Programming of Parallel Computers

Uppsala University 2013-03-18

Department of Information Technology
Scientific Computing

Programming of Parallel Computers, 10hp, 2013-03-18

Time: 08° — 13%

Help: None

Each of the six problems below can give up to five points. For maximum points, you must give
detailed answers and motivate your assumptions. Grade 3: 12p, Grade 4: 18p, Grade 5: 24p

1. a) Explain how the standard MPI _SEND and MPI RECYV works in MPI, i.e., sketch the
data transfer model.

b) When you use MPI ISEND do you need to wait (MPI WAIT), why?

c¢) If you need to implement the function MPI ALLREDUCE only with MPI SEND and
MPI _RECYV, how many send and receive calls will you need for N processors? Draw a
sketch of the communication pattern.

2. a) What are the main restrictions in GPU/CUDA programming model for many algorithms?

b) What characteristics should the algorithms have to be efficiently implemented on a GPU
device?

3. When programming global address space computers with a thread model there are no explicit
communication calls as in MPI. Instead the communication is handled implicitly due to cache
misses. We can then have four types of cache misses; cold/compulsory, capacity, true sharing
and false sharing misses. Explain what these types of misses are and when they happen.

4. Consider the following three pseudo code functions:

fctil(struct Data) {
Data.level = Data.level + 1 ;
if (Data.level < MAX)
NewThread(fcti(Data.A));
else

fcti(Data.A);

fcti(Data.B);

}

fct2(struct Data) {
Data.level = Data.level + 1 ;
fct2(Data.B);

if (Data.level < MAX)
NewThread(fct2(Data.A));
else

fct2(Data.A);

fct3(struct Data) {
Data.level = Data.level + 1 ;

if (Data.level < MAX) {
NewThread(fct3(Data.A));
NewThread(fct3(Data.B));
} else {

fct3(Data.A)

fct3(Data.B)

}

}

Answer the questions:

a) What is the formula giving the relation between the number of threads and recursion
levels in each of the functions above?

b) If you need to implement QuickSort algorithm based on divide and conquer - which
approach would you select? Why? Which approach is the fastest? Why?

. Matrix-Matrix multiplication can be formulated as (Strassen, 1969), rewriting C = AB on

block form
{Cn 012} _ [An A12] {Bu B12}
Co1 Coo Az1 Asxx| |Ba1 B

and then computing (7 multiplies, 18 adds)

Py = (A1 + Ass)(B11 + Baa) Cihi=P +P,— P+ P;

Py = (Ag1 + A2s)Bi1 Ci2=PFP:+Ps
P; = A11(B12 — Bao) Cor=Po+ Py
Py = A99(Ba1 — B11) Coo=P+P;—-P+F;s

P; = (A11 + A12)Bao
Ps = (A21 — A11)(B11 + Bi2)
P; = (A1z — A22)(Ba1 + Bag)

Moreover, the 7 block-matrix-matrix multiplies can be done recursively with the same algo-
rithm until the block size is small enough, e.g. 32 by 32 elements. The final matrix blocks are
multiplied with standard matrix-matrix multiplication. Sketch a recursive version of Strassen’s
algorithm and parallelize it with OpenMP using the task-directive. You can assume that you
have the functions:

void mult(double *C, double *A, double *B, int n);
void add(double *C, double *A, double *B, int n);
void sub(double *C, double *A, double *B, int n);

for standard matrix multiplication (C' = A x B), addition (C = A + B) and subtraction
(C = A — B) of nxn matrices available. Take special care on how you do the mallocs and
explain why this is important.

. The bucketsort algorithm can be described as:

1. Define k number of buckets in the interval [min,maz] and filter the elements
into the k buckets, i.e., all elements in the interval [bstart(j),bstop(j)] are placed
in bucket j, for j=1 to k.

2. Sort the buckets independently with, e.g., the quicksort algorithm.

Agsume that the data we want to sort comes from a normal distribution. Now we want
to implement the algorithm in C and parallelize it with MPI. For your disposal you ha-
ve the serial function init(double *data,int start,int stop) which initializes the da-
ta sequence that we want to sort in the interval from start to stop. The generation of
one data element is independent of other data points, i.e, calling init(data,1,len) and
init(&data[0],1,1len/2); init(&datal[len/2],len/2+1,len) is equivalent. You also have
the function quicksort (double *data,int left,int right) which sorts the data in place.

Sketch a memory efficient parallel implementation of the bucketsort algorithm in C using MPI.
Explain what the parallel overheads are in your implementation and how you could minimize
these overheads.

Good Luck!

