
Uppsala University

Department of Information Tehnology

Sienti� Computing

Programming of Parallel Computers

2015-03-19

Programming of Parallel Computers, 10hp, 2015-03-19

Time: 0800
� 1300

Help: None

Eah of the six problems below an give up to �ve points. For maximum points, you must give

detailed answers and motivate your assumptions. Grade 3: 12p, Grade 4: 18p, Grade 5: 24p

1. Write a ode setion to distribute a M �N matrix to P proessors using MPI funtion alls.

Your ode should implement the following requirements:

a) Alloate the matrix in proessor P0 as a one dimensional array.

b) Create a p1 � p2 artesian grid ommuniator with the fatorization P = p1 � p2. The
ode should do the fatorization automatially and as evenly as possible.

) Partition the matrix as show in Figure 1 and distribute the matrix bloks with non-

bloking point-to-point ommuniation (or with a olletive ommuniation all). For

simpliity you an assume that

M

p1
and

N

p2
are integers.

Ap1-1,p2-1

A0,1

...

...

...

...

.........

A1,1

A0,0

A1,0 A

A

p1-1,1Ap1-1,0 A

1,p2-1

0,p2-1

Figur 1: Data partitioning strategy

2. a) Explain the di�erenes between bloking and non-bloking ommuniation in MPI. Con-

sider MPI_Send() and MPI_Isend() as examples.

b) In the MPI lab you have measured the ommuniation bandwidth using synhronous

point-to-point ommuniation. Explain the measurements, the results and the onlusions

of the experiments.

3. In the ourse, we have used Pthreads to write parallel programs using shared memory. In

Pthreads, mutexes and ondition variables are entral. Desribe these two onepts, how they

work, and in what situations they are used.

4. Gaussian smoothing is ommon in image proessing for reating a blurred e�et. The algorithm

alulates the new pixel value as an average of a surrounding blok of pixels, weighted by

a Gaussian blok. The listing below shows a CUDA kernel implementing this for a 5-by-5

Gaussian blok.

__global__ void gaussian_kernel(float *Aout, onst float *Ain)

{

int i = threadIdx.x + blokIdx.x*blokDim.x;

if(i>1 && i<Height-2) { // only ompute in interior

for(int j=2; j<Width-2; j++) {

float tmp=0;

for(int ii=-2; ii<2; ii++) {

for(int jj=-2; jj<2; jj++) {

tmp += Weight[ii*5+jj℄*Ain[(i+ii)*Width + j+jj℄;

}

}

Aout[i*Width + j℄ = tmp;

}

}

}

Disuss how this implementation ould be optimized by a) inreasing the parallelism, and b)

using shared memory. In both ases, explain what the problem is, why it would be improved,

and sketh an implementation. You do not have to get the syntax right.

5. In parallel omputing we have di�erent programming models with respet to the memory

spae: (a) loal address spae, (b) global address spae, and () partitioned global address

spae. Explain the di�erenes between these and disuss their pros and ons.

6. The Mandelbrot set is de�ned for points in the omplex plane for whih the sequene z

k+1 =
z

2
k

+ is bounded, where z0 = 0 and is a omplex number representing the position in the

omplex plane. Figure 2 shows the resulting Mandelbrot set in the omplex plane.

The Mandelbrot set an be omputed with the ode listing below. Make an e�ient paral-

lelization of the algorithm using OpenMP diretives. Consider di�erent settings of the SIZE

variable and the number of threads (i.e., how does the parallelization di�er when SIZE is small

and the number of threads is large ompared to when SIZE is large and the number of threads

is small).

Figur 2: The Mandelbrot set.

int inSet(double ix, double iy)

{

int iterations = 0;

double x = ix, y = iy;

double x2 = x*x, y2 = y*y;

while ((x2+y2<4) && (iterations<1000))

{

y = 2*x*y + iy;

x = x2-y2+ix;

x2 = x*x;

y2 = y*y;

iterations++;

}

return iterations;

}

int main()

{

int Matrix[SIZE℄[SIZE℄;

int x,y;

double xv,yv;

for (x=0; x<SIZE; x++)

for (y=0; y<SIZE; y++)

{

xv = ((double)x-(SIZE/2))/(SIZE/4);

yv = ((double)y-(SIZE/2))/(SIZE/4);

Matrix[x℄[y℄=inSet(xv,yv);

}

// Plotting the Mandelbrot set is not part of the task and omitted.

}

