let's bask in the monadic sunshine some more. Did you notice that we have essentially implemented exceptions? fail  behaves very much

like throw . It shortcuts the execution of the current function, propagates the error to its caller, who will in turn shortcut its execution and

so on, until the "exception is caught." Catching the exception means unpacking the Evaluator  returned by a function, and either

retrieving the result or doing something with the error.



Can you forget to "catch" the exception? Not really -- it's part of the return type. You can't even access the value of your computation

without unpacking it. And if your unpacking matches all possible Either  patterns, as it should, you'll be forced to deal with the error case

anyway.

Do you remember exception speci�cations in Java or C++ (currently obsoleted)? In Haskell there's no need for this ad hoc feature because

"exception speci�cation" is encoded in the return type of a function. You can't ignore types in Haskell, so you essentially leave it to the

compiler to enforce exception safety.

There is a full-blown exception library Control.Exception  (https://www.stackage.org/lts/hoogle?q=Control.Exception) in Haskell,

complete with throw , catch , and a long list of prede�ned exception types. The Prelude also de�nes the Monad  instance for Either , so we

could have used it directly. But I thought "inventing" the monad from scratch would give you a better learning experience.

 Type Classes

I said that Monad  is a typeclass, but I haven't explained what a typeclass is. It's not exactly like a class in OO languages, but there are some

similarities.

If you're familiar with Java or C++, you know that a class may de�ne a set of virtual functions. When you have a polymorphic reference to

one of the descendants of such a class, and call one of these virtual functions on it, the function that is called depends on the actual type of

the object, which is determined at runtime. This kind of late binding is possible because a polymorphic object carries with it a vtable: an

array of function pointers.

Similarly, in Haskell, a type class let's you de�ne the signatures of a set of functions. You may think of a typeclass as an interface.

(Although it is possible for a typeclass to provide default implementations for some of the functions -- the monadic fail , for instance,

has such implementation: it calls error  by default.) There's even an analog of a vtable that is (invisibly) passed to polymorphic functions.

The actual implementation of typeclass functions is provided by the client every time they declare some type to be an instance  of a

typeclass. In Java or C++ this would happen when the client de�nes concrete classes that implement an interface. In Haskell you de�ne

instances instead. The interesting thing is that, in Haskell, the client is able to connect any typeclass with any type (including built-in

types) "after the fact." (In most OO languages you can't make an int  a subclass of IFoo  -- in Haskell you can.)

Let's work through an example:

class Valuable a where 
    evaluate :: a -> Double 
 
data Expr = Const Double | Add Expr Expr 
 
instance Valuable Expr where 
    evaluate (Const x) = x 
    evaluate (Add lft rgt) = evaluate lft + evaluate rgt 
 
instance Valuable Bool where 
    evaluate True  = 1 
    evaluate False = 0 
 
test :: Valuable a => a -> IO () 
test v = print $ evaluate v 
 
expr :: Expr 
expr = Add (Const 2) (Add (Const 1.5) (Const 2.5)) 
 
main = do 
    test expr 
    test True

I have de�ned a typeclass Valuable  with one function evaluate , which takes an instance of Valuable , a , and returns a Double .

Separately I have de�ned a data type Expr , which has no knowledge of the class Valuable . Then I realized that Expr  is Valuable , so I

wrote an instance  declaration that makes this connection and provides the "witness" -- the actual implementation of the function

evaluate .

To make things even more exciting, I decided that the built-in type Bool  is also Valuable  and provided and instance  declaration to prove

it. Now I was able to write a polymorphic function test  that calls evaluate  on its argument. But unlike in previous examples of

polymorphism, the generic argument to test  is constrained: it has to be an instance of the class Valuable . The type expression before the

double arrow =>  de�nes class constraints for what follows. In this case we have one constraint, Valuable a , meaning a  must be an

instance of Valuable . In general there may be several such constraints listed between a set of parentheses and separated by commas.

