
y +1/1/60+ y

Final Exam (Part 2) in
Program Design and Data Structures (1DL201)

Teachers: E. Castegren, A. Jimborean, T. Weber

2017-03-16 / 14:00–19:00

Instructions

Read and follow these instructions carefully to increase your chance of getting good
marks.

• This is a closed book exam. You may use a standard English dictionary.
Otherwise, no notes, calculators, mobile phones, or other electronic
devices are allowed. Cheating will not be tolerated.

• This is a multiple-choice exam. Each question has exactly one correct answer.

• You may keep these question sheets. Only hand in the answer sheet. Also
read the instructions on the answer sheet before you start.

• Tjark Weber will come to the exam hall around 15:30 to answer questions.

Good luck!

y y

y +1/2/59+ y
Questions

Please choose a single answer for each question. Read the questions carefully, and
watch out for negations (not, except, etc.).

Question 1: Define a datatype (and any helper types you might need) to represent
a ticket. A ticket may be:

• a train ticket from a city to a city—either first or second class; or

• a bus ticket from a city to a city; or

• a flight ticket from a city to a city—either business class, super economy, or
economy.

Cities are represented as strings. Which of the following definitions would you use?

A

data Ticket = Train City City TClass | Bus City City

| Flight City City FClass

type City = String

data TClass = First | Second

data FClass = Business | Economy

type Economy = SuperEcon | Econ

B

data Ticket = Train City City First | Second | Bus City City

| Flight City City Business | SuperEcon | Econ

type City = String

C

data Ticket = Train City City TClass | Bus City City

| Flight City City FClass

type City = String

data TClass = int

data FClass = String

D

data Ticket = Train City City TClass | Bus City City

| Flight City City FClass

type City = String

data TClass = First | Second

data FClass = Business | SuperEcon | Econ

E

data Ticket = Train City City TClass | Bus City City

| Flight City City FClass

type City = String

type TClass = First | Second

type FClass = Business | SuperEcon | Econ

y y

y +1/3/58+ y
Question 2: Consider the type of general trees, defined as

data Tree a = Node a [Tree a]

What does the following function (f) compute?

f (Node a ts) = fs ts ++ [a]

where

fs [] = []

fs (t:ts) = f t ++ fs ts

A The sum of all values in a tree.

B A post-order list of all values in a tree.

C The number of nodes in a tree.

D A pre-order list of all values in a tree.

E The height of a tree.

Question 3: Which of the following trees is a binary search tree?

A

2

4 5

7 8 9

11 14 15

B

9

4 11

2 7 14

5 8 15

C

8

4 11

2 7 15

5 9 14

D

2

4 11

5 7 14

8 9 15

E None of these.

Question 4: The (worst-case) complexity of searching in a red-black tree with n
nodes is

A O(n) B O(log n) C O(2n) D O(n2) E O(1)

y y

y +1/4/57+ y
Question 5: Suppose the following numbers are inserted, in the given order, into
an initially empty red-black tree. (Grey=red.)

71 28 81 64 21 76 99 63

What is the resulting red-black tree?

A

28

21

63

76

9971

64 81

B
71

28

21

64

81

63 9976

C
99

28

21

64

76

63 8171

D
99

28

21

64

76

63 8171

E None of these.

Question 6: Assume there exists a function sales :: Int -> Int that gives the
weekly sales from a shop, where weeks are numbered in sequence 1, 2, What
does the function foo below compute?

foo n = mW n (sales n) []

where

mW n max weeks | n < 1 = weeks

| sales n > max = mW (n-1) (sales n) [n]

| sales n == max = mW (n-1) max (n:weeks)

| sales n < max = mW (n-1) max weeks

A The week number with the largest sales in the period 1, . . . , n.

B The list of week numbers with the largest sales in the period 1, . . . , n.

C The list of week numbers in the period 1, . . . , n with sales larger than max.

D The list of week numbers with sales in the interval [n, max].

E The week number in the period 1, . . . , n with sales larger than max.

Question 7: A heap is a data structure that is commonly used to implement

A hash tables.

B priority queues.

C graphs.

D search trees.

E stacks.

y y

y +1/5/56+ y
Question 8: Consider the following binomial heap.

8

1711

27

6

2914

38

1

2512

18

10

After its minimum element is extracted, what is the resulting heap?

A

8

1711

27

6

2914

38

12

18

10 25

B

8

1711

27

6

2914

38

10 12

1825

C

8

1711

27

6

2914

38

1

2512

18

D

8

1711

27

6

2914

38

10

2512

18

E None of these.

