HNNEENEEEEN
HEEEE BN +1/1/60+

Final Exam (Part 1) in
Program Design and Data Structures (1DL201)

Teachers: E. Castegren, A. Jimborean, T. Weber

2016-12-20 / 8:00-13:00

Instructions

Read and follow these instructions carefully to increase your chance of getting good
marks.

e This is a closed book exam. You may use a standard English dictionary.
Otherwise, no notes, calculators, mobile phones, or other electronic
devices are allowed. Cheating will not be tolerated.

e This is a multiple-choice exam. Each question has exactly one correct answer.

e You may keep these question sheets. Only hand in the answer sheet. Also
read the instructions on the answer sheet before you start.

e Tjark Weber will come to the exam hall around 10:00 to answer questions.

Good luck!

Master Theorem
Given a recurrence of the form
T(n) = aT(n/b) + f(n)

Case 1: If f(n) = O(n®) where ¢ < log, a
then T'(n) = ©(n'o#9).

Case 2: If f(n) = O(n°(logn)*) where ¢ = log, a and k > 0
then T'(n) = ©(n(logn)**1).

Case 3: If f(n) = Q(n°) where ¢ > log, a and the regularity condition holds
then T'(n) = ©(f(n)).
The regularity condition is that for some constant r < 1, a- f(n/b) < r- f(n)
for all sufficiently large n.

HNNEENEEEEN
LTI . . +1/2/59+

Common Material

Some of the exam questions refer to the following function:

{- split 1ls
PRE: 7PRE?
POST: 7POST?
-}
split :: ?TYPE?
—-— VARIANT: 7VARIANT?
split (x:y:1ls) = let (xs,ys) = split 1ls in (x:xs, y:ys)
split 1s (1s, [

Questions

Please choose a single answer for each question. Read the questions carefully, and
watch out for negations (not, except, etc.).

Question 1: What is the value of split [1,2,3,4] ?

[(1,2),(3,4)] (11,31, [2,4) [1,3]
([1,21,[3,41) D] 10

Question 2: What is the type (?TYPE?) of split?

[a] -> [(a,b)] [a]l -> ([al, [b]) [a] -> (a,[b])
[a] -> (a,b) [D] [a] -> ([al, [al)

Question 3: What is the most appropriate precondition (?PRE?) for split 1s?
True length 1s > 2 False
1s is a list @ 1s is non-empty

Question 4: What is the most appropriate postcondition (?POST?) for split 1s?

a pair (xs,ys) such that xs++ys is a permutation of 1s
a list of all pairs in 1s

True

D] as,

(x:xs, y:ys)

Question 5: Which of the following is a variant (?VARIANT?) for the func-
tion split?
1enth1322 O X+ + length 1s
g y g
1 - (length 1s) [D] 1ength 1s

HNNEENEEEEN
LTI I N +1/3/58+

Question 6: Which of the following statements is false?

split is a polymorphic function.

split is a higher-order function.

split is a recursive function.

@ split terminates for all valid arguments.
The definition of split is type-correct.

Question 7: Consider this alternative definition of split, where the order of the
two equations has been swapped:

split 1s = (1s, [

split (x:y:1ls) = let (xs,ys) = split 1ls in (x:xs, y:ys)

Which of the following statements is correct for this definition of split?
If split 1s returns the pair (xs,ys), then xs++ys is equal to 1s.
Evaluating split 1s does not terminate.

This definition is not type-correct.

IE This definition of split is equivalent to the definition given earlier (i.e., the
two functions behave exactly the same).

If split 1s returns the pair (xs,ys), then xs and ys have the same length.

Question 8: Consider the function
fx=div0Ox+divx 0

Evaluating £ 42 will result in ...

Infinity a type error. a run-time error.
a syntax error. @ none of these.