Hadn't I provided the type signature for test , the compiler would have �gured it out by analyzing the body of test  and seeing that I

called evaluate  on its argument.

https://www.stackage.org/lts/hoogle?q=Control.Exception


This is an example of a more general mechanism: If you de�ne a function that adds its arguments, the compiler will deduce the Num

constraint for them. If you compare arguments for (in-) equality, it will deduce Eq  constraints. If you print  them, it will deduce Show ,

etc.

The C++ Standards Committee almost voted in the concepts proposal in 2011, which would have added constrained polymorphism to C++

templates. But then they gave up because of the tremendous complexity imposed by the requirement of backwards compatibility.

 Solution to the Expression Problem

In the previous tutorial I described the expression problem: How can you create a library that would be open to adding new data and new

functions. We've seen that, in Haskell, extending a library by adding new functions was easy, but the addition of new varieties of data

required modi�cations to the library. Clever use of typeclasses will let us have the cake and eat it too.

Let's work the magic on the previous example. First, instead of having one type Expr  with many constructors, let's replace it with one

typeclass Expr  and many individual data types (by many I mean two in this case). We then glue these data types together by making them

instances of Expr . Expr  itself is empty -- its only purpose is to unify all expression types.

class Expr a 
 
data Const   = Const Double 
data Add a b = Add a b 
 
instance Expr Const 
instance (Expr a, Expr b) => Expr (Add a b)

Notice that I used the names Const  and Add  both to name data types and their constructors. These two namespaces are separate, so if

you're running out of names, it's a common practice to reuse them this way. Also, notice the use of two class constraints in the instance

de�nition for Add . Both a  and b  must be Expr  for Add a b  to be Expr .

Now we would like to de�ne the function evaluate  for both Const  and Add  nodes. But these are no longer just two constructors -- they

are two di�erent data types. The only way to de�ne evaluate  for both is to overload it. This is possible, but only if evaluate  is part of a

typeclass. The name Valuable  for such a class seems natural. Let's make it work for Const  and Add :

class (Expr e) => Valuable e where 
    evaluate :: e -> Double 
 
instance Valuable Const where 
    evaluate (Const x) = x 
instance (Valuable a, Valuable b) => Valuable (Add a b) where 
    evaluate (Add lft rgt) = evaluate lft + evaluate rgt

This time we made sure that only expressions can be evaluated: That's the constraint Expr e  in the de�nition of Valuable .

So that's our library. Let's now see how a client may extend it by, for instance, adding a new expression type: Mul .

data Mul a b = Mul a b 
 
instance (Expr a, Expr b) => Expr (Mul a b) 
instance (Valuable a, Valuable b) => Valuable (Mul a b) where 
    evaluate (Mul lft rgt) = evaluate lft * evaluate rgt

Plugging Mul  into the library required only making it the instance of Expr  and Valuable . Perfect! Our library is now open to adding new

data.

Let's check if it's still open to new functions. Let's add a pretty printing function to expressions, including the newly de�ned Mul . The

trick is to make pretty  a member of a new class Pretty  and then make all the expression types its instances:

class (Expr e) => Pretty e where 
    pretty :: e -> String 
 
instance Pretty Const where 
    pretty (Const x) = show x 
instance (Pretty a, Pretty b) => Pretty (Add a b) where 
    pretty (Add x y) = "(" ++ pretty x ++ " + " ++ pretty y ++ ")" 
instance (Pretty a, Pretty b) => Pretty (Mul a b) where 
    pretty (Mul x y) = pretty x ++ " * " ++ pretty y

Granted, there is a bit of syntactic noise here, but we have accomplished quite a feat: We have overcome the expression problem!



class Expr a 
 
data Const   = Const Double 
data Add a b = Add a b 
 
instance Expr Const 
instance (Expr a, Expr b) => Expr (Add a b) 
 
class (Expr e) => Valuable e where 
    evaluate :: e -> Double 
 
instance Valuable Const where 
    evaluate (Const x) = x 
instance (Valuable a, Valuable b) => Valuable (Add a b) where 
    evaluate (Add lft rgt) = evaluate lft + evaluate rgt 
 
