
y +1/1/60+ y

Final Exam (Part 1) in
Program Design and Data Structures (1DL201)

Teachers: E. Castegren, A. Jimborean, T. Weber

2016-12-20 / 8:00–13:00

Instructions

Read and follow these instructions carefully to increase your chance of getting good
marks.

• This is a closed book exam. You may use a standard English dictionary.
Otherwise, no notes, calculators, mobile phones, or other electronic
devices are allowed. Cheating will not be tolerated.

• This is a multiple-choice exam. Each question has exactly one correct answer.

• You may keep these question sheets. Only hand in the answer sheet. Also
read the instructions on the answer sheet before you start.

• Tjark Weber will come to the exam hall around 10:00 to answer questions.

Good luck!

Master Theorem

Given a recurrence of the form

T (n) = aT (n/b) + f(n)

Case 1: If f(n) = O(nc) where c < logb a
then T (n) = Θ(nlogb a).

Case 2: If f(n) = Θ(nc(log n)k) where c = logb a and k ≥ 0
then T (n) = Θ(nc(log n)k+1).

Case 3: If f(n) = Ω(nc) where c > logb a and the regularity condition holds
then T (n) = Θ(f(n)).
The regularity condition is that for some constant r < 1, a · f(n/b) ≤ r · f(n)
for all sufficiently large n.

y y

y +1/2/59+ y
Common Material

Some of the exam questions refer to the following function:

{- split ls

PRE: ?PRE?

POST: ?POST?

-}

split :: ?TYPE?

-- VARIANT: ?VARIANT?

split (x:y:ls) = let (xs,ys) = split ls in (x:xs, y:ys)

split ls = (ls, [])

Questions

Please choose a single answer for each question. Read the questions carefully, and
watch out for negations (not, except, etc.).

Question 1: What is the value of split [1,2,3,4] ?

A [(1,2),(3,4)]

B ([1,2],[3,4])

C ([1,3],[2,4])

D 10

E [1,3]

Question 2: What is the type (?TYPE?) of split?

A [a] -> [(a,b)]

B [a] -> (a,b)

C [a] -> ([a],[b])

D [a] -> ([a],[a])

E [a] -> (a,[b])

Question 3: What is the most appropriate precondition (?PRE?) for split ls?

A True

B ls is a list

C length ls ≥ 2

D ls is non-empty

E False

Question 4: What is the most appropriate postcondition (?POST?) for split ls?

A a pair (xs,ys) such that xs++ys is a permutation of ls

B a list of all pairs in ls

C True

D (ls, [])

E (x:xs, y:ys)

Question 5: Which of the following is a variant (?VARIANT?) for the func-
tion split?

A length ls ≥ 2

B 1
2
· (length ls)

C 0

D length ls

E x + y + length ls

y y

y +1/3/58+ y
Question 6: Which of the following statements is false?

A split is a polymorphic function.

B split is a higher-order function.

C split is a recursive function.

D split terminates for all valid arguments.

E The definition of split is type-correct.

Question 7: Consider this alternative definition of split, where the order of the
two equations has been swapped:

split ls = (ls, [])

split (x:y:ls) = let (xs,ys) = split ls in (x:xs, y:ys)

Which of the following statements is correct for this definition of split?

A If split ls returns the pair (xs,ys), then xs++ys is equal to ls.

B Evaluating split ls does not terminate.

C This definition is not type-correct.

D This definition of split is equivalent to the definition given earlier (i.e., the
two functions behave exactly the same).

E If split ls returns the pair (xs,ys), then xs and ys have the same length.

Question 8: Consider the function

f x = div 0 x + div x 0

Evaluating f 42 will result in . . .

A Infinity

B a syntax error.

C a type error.

D none of these.

E a run-time error.

Question 9: Which of the following values does not match the pattern
(, [2,x]) ?

A (1, [2])

B (1, [2,2])

C ([1,2], [2,3])

D ((1,2), [2,3])

E (1, [2,3])

Question 10: Consider the function

f x = let f x = x+1 in f (f x)

What is the value of let x=0 in f x ?

