
Uppsala University

Department of Information Te
hnology

S
ienti�
 Computing

Programming of Parallel Computers

2015-03-19

Programming of Parallel Computers, 10hp, 2015-03-19

Time: 0800
� 1300

Help: None

Ea
h of the six problems below 
an give up to �ve points. For maximum points, you must give

detailed answers and motivate your assumptions. Grade 3: 12p, Grade 4: 18p, Grade 5: 24p

1. Write a 
ode se
tion to distribute a M �N matrix to P pro
essors using MPI fun
tion 
alls.

Your 
ode should implement the following requirements:

a) Allo
ate the matrix in pro
essor P0 as a one dimensional array.

b) Create a p1 � p2 
artesian grid 
ommuni
ator with the fa
torization P = p1 � p2. The

ode should do the fa
torization automati
ally and as evenly as possible.


) Partition the matrix as show in Figure 1 and distribute the matrix blo
ks with non-

blo
king point-to-point 
ommuni
ation (or with a 
olle
tive 
ommuni
ation 
all). For

simpli
ity you 
an assume that

M

p1
and

N

p2
are integers.

Ap1-1,p2-1

A0,1

...

...

...

...

.........

A1,1

A0,0

A1,0 A

A

p1-1,1Ap1-1,0 A

1,p2-1

0,p2-1

Figur 1: Data partitioning strategy

2. a) Explain the di�eren
es between blo
king and non-blo
king 
ommuni
ation in MPI. Con-

sider MPI_Send() and MPI_Isend() as examples.

b) In the MPI lab you have measured the 
ommuni
ation bandwidth using syn
hronous

point-to-point 
ommuni
ation. Explain the measurements, the results and the 
on
lusions

of the experiments.



3. In the 
ourse, we have used Pthreads to write parallel programs using shared memory. In

Pthreads, mutexes and 
ondition variables are 
entral. Des
ribe these two 
on
epts, how they

work, and in what situations they are used.

4. Gaussian smoothing is 
ommon in image pro
essing for 
reating a blurred e�e
t. The algorithm


al
ulates the new pixel value as an average of a surrounding blo
k of pixels, weighted by

a Gaussian blo
k. The listing below shows a CUDA kernel implementing this for a 5-by-5

Gaussian blo
k.

__global__ void gaussian_kernel(float *Aout, 
onst float *Ain)

{

int i = threadIdx.x + blo
kIdx.x*blo
kDim.x;

if(i>1 && i<Height-2) { // only 
ompute in interior

for(int j=2; j<Width-2; j++) {

float tmp=0;

for(int ii=-2; ii<2; ii++) {

for(int jj=-2; jj<2; jj++) {

tmp += Weight[ii*5+jj℄*Ain[(i+ii)*Width + j+jj℄;

}

}

Aout[i*Width + j℄ = tmp;

}

}

}

Dis
uss how this implementation 
ould be optimized by a) in
reasing the parallelism, and b)

using shared memory. In both 
ases, explain what the problem is, why it would be improved,

and sket
h an implementation. You do not have to get the syntax right.

5. In parallel 
omputing we have di�erent programming models with respe
t to the memory

spa
e: (a) lo
al address spa
e, (b) global address spa
e, and (
) partitioned global address

spa
e. Explain the di�eren
es between these and dis
uss their pros and 
ons.

6. The Mandelbrot set is de�ned for points in the 
omplex plane for whi
h the sequen
e z

k+1 =
z

2
k

+ 
 is bounded, where z0 = 0 and 
 is a 
omplex number representing the position in the


omplex plane. Figure 2 shows the resulting Mandelbrot set in the 
omplex plane.

The Mandelbrot set 
an be 
omputed with the 
ode listing below. Make an e�
ient paral-

lelization of the algorithm using OpenMP dire
tives. Consider di�erent settings of the SIZE

variable and the number of threads (i.e., how does the parallelization di�er when SIZE is small

and the number of threads is large 
ompared to when SIZE is large and the number of threads

is small).



Figur 2: The Mandelbrot set.

int inSet(double ix, double iy)

{

int iterations = 0;

double x = ix, y = iy;

double x2 = x*x, y2 = y*y;

while ((x2+y2<4) && (iterations<1000))

{

y = 2*x*y + iy;

x = x2-y2+ix;

x2 = x*x;

y2 = y*y;

iterations++;

}

return iterations;

}

int main()

{

int Matrix[SIZE℄[SIZE℄;

int x,y;

double xv,yv;

for ( x=0; x<SIZE; x++ )

for ( y=0; y<SIZE; y++ )

{

xv = ((double)x-(SIZE/2))/(SIZE/4);

yv = ((double)y-(SIZE/2))/(SIZE/4);

Matrix[x℄[y℄=inSet(xv,yv);

}

// Plotting the Mandelbrot set is not part of the task and omitted.

}