-- client code 
 
data Mul a b = Mul a b 
 
instance (Expr a, Expr b) => Expr (Mul a b) 
instance (Valuable a, Valuable b) => Valuable (Mul a b) where 

 The Monad Typeclass

Let's go back to the Monad  typeclass. This is how it's de�ned in the Prelude:

class Monad m where 
    (>>=)   :: m a -> (a -> m b) -> m b 
    (>>)    :: m a -> m b -> m b 
    return  :: a -> m a 
    fail    :: String -> m a 
 
    mv >> k =  mv >>= \_ -> k 
    fail s  = error s

There's something di�erent about this typeclass: it's not a typeclass that uni�es types; rather it uni�es type constructors. The parameter

m  is a type constructor. It requires another type parameter to become a type. See how m  always acts on either a  or b , which are type

variables. Going back to the Evaluator  in our calculator, it was a type constructor too, with the type parameter a :

newtype Evaluator a = Ev (Either String a)

That's why we were able to make Evaluator  an instance of Monad :

instance Monad Evaluator where

Speci�cally, notice that we used Evaluator , not Evaluator a  in this de�nition. You always supply a type constructor to the instance

de�nition of Monad .

Monad  also de�nes operator >> , which ignores the value from its �rst argument (see its default implementation). You can bind two

monadic functions using >>  if you're only calling the �rst one for its "side e�ects." This will make more sense in the next tutorial, when

we talk about the state monad. Operator >>  is often used with the IO  monad to sequence output functions, as in:

main :: IO () 
main = putStrLn "Hello " >> putStrLn "World"

which is the same as:

main :: IO () 
main = do  
    putStrLn "Hello " 
    putStrLn "World"

 Exercises

Ex 1. De�ne the WhyNot  monad:



data WhyNot a = Nah | Sure a 
  deriving Show 
 
instance Monad WhyNot where 
   ... 
 
safeRoot :: Double -> WhyNot Double 
safeRoot x =  
    if x >= 0 then  
      return (sqrt x) 
    else 
      fail "Boo!" 
 
test :: Double -> WhyNot Double 
test x = do 
   y <- safeRoot x 
   z <- safeRoot (y - 4) 
   w <- safeRoot z 
   return w 
 
 
main = do 
    print $ test 9 
data WhyNot a = Nah | Sure a 
  deriving Show 
 
instance Monad WhyNot where 
   Sure x >>= k = k x 
   Nah    >>= _ = Nah 
   return x     = Sure x 
   fail _       = Nah 
 
safeRoot :: Double -> WhyNot Double 
safeRoot x =  
    if x >= 0 then  
      return (sqrt x) 
    else 
      fail "Boo!" 
 
test :: Double -> WhyNot Double 
test x = do 
   y <- safeRoot x 
   z <- safeRoot (y - 4) 
   w <- safeRoot z 
   return w 
 

Ex 2. De�ne a monad instance for Trace  (no need to override fail ). The idea is to create a trace of execution by sprinkling you code with

calls to put . The result of executing this code should look something like this:

["fact 3","fact 2","fact 1","fact 0"] 
6

Hint: List concatenation is done using ++  (we've seen it used for string concatenation, because String  is just a list of Char ).

newtype Trace a = Trace ([String], a) 
 
instance Monad Trace where 
    ... 
 
put :: Show a => String -> a -> Trace () 
put msg v = Trace ([msg ++ " " ++ show v], ()) 
 
fact :: Integer -> Trace Integer 
fact n = do 
   put "fact" n 
   if n == 0 
       then return 1 
       else do 
           m <- fact (n - 1) 
           return (n * m) 
 
main = let Trace (lst, m) = fact 3 
       in do 
           print lst 
           print m



newtype Trace a = Trace ([String], a) 
 
instance Monad Trace where 
    return x = Trace ([], x) 
    (Trace (lst, x)) >>= k = 
        let Trace (lst', y) = k x 
        in Trace (lst ++ lst', y) 
 
put :: Show a => String -> a -> Trace () 
put msg v = Trace ([msg ++ " " ++ show v], ()) 
 
fact :: Integer -> Trace Integer 
fact n = do 
   put "fact" n 
   if n == 0 
       then return 1 
       else do 
           m <- fact (n - 1) 
           return (n * m) 
 
main = let Trace (lst, m) = fact 3 
       in do 

Ex 3. Instead of deriving Show , de�ne explicit instances of the Show  typeclass for Operator  and Tree  such that expr  is displayed as:

x = (13.0 - 1.0) / y

It's enough that you provide the implementation of the show  function in the instance declaration. This function should take an Operator

