Uppsala University Programming of Parallel Computers

Department of Information Technology 2015-03-19
Scientific Computing

Programming of Parallel Computers, 10hp, 2015-03-19

Time: 08° — 13%

Help: None

Each of the six problems below can give up to five points. For maximum points, you must give
detailed answers and motivate your assumptions. Grade 3: 12p, Grade 4: 18p, Grade 5: 24p

1. Write a code section to distribute a M x N matrix to P processors using MPI function calls.
Your code should implement the following requirements:

a) Allocate the matrix in processor Py as a one dimensional array.

b) Create a pl X p2 cartesian grid communicator with the factorization P = pl x p2. The
code should do the factorization automatically and as evenly as possible.

c) Partition the matrix as show in Figure 1 and distribute the matrix blocks with non-
blocking point-to-point communication (or with a collective communication call). For
simplicity you can assume that le and p% are integers.

0,0 0,1 0,p2-1
A A AP

ALO ALL N ALP21

=

Apl—l,O Apl-l,l Apl_ 1,p2-

Figur 1: Data partitioning strategy

2. a) Explain the differences between blocking and non-blocking communication in MPI. Con-
sider MPI_Send() and M PI_Isend() as examples.

b) In the MPI lab you have measured the communication bandwidth using synchronous
point-to-point communication. Explain the measurements, the results and the conclusions
of the experiments.

3. In the course, we have used Pthreads to write parallel programs using shared memory. In
Pthreads, mutezes and condition variables are central. Describe these two concepts, how they
work, and in what situations they are used.

4. Gaussian smoothing is common in image processing for creating a blurred effect. The algorithm
calculates the new pixel value as an average of a surrounding block of pixels, weighted by
a Gaussian block. The listing below shows a CUDA kernel implementing this for a 5-by-5
Gaussian block.

__global__ void gaussian_kernel(float *Aout, const float *Ain)

{
int i = threadldx.x + blockIdx.x*blockDim.x;

if(i>1 && i<Height-2) { // only compute in interior
for(int j=2; j<Width-2; j++) {
float tmp=0;
for(int ii=-2; 1i<2; ii++) {
for(int jj=-2; jj<2; jj++) {
tmp += Weight[ii*5+jj]*Ain[(i+ii)*Width + j+jjl;
}
}
Aout[i*Width + j] = tmp;
}
}
}

Discuss how this implementation could be optimized by a) increasing the parallelism, and b)
using shared memory. In both cases, explain what the problem is, why it would be improved,
and sketch an implementation. You do not have to get the syntax right.

5. In parallel computing we have different programming models with respect to the memory
space: (a) local address space, (b) global address space, and (c) partitioned global address
space. Explain the differences between these and discuss their pros and cons.

6. The Mandelbrot set is defined for points in the complex plane for which the sequence zj41 =
22 + ¢ is bounded, where zp = 0 and c¢ is a complex number representing the position in the
complex plane. Figure 2 shows the resulting Mandelbrot set in the complex plane.

The Mandelbrot set can be computed with the code listing below. Make an efficient paral-
lelization of the algorithm using OpenMP directives. Consider different settings of the SIZE
variable and the number of threads (i.e., how does the parallelization differ when SIZE is small
and the number of threads is large compared to when SIZE is large and the number of threads
is small).

Figur 2: The Mandelbrot set.

int inSet(double ix, double iy)
{

int iterations = 0;
double x = ix, y = 1iy;

double x2 = x*x, y2 = y*y;

while ((x2+y2<4) && (iterations<1000))
{

2%x*y + 1y;
x2-y2+ix;
X2 = X*X;

y2 = y*y;
iterations++;

y
X

}

return iterations;

}

int main()

{
int Matrix[SIZE][SIZE];
int x,y;
double xv,yv;

for (x=0; x<SIZE; x++)
for (y=0; y<SIZE; y++)

{
xv = ((double)x-(SIZE/2))/(SIZE/4);
yv = ((double)y-(SIZE/2))/(SIZE/4);
Matrix[x] [y]=inSet (xv,yv);

}

// Plotting the Mandelbrot set is not part of the task and omitted.

