Uppsala University Programming of Parallel Computers

Department of Information Technology 2014-03-17
Scientific Computing

Programming of Parallel Computers, 10hp, 2014-03-17

Time: 8% — 13%

Help: None

Each of the six problems below can give up to five points. For maximum points, you must give
detailed answers and motivate your assumptions. Grade 3: 12p, Grade 4: 18p, Grade 5: 24p

1. a) Linear algebra operations often consist of three types of loops which can be nested. What
are these types, explain the three types with examples. When we know these types we can
use this knowledge for efficient parallelization of the more complex algorithms, explain
how.

b) The solution algorithm for (upper) triangular systems of equations, Uz = b, can be
written as:

Solution algorithm 1

for j=n to 1
x(3)=b(3)/U(j,])
for i=j-1 to 1
b(i)=b(i)-x(j)*U(i,])
end for
end for

An alternative way to solve the system can be written as:

Solution algorithm 2

for j=n to 1
for i=j+1 ton
b(§)=b(§)-x(i)*U(j,1)
end for
x(3)=b(3)/U(,3)
end for

Analyze the loops according the types above in the respective algorithm, i.e., what types
of loops do we have? Assume that we want to parallelize the solution algorithm for
triangular systems of equations, Uz = b, with OpenMP. Which algorithm should we
choose and why? Discuss what factors will limit the performance of the parallelization
in respective case?



a)

The Quick-sort algorithm can be parallelized in many ways. Here we will consider two
inherently different ways. The first way is a divide-and-conquer parallelization where we
acquire a new thread for each recursion step and sort the two lists in parallel on the two
threads. After a number of recursion levels we proceed without requiring new threads
using the serial Quick-sort algorithm on the respective thread. The other way is a peer
parallelization where we create p threads as peers, divide the data equally assigning n/p
elements to each thread, and sort the elements internally within each thread using the
serial Quick-Sort algorithm. Then, in p phases alternating with your left and your right
neighbor, merge data and keep either the right or the left part of the data. One can argue
that the divide-and-conquer parallelization has the best performance when the number
of threads is considerably larger than the number of cores while the peer parallelization
has an optimal performance for twice as many threads as cores. Explain why we have
these differences.

When doing the divide-and-conquer parallelization one has to be careful of how to create
and terminate the threads otherwise we can get subtle bugs that only shows occasionally.
In the following code sequence we have such a bug, what is the bug, what can happen
(explain the behavior of the bug), and how can we correct it?

void *pquick(void *arg){
if (level<maxlevel){

pthread_create(&new_thread,NULL,pquick, (void*)&data_left);
pquick((void*)&data_right);
pthread_join(new_thread) ;
}
else
serial_quick_sort(array,left,right);
pthread_exit (NULL) ;

3. Consider the Bucket-sort algorithm, here the elements are first filtered into buckets (i.e. ele-
ments within range [a; b;] belong to bucket 1). Then the buckets can be sorted concurrently
and independently in different threads, e.g., using the Quick-sort algorithm. The algorithm is
straightforward to parallelize as the sorting of the buckets is trivially parallel. The problem
becomes to get a good load balance among the processors and cores. Assume that we want to
use OpenMP for the parallelization, how can we then do the load balancing of the buckets to
the threads? Describe at least four conceptually different ways in OpenMP to get a good load
balance and discuss their advantages and disadvantages.

4.

a)

b)

When communicating point-to-point in MPI the communication time can be modeled
with a linear model with respect to the message length. Explain what the parameters in
the model are and what they depend on.

The parameters in the model can be estimated with a simple ping-pong test, i.e., sending
messages back and forth between two processors. Write a MPI program, with appropriate
MPI commands, that performs a ping-pong test. The program itself does not have to
estimate the parameters but produce data from which it is possible to later estimate the
parameters.



5. a) Could we expect always to have speed-ups when we porting our code to the GPU (assu-
ming the code is fully parallel)? If not, explain why.

b) Explain the concepts of thread, block and grid in CUDA. How many threads CUDA will
schedule for testl, test2, test3 and test4?

int n = 44;
int bs = 22;
dim3 dimBlock( bs );
dim3 dimGrid( n/bs );

test1<<<dimGrid, dimBlock>>>(x, y);

int n = 44+1;

int bs = 22;

dim3 dimBlock( bs );
dim3 dimGrid( n/bs );

test2<<<dimGrid, dimBlock>>>(x, y);

int n = 44;

int bs = 22+1;

dim3 dimBlock( bs );
dim3 dimGrid( n/bs );

test3<<<dimGrid, dimBlock>>>(x, y);

int n = 44;

int bs = 22;

dim3 dimBlock( bs );
dim3 dimGrid( n/bs + 1);

test4<<<dimGrid, dimBlock>>>(x, y);

6. To compute the determinant of a matrix of size n one can use the cofactor method. Here,
define the submatrix A4;; of order (n-1)x(n-1) by deleting the i‘" row and the j column of
A. The determinant of A can then be computed as detA = Y  (—1)""7 - a;; - detA;; using
development by j** column where a;i; is the element in the matrix A with index i and j. The
column j can be chosen arbitrary (e.g. j=1). Note, the determinant A;; can be computed with
the same method making the algorithm recursive (by using that the determinant of a scalar is
the scalar itself). Choose an appropriate parallelization model (MPI, Pthreads or OpenMP)
and write a parallel code for this algorithm. Make the parallelization as general as possible,
i.e., think about cases where the number of cores is larger than n and where n is larger than
the number of cores. You can assume that you have a function that extracts the submatrix
A;; by deleting the i** row and the j** column of A, i.e., Anew=ExtractMat(A,i,]);

Good Luck!