(or a Tree ) and return a string.

data Operator = Plus | Minus | Times | Div 
 
data Tree = SumNode Operator Tree Tree 
          | ProdNode Operator Tree Tree 
          | AssignNode String Tree 
          | UnaryNode Operator Tree 
          | NumNode Double 
          | VarNode String 
 
instance Show Operator where 
    show Plus  = " + " 
    ... 
 
instance Show Tree where 
    show = undefined 
 
expr = AssignNode "x" (ProdNode Div (SumNode Minus (NumNode 13) (NumNode 1)) (VarNode "y")) 
 
main = print expr

data Operator = Plus | Minus | Times | Div 
 
data Tree = SumNode Operator Tree Tree 
          | ProdNode Operator Tree Tree 
          | AssignNode String Tree 
          | UnaryNode Operator Tree 
          | NumNode Double 
          | VarNode String 
 
instance Show Operator where 
    show Plus  = " + " 
    show Minus = " - " 
    show Times = " * " 
    show Div   = " / " 
 
instance Show Tree where 
    show (SumNode op lft rgt) = "(" ++ show lft ++ show op ++ show rgt ++ ")" 
    show (ProdNode op lft rgt) = show lft ++ show op ++ show rgt 
    show (AssignNode str tree) = str ++ " = " ++ show tree 
    show (UnaryNode op tree) = show op ++ show tree 
    show (NumNode x) = show x 
    show (VarNode str) = str 
 

Ex 4 This is an example that mimics elements of OO programming. Chess pieces are implemented as separate data types: here, for

simplicity, just one, Pawn . The constructor of Pawn  takes the Color  of the piece and its position on the board (0-7 in both dimensions).

Pieces are instances of the class Piece , which declares the following functions: color , pos , and moves . The moves  function takes a piece

and returns a list of possible future positions after one move (without regard to other pieces, but respecting the boundaries of the board).

De�ne both the typeclass and the instance, so that the following program works:



data Color = White | Black 
    deriving (Show, Eq) 
 
data Pawn = Pawn Color (Int, Int) 
 
class Piece a where 
   ... 
 
instance Piece Pawn where 
   ... 
 
pieces = [Pawn White (3, 1), Pawn Black (4, 1), Pawn White (0, 7), Pawn Black (5, 0)] 
 
main = print $ map moves pieces

data Color = White | Black 
    deriving (Show, Eq) 
 
data Pawn = Pawn Color (Int, Int) 
 
class Piece a where 
   color :: a -> Color 
   pos   :: a -> (Int, Int) 
   moves :: a -> [(Int, Int)] 
 
instance Piece Pawn where 
   color (Pawn c _) = c 
   pos (Pawn _ pos) = pos 
   moves pwn = if color pwn == White  
               then mvs (pos pwn) 
               else map refl (mvs $ refl (pos pwn)) 
     where 
       refl (x, y) = (x, 7 - y) 
       mvs (x, y) = if y == 1 
                    then [(x, y + 1), (x, y + 2)] 
                    else if y == 7 
                         then [] 
                         else [(x, y + 1)] 

 The Symbolic Calculator So Far

Below is the source code for the current state of the project. Notice how lookUp  and addSymbol  nicely �t into the monadic scheme. I

haven't made any changes to the lexer and parser �les.

