
Uppsala University

Department of Information Te
hnology

S
ienti�
 Computing

Programming of Parallel Computers

2014-03-17

Programming of Parallel Computers, 10hp, 2014-03-17

Time: 800
� 1300

Help: None

Ea
h of the six problems below
an give up to �ve points. For maximum points, you must give

detailed answers and motivate your assumptions. Grade 3: 12p, Grade 4: 18p, Grade 5: 24p

1. a) Linear algebra operations often
onsist of three types of loops whi
h
an be nested. What

are these types, explain the three types with examples. When we know these types we
an

use this knowledge for e�
ient parallelization of the more
omplex algorithms, explain

how.

b) The solution algorithm for (upper) triangular systems of equations, Ux = b,
an be

written as:

Solution algorithm 1

for j=n to 1

x(j)=b(j)/U(j,j)

for i=j-1 to 1

b(i)=b(i)-x(j)*U(i,j)

end for

end for

An alternative way to solve the system
an be written as:

Solution algorithm 2

for j=n to 1

for i=j+1 to n

b(j)=b(j)-x(i)*U(j,i)

end for

x(j)=b(j)/U(j,j)

end for

Analyze the loops a

ording the types above in the respe
tive algorithm, i.e., what types

of loops do we have? Assume that we want to parallelize the solution algorithm for

triangular systems of equations, Ux = b, with OpenMP. Whi
h algorithm should we

hoose and why? Dis
uss what fa
tors will limit the performan
e of the parallelization

in respe
tive
ase?

2. a) The Qui
k-sort algorithm
an be parallelized in many ways. Here we will
onsider two

inherently di�erent ways. The �rst way is a divide-and-
onquer parallelization where we

a
quire a new thread for ea
h re
ursion step and sort the two lists in parallel on the two

threads. After a number of re
ursion levels we pro
eed without requiring new threads

using the serial Qui
k-sort algorithm on the respe
tive thread. The other way is a peer

parallelization where we
reate p threads as peers, divide the data equally assigning n=p

elements to ea
h thread, and sort the elements internally within ea
h thread using the

serial Qui
k-Sort algorithm. Then, in p phases alternating with your left and your right

neighbor, merge data and keep either the right or the left part of the data. One
an argue

that the divide-and-
onquer parallelization has the best performan
e when the number

of threads is
onsiderably larger than the number of
ores while the peer parallelization

has an optimal performan
e for twi
e as many threads as
ores. Explain why we have

these di�eren
es.

b) When doing the divide-and-
onquer parallelization one has to be
areful of how to
reate

and terminate the threads otherwise we
an get subtle bugs that only shows o

asionally.

In the following
ode sequen
e we have su
h a bug, what is the bug, what
an happen

(explain the behavior of the bug), and how
an we
orre
t it?

void *pqui
k(void *arg){

...

if (level<maxlevel){

...

pthread_
reate(&new_thread,NULL,pqui
k,(void*)&data_left);

pqui
k((void*)&data_right);

pthread_join(new_thread);

}

else

serial_qui
k_sort(array,left,right);

pthread_exit(NULL);

}

3. Consider the Bu
ket-sort algorithm, here the elements are �rst �ltered into bu
kets (i.e. ele-

ments within range [a
i

b

i

] belong to bu
ket i). Then the bu
kets
an be sorted
on
urrently

and independently in di�erent threads, e.g., using the Qui
k-sort algorithm. The algorithm is

straightforward to parallelize as the sorting of the bu
kets is trivially parallel. The problem

be
omes to get a good load balan
e among the pro
essors and
ores. Assume that we want to

use OpenMP for the parallelization, how
an we then do the load balan
ing of the bu
kets to

the threads? Des
ribe at least four
on
eptually di�erent ways in OpenMP to get a good load

balan
e and dis
uss their advantages and disadvantages.

4. a) When
ommuni
ating point-to-point in MPI the
ommuni
ation time
an be modeled

with a linear model with respe
t to the message length. Explain what the parameters in

the model are and what they depend on.

b) The parameters in the model
an be estimated with a simple ping-pong test, i.e., sending

messages ba
k and forth between two pro
essors. Write a MPI program, with appropriate

MPI
ommands, that performs a ping-pong test. The program itself does not have to

estimate the parameters but produ
e data from whi
h it is possible to later estimate the

parameters.

5. a) Could we expe
t always to have speed-ups when we porting our
ode to the GPU (assu-

ming the
ode is fully parallel)? If not, explain why.

b) Explain the
on
epts of thread, blo
k and grid in CUDA. How many threads CUDA will

s
hedule for test1, test2, test3 and test4?

int n = 44;

int bs = 22;

dim3 dimBlo
k(bs);

dim3 dimGrid(n/bs);

test1<<<dimGrid, dimBlo
k>>>(x, y);

int n = 44+1;

int bs = 22;

dim3 dimBlo
k(bs);

dim3 dimGrid(n/bs);

test2<<<dimGrid, dimBlo
k>>>(x, y);

int n = 44;

int bs = 22+1;

dim3 dimBlo
k(bs);

dim3 dimGrid(n/bs);

test3<<<dimGrid, dimBlo
k>>>(x, y);

int n = 44;

int bs = 22;

dim3 dimBlo
k(bs);

dim3 dimGrid(n/bs + 1);

test4<<<dimGrid, dimBlo
k>>>(x, y);

6. To
ompute the determinant of a matrix of size n one
an use the
ofa
tor method. Here,

de�ne the submatrix A

ij

of order (n-1)x(n-1) by deleting the i

th

row and the j

th

olumn of

A. The determinant of A
an then be
omputed as detA =
P

n

i=1
(�1)i+j

� a

ij

� detA

ij

using

development by j

th

olumn where a

ij

is the element in the matrix A with index i and j. The

olumn j
an be
hosen arbitrary (e.g. j=1). Note, the determinant A

ij

an be
omputed with

the same method making the algorithm re
ursive (by using that the determinant of a s
alar is

the s
alar itself). Choose an appropriate parallelization model (MPI, Pthreads or OpenMP)

and write a parallel
ode for this algorithm. Make the parallelization as general as possible,

i.e., think about
ases where the number of
ores is larger than n and where n is larger than

the number of
ores. You
an assume that you have a fun
tion that extra
ts the submatrix

A

ij

by deleting the i

th

row and the j

th

olumn of A, i.e., Anew=Extra
tMat(A,i,j);

Good Lu
k!

