
Uppsala University

Department of Information Te
hnology

S
ienti�
 Computing

Programming of Parallel Computers

2013-03-18

Programming of Parallel Computers, 10hp, 2013-03-18

Time: 0800
� 1300

Help: None

Ea
h of the six problems below
an give up to �ve points. For maximum points, you must give

detailed answers and motivate your assumptions. Grade 3: 12p, Grade 4: 18p, Grade 5: 24p

1. a) Explain how the standard MPI_SEND and MPI_RECV works in MPI, i.e., sket
h the

data transfer model.

b) When you use MPI_ISEND do you need to wait (MPI_WAIT), why?

) If you need to implement the fun
tion MPI_ALLREDUCE only with MPI_SEND and

MPI_RECV, how many send and re
eive
alls will you need for N pro
essors? Draw a

sket
h of the
ommuni
ation pattern.

2. a) What are the main restri
tions in GPU/CUDA programming model for many algorithms?

b) What
hara
teristi
s should the algorithms have to be e�
iently implemented on a GPU

devi
e?

3. When programming global address spa
e
omputers with a thread model there are no expli
it

ommuni
ation
alls as in MPI. Instead the
ommuni
ation is handled impli
itly due to
a
he

misses. We
an then have four types of
a
he misses;
old/
ompulsory,
apa
ity, true sharing

and false sharing misses. Explain what these types of misses are and when they happen.

4. Consider the following three pseudo
ode fun
tions:

f
t1(stru
t Data) {

Data.level = Data.level + 1 ;

if (Data.level < MAX)

NewThread(f
t1(Data.A));

else

f
t1(Data.A);

f
t1(Data.B);

}

f
t2(stru
t Data) {

Data.level = Data.level + 1 ;

f
t2(Data.B);

if (Data.level < MAX)

NewThread(f
t2(Data.A));

else

f
t2(Data.A);

}

f
t3(stru
t Data) {

Data.level = Data.level + 1 ;

if (Data.level < MAX) {

NewThread(f
t3(Data.A));

NewThread(f
t3(Data.B));

} else {

f
t3(Data.A)

f
t3(Data.B)

}

}

Answer the questions:

a) What is the formula giving the relation between the number of threads and re
ursion

levels in ea
h of the fun
tions above?

b) If you need to implement Qui
kSort algorithm based on divide and
onquer - whi
h

approa
h would you sele
t? Why? Whi
h approa
h is the fastest? Why?

5. Matrix-Matrix multipli
ation
an be formulated as (Strassen, 1969), rewriting C = AB on

blo
k form

�

C11 C12

C21 C22

�

=

�

A11 A12

A21 A22

� �

B11 B12

B21 B22

�

and then
omputing (7 multiplies, 18 adds)

P1 = (A11 +A22)(B11 +B22) C11 = P1 + P4 � P5 + P7

P2 = (A21 +A22)B11 C12 = P3 + P5

P3 = A11(B12 �B22) C21 = P2 + P4

P4 = A22(B21 �B11) C22 = P1 + P3 � P2 + P6

P5 = (A11 +A12)B22

P6 = (A21 �A11)(B11 +B12)

P7 = (A12 �A22)(B21 +B22)

Moreover, the 7 blo
k-matrix-matrix multiplies
an be done re
ursively with the same algo-

rithm until the blo
k size is small enough, e.g. 32 by 32 elements. The �nal matrix blo
ks are

multiplied with standard matrix-matrix multipli
ation. Sket
h a re
ursive version of Strassen's

algorithm and parallelize it with OpenMP using the task-dire
tive. You
an assume that you

have the fun
tions:

void mult(double *C, double *A, double *B, int n);

void add(double *C, double *A, double *B, int n);

void sub(double *C, double *A, double *B, int n);

for standard matrix multipli
ation (C = A � B), addition (C = A + B) and subtra
tion

(C = A � B) of nxn matri
es available. Take spe
ial
are on how you do the mallo
s and

explain why this is important.

6. The bu
ketsort algorithm
an be des
ribed as:

1. De�ne k number of bu
kets in the interval [min,max℄ and �lter the elements

into the k bu
kets, i.e., all elements in the interval [bstart(j),bstop(j)℄ are pla
ed

in bu
ket j, for j=1 to k.

2. Sort the bu
kets independently with, e.g., the qui
ksort algorithm.

Assume that the data we want to sort
omes from a normal distribution. Now we want

to implement the algorithm in C and parallelize it with MPI. For your disposal you ha-

ve the serial fun
tion init(double *data,int start,int stop) whi
h initializes the da-

ta sequen
e that we want to sort in the interval from start to stop. The generation of

one data element is independent of other data points, i.e,
alling init(data,1,len) and

init(&data[0℄,1,len/2); init(&data[len/2℄,len/2+1,len) is equivalent. You also have

the fun
tion qui
ksort(double *data,int left,int right) whi
h sorts the data in pla
e.

Sket
h a memory e�
ient parallel implementation of the bu
ketsort algorithm in C using MPI.

Explain what the parallel overheads are in your implementation and how you
ould minimize

these overheads.

Good Lu
k!