{-# START_FILE Main.hs #-} 
module Main where 
 
import qualified Data.Map as M 
import Lexer (tokenize) 
import Parser (parse) 
import Evaluator 
 
main = do 
   loop (M.fromList [("pi", pi), ("e", exp 1.0)]) 
 
loop symTab = do 
   str <- getLine 
   if null str 
   then 
      return () 
   else 
      let toks  = tokenize str 
          tree  = parse toks 
          Ev ev = evaluate tree symTab 
      in 
          case ev of 
          Left msg -> do 



4 Comments FP Complete Login1

 Share⤤ Sort by Best

LOG IN WITH OR SIGN UP WITH DISQUS 

Name

Join the discussion…

?

  • Reply •

jphedley • 7 months ago

To compile custom Evaluator Monad post ghc 7.10, for which Functor & Applicative are Monad superclasses, the following will work

import Control.Applicative
import Control.Monad (liftM, ap)
...
instance Functor Evaluator where 
fmap = liftM

instance Applicative Evaluator where 
pure = return
(<*>) = ap
....
although ghc release notes recommends not using pure=return in production code.
△ ▽

  • Reply •

Alexander Vorobiev • 2 years ago

Should the examples and exercises be updated for GHC 7.10 (https://ghc.haskell.org/tra... Without making all monads instances of both Applicative and Functor
the code produces No instance for (Applicative ...) errors.
△ ▽

  • Reply •

Syver Enstad • 3 years ago

This chapter was very useful in understanding Monads, I've appreciated your way of explaining since the Relisoft windows tutorials back in the days
△ ▽

  • Reply •

Rob Grainger • 3 years ago

"Error handling is fundamenta to all programming."
But not to proof­reading apparently!
△ ▽

Subscribe✉ Add Disqus to your siteAdd DisqusAddd Privacy🔒

 Recommend  3

Share ›

Share ›

Share ›

Share ›

  ﴾https://twitter.com/home?status=https://www.schoolofhaskell.com/school/starting‐with‐haskell/basics‐of‐haskell/10_Error_Handling﴿  
﴾http://www.facebook.com/sharer/sharer.php?u=https://www.schoolofhaskell.com/school/starting‐with‐haskell/basics‐of‐haskell/10_Error_Handling﴿  
  ﴾https://plus.google.com/share?url=https://www.schoolofhaskell.com/school/starting‐with‐haskell/basics‐of‐haskell/10_Error_Handling﴿

School ﴾https://www.schoolofhaskell.com/﴿ Users ﴾https://www.schoolofhaskell.com/user﴿ Log In ﴾https://www.schoolofhaskell.com/auth/login﴿ 
Sign Up ﴾https://www.schoolofhaskell.com/auth/page/email/register﴿ Sponsored by:  ﴾https://fpcomplete.com﴿

https://disqus.com/
https://disqus.com/home/forums/fpcomplete/
https://disqus.com/home/inbox/
https://disqus.com/by/jphedley/
https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/10_Error_Handling#comment-3459671736
https://disqus.com/by/alexander_vorobiev/
https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/10_Error_Handling#comment-2258775825
https://disq.us/url?url=https%3A%2F%2Fghc.haskell.org%2Ftrac%2Fghc%2Fwiki%2FMigration%2F7.10%29%3F%3A9aMvCsw63ydtA26vJ92tJE5jVgo&cuid=2130550
https://disqus.com/by/syverenstad/
https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/10_Error_Handling#comment-1689914055
https://disqus.com/by/robgrainger/
https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/10_Error_Handling#comment-1622184405
https://publishers.disqus.com/engage?utm_source=fpcomplete&utm_medium=Disqus-Footer
https://help.disqus.com/customer/portal/articles/466259-privacy-policy
https://disqus.com/by/jphedley/
https://disqus.com/by/alexander_vorobiev/
https://disqus.com/by/syverenstad/
https://disqus.com/by/robgrainger/
https://twitter.com/home?status=https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/10_Error_Handling
http://www.facebook.com/sharer/sharer.php?u=https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/10_Error_Handling
https://plus.google.com/share?url=https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/10_Error_Handling
https://www.schoolofhaskell.com/
https://www.schoolofhaskell.com/user
https://www.schoolofhaskell.com/auth/login
https://www.schoolofhaskell.com/auth/page/email/register
https://fpcomplete.com/