Question 9: Which of the following is a disadvantage of Abstract Data Types
(ADTs)?

A Abstract properties of a data type are separated from implementation details.

B New operations have to be expressed in terms of existing operations.

C An ADT is a collection of multiple data types.

D Implementation details are hidden.

E The implementation of an ADT depends on the specific data representation.

y y

y +1/6/55+ y
Question 10: Consider the following function bar:

bar :: [a] -> [a]

bar (x:xs) = x:x:xs

Which of the following statements is correct?

A bar is a polymorphic function because it accepts lists of any type.

B bar returns the first element of a list.

C bar is both an overloading and a polymorphic function.

D bar overloads the identity function.

E bar is a polymorphic function because it always performs the same operation.

Question 11: Which of the following operations necessarily entails side effects in
Haskell?

A Wrapping a value in the Maybe type using the Just constructor.

B Counting the number of files in the directory where the program is currently
being run.

C Inserting line numbers after each newline in a string.

D Calculating the sum of the elements of a list.

E Calling any function that uses monads.

Question 12: The function readFile :: FilePath -> IO String reads the con-
tents of a file. Which of the following statements is correct?

A readFile is referentially transparent, because it is always returns the same
result.

B readFile is not referentially transparent, because it may give different results
for the same argument.

C readFile is referentially transparent, because it is always clear what type the
argument has.

D readFile is not referentially transparent, because different arguments may
give different results.

E readFile is not referentially transparent, because no function in the IO monad
is referentially transparent.

y y

y +1/7/54+ y
Question 13: Which of the following is not true for arrays (the ones in
Data.Array.IO that you have seen in the lectures)?

A Any element of an array can be written in O(1) time.

B Arrays can only be used inside the IO monad.

C The size of an array grows and shrinks as elements are added or removed.

D The elements of an array are all adjacent in memory.

E Any element of an array can be read in O(1) time.

Question 14: Consider the following code:

foobar :: IO Int

foobar = do

putStr "A"

x <- putStr "B"

let y = putStr "C"

return x

y

putStrLn "D"

return 42

What is the output (not the result) when evaluating foobar?

A AD

B ABCD42

C ABCD

D ABCBCD

E ACBD

Question 15: Assume that a stack contains the entries

(top) 1 2 3 4 5 6 (bottom).

What is the content of the stack if we perform the following operations?

push 2, pop, pop, push 1, top, push 1, pop

A 2 1 1 1 2 3 4 5 6

B 2 3 4 5 6

C 1 2 3 4 5 6

D 1 1 2 3 4 5 6

E 2 1 1 2 3 4 5 6

y y

y +1/8/53+ y
Question 16: Consider a hash table with 20 slots that uses chaining to resolve
conflicts. What is the maximal possible chain length (worst case) of a single slot
when the load factor is 3.2?

A 16

B 3.2

C 32

D 64

E None of the above; the load factor can never be larger than 1.

Question 17: Assume you have a hash table of 10 slots using open addressing. The
hash function of the table is

h(k, i) = (k + f(i)) mod m

where m = 10 is the number of slots of the hash table, and i is the probe number.
Probing is linear:

f(i) = i

Insert the following elements

113, 19, 155, 16, 129, 43

and then remove the element 155. If we now search for 33, how many times do we
have to probe before we know for sure that this element is not in the table? Answer
with the largest tried value of i.

A 0 B 1 C 2 D 3 E 4

Question 18: In what order would a depth-first search, starting at the root, visit
the nodes in the following binary tree?

a

b c

d e f

A abdecf B abecfd C abcedf D abcdef E acbfed

Question 19: Consider the binary tree from the previous question. Which of the
following is not a valid topological sort?

A abcfed B acfbed C abdecf D abdefc E acbfed

y y

y +1/9/52+ y
Question 20: Consider the following code that uses exceptions, where return

:: a -> Exceptional a and throw :: Exception -> Exceptional a are used
to report good and bad values, respectively.

data Exception = DivideByZeroException

type Exceptional a = Either Exception a

(///) :: Int -> Int -> Exceptional Int

_ /// 0 = throw DivideByZeroException

a /// b = return (a `div` b)

foo :: Int -> Int -> Int -> Exceptional Int

foo a b c = do

e <- a /// b

c /// e

bar :: Int -> Int -> Int -> Int

bar a b c = handler c (foo a b c)

where

handler :: Int -> Exceptional Int -> Int

handler d exc =

case exc of

Right y -> if y < 0 then

-1

else

y

Left _ -> d

What is the result of calling bar 0 2 1?

A 2

B 0

C 1

D -1

E DivideByZeroException

y y