A 0

B 2

C 4

D 1

E None of these.

y y

y +1/4/57+ y
Question 11: Which of the following statements is false?

Both Quicksort and Mergesort . . .

A are divide-and-conquer algorithms.

B can sort lists of arbitrary length.

C split the problem into two subproblems of similar size.

D can sort lists containing positive as well as negative integers.

E are recursive algorithms.

Question 12: Which of the following expressions is not equivalent to the other
four?

A (/) 2

B (2/)

C \x -> 2 / x

D (/2)

E \x -> (/) 2 x

Question 13: Let f(n) = 3n2 + 4n + 5. Which of the following does not hold?

A f(n) = Ω(n3)

B f(n) = Ω(n2)

C f(n) = O(n3)

D f(n) = O(n2)

E f(n) = Θ(n2)

Question 14: What is the closed form of the following recurrence?

T (0) = 4

T (n) = T (n− 1) + 2n + 3 if n > 0

A T (n) = (n + 3)2

B T (n) = n2

C T (n) = (n + 2)2

D T (n) = (n + 1)2
E T (n) = n log n2

Question 15: Which of the following statements is false?

A If f(x) = Θ(g(x)) then f(x) = O(g(x))

B f(x) = Θ(f(x)), for all f

C If f(x) = Θ(g(x)) then g(x) = Θ(f(x))

D If f(x) = O(g(x)) then f(x) = Θ(g(x))

E If f(x) = O(g(x)) then g(x) = Ω(f(x))

Question 16: Use the Master Theorem to find a closed form for the following
recurrence:

T (n) = 4T (
n

2
) + n2

The closed form is:

A T (n) = Θ(n
4

2
+ n2)

B T (n) = Θ(n2 log n)

C T (n) = Θ(n2)

D T (n) = Θ(n log log n)

E The Master Theo-
rem does not apply.

y y

y +1/5/56+ y
Question 17: Which answer is the recurrence best describing the run-time cost of
the following Haskell function?

foo :: [a] -> Integer

foo [] = 0

foo [x] = 1

foo (x:y:xs) = length (x:xs) + foo xs

Assume n is the length of the argument list.

A T (n) =

{
Θ(1) if n ≤ 1
T (n) = T (n/2) + Θ(n + 1) if n > 1

B T (n) =

{
Θ(1) if n ≤ 1
T (n) = 2T (n− 2) + 2Θ(n) if n > 1

C T (n) =

{
Θ(1) if n ≤ 1
T (n) = 2T (n− 1) + Θ(n) if n > 1

D T (n) =

{
Θ(1) if n ≤ 1
T (n) = T (n− 1) + Θ(n− 2) if n > 1

E T (n) =

{
Θ(1) if n ≤ 1
T (n) = T (n− 2) + Θ(n) if n > 1

Question 18: To implement a complex program, one can use one of three tech-
niques: top-down design, bottom-up design or dodging. Which of the following is
not true for top-down design?

A Does not break the flow of programming the algorithm.

B Uses existing functions to build new functionality and solve a larger project.

C Relies on building new, simple functions with clearly defined purposes.

D Divides the problem into simpler sub-problems.

E Starts with an overall view of the entire algorithm.

Question 19: In the 8 Step Design Process, how does data description contribute
to the overall design of the project?

A Data representation guides the process of dividing the large problem into
smaller sub-problems that are easier to solve.

B Data description is very important for large projects, but the programmer can
implement small programs without reasoning about data representation.

C Reasoning about data representation helps the programmer to outline the
implementation based on inputs and expected outputs.

D Data representation should provide concrete examples of input data, borderline
cases, valid and invalid inputs.

E Data representation adds a level of abstraction, helping to separate general
ideas from specific implementation decisions.

y y

y +1/6/55+ y
Question 20: Why are tracing and debugging not enabled by default in every
program execution?

A Because it slows down execution.

B Because the programmer can track the errors by reasoning only.

C Because either tracing or debugging is required, but not both.

D Because tracing and debugging cannot be enabled simultaneously.

E Because it would disturb programmers that will maintain the code in the
future.

y y