Question 9: Which of the following values does not match the pattern
(., [2,x]) 7

(1, [2D ([1,2], [2,3D (1, [2,3D)

(1, [2,21) D] ((1,2), [2,3])

Question 10: Consider the function

fx=1let f x=x+1 in f (f x)
What is the value of 1let x=0 in f x ?

0 4 None of these.
2 D] 1

EEEENEEEEEN |
HEE BN BN +1/4/57+

Question 11: Which of the following statements is false?
Both Quicksort and Mergesort ...

are divide-and-conquer algorithms.

can sort lists of arbitrary length.

split the problem into two subproblems of similar size.

@ can sort lists containing positive as well as negative integers.

are recursive algorithms.

Question 12: Which of the following expressions is not equivalent to the other
four?

Al () 2 [C]\x > 2/ x [E] \x > (/) 2 x
(2/) D] /2
Question 13: Let f(n) = 3n% + 4n + 5. Which of the following does not hold?
[A] f(n) = Q(n?) f(n) = 0(n%) f(n) = 6(n?)
[B] £(n) = Q(n?) [D] f(n) = O(n?)
Question 14: What is the closed form of the following recurrence?
T0) = 4
Tn) = Tn—1)+2n+3 ifn>0
[A] T(n) = (n+3)? -Tn n+2) [E] T(n) = nlogn?
[B] T(n) = n? D] T(n) = (n+ 1)

Question 15: Which of the following statements is false?

[A] If f(xz) = ©(g(x)) then f(z) = O(g(x))
[B] f(z) =0O(f(x)), for all f

If f(z) = ©(g(x)) then g(x) = O(f(x))
[D] 1f f(x) = O(g()) then f(z) = O(g())
If f(x) = O(g(x)) then g(x) = Q(f(x))

Question 16: Use the Master Theorem to find a closed form for the following
recurrence:

The closed form is:

- I(n)= —i—n2) T(n) = 0O(n?) The Master Theo-
T(n) = O(n*logn) [D] T(n) = ©(nloglogn) rem does not apply.

HNNEENEEEEN
HEN B BEN +1/5/56+

Question 17: Which answer is the recurrence best describing the run-time cost of
the following Haskell function?

foo :: [a] -> Integer
foo [] =0
foo [x] =1

foo (x:y:xs) = length (x:xs) + foo xs

Assume n is the length of the argument list.

T(n)Z{ ?Eigzﬂn/g“@(njun ﬁZii
B| T(n) = { (Taéig — 2T (n — 2) + 26(n) EZE}L
T(n):{?éi))ng(n_l)—p—@(n) EZEi
@T(H)Z{?éing(n_UJr@(n—z) iiZii
T(n)_{?ging(n—Q)—k@(n) 1?2?1

Question 18: To implement a complex program, one can use one of three tech-
niques: top-down design, bottom-up design or dodging. Which of the following is
not true for top-down design?

Does not break the flow of programming the algorithm.

Uses existing functions to build new functionality and solve a larger project.
Relies on building new, simple functions with clearly defined purposes.

@ Divides the problem into simpler sub-problems.

Starts with an overall view of the entire algorithm.

Question 19: In the 8 Step Design Process, how does data description contribute
to the overall design of the project?

Data representation guides the process of dividing the large problem into
smaller sub-problems that are easier to solve.

Data description is very important for large projects, but the programmer can
implement small programs without reasoning about data representation.

Reasoning about data representation helps the programmer to outline the
implementation based on inputs and expected outputs.

@ Data representation should provide concrete examples of input data, borderline
cases, valid and invalid inputs.

Data representation adds a level of abstraction, helping to separate general
ideas from specific implementation decisions.

HNNEENEEEEN
) LT I . +1/6/55+ Y

Question 20: Why are tracing and debugging not enabled by default in every
program execution?

Because it slows down execution.

Because the programmer can track the errors by reasoning only.

Because either tracing or debugging is required, but not both.

@ Because tracing and debugging cannot be enabled simultaneously.

Because it would disturb programmers that will maintain the code in the
future.

