
Uppsala University

Department of Information Tehnology

Sienti� Computing

Programming of Parallel Computers

2013-03-18

Programming of Parallel Computers, 10hp, 2013-03-18

Time: 0800
� 1300

Help: None

Eah of the six problems below an give up to �ve points. For maximum points, you must give

detailed answers and motivate your assumptions. Grade 3: 12p, Grade 4: 18p, Grade 5: 24p

1. a) Explain how the standard MPI_SEND and MPI_RECV works in MPI, i.e., sketh the

data transfer model.

b) When you use MPI_ISEND do you need to wait (MPI_WAIT), why?

) If you need to implement the funtion MPI_ALLREDUCE only with MPI_SEND and

MPI_RECV, how many send and reeive alls will you need for N proessors? Draw a

sketh of the ommuniation pattern.

2. a) What are the main restritions in GPU/CUDA programming model for many algorithms?

b) What harateristis should the algorithms have to be e�iently implemented on a GPU

devie?

3. When programming global address spae omputers with a thread model there are no expliit

ommuniation alls as in MPI. Instead the ommuniation is handled impliitly due to ahe

misses. We an then have four types of ahe misses; old/ompulsory, apaity, true sharing

and false sharing misses. Explain what these types of misses are and when they happen.

4. Consider the following three pseudo ode funtions:

ft1(strut Data) {

Data.level = Data.level + 1 ;

if (Data.level < MAX)

NewThread(ft1(Data.A));

else

ft1(Data.A);

ft1(Data.B);

}

ft2(strut Data) {

Data.level = Data.level + 1 ;

ft2(Data.B);

if (Data.level < MAX)

NewThread(ft2(Data.A));

else

ft2(Data.A);

}

ft3(strut Data) {

Data.level = Data.level + 1 ;

if (Data.level < MAX) {

NewThread(ft3(Data.A));

NewThread(ft3(Data.B));

} else {

ft3(Data.A)

ft3(Data.B)

}

}

Answer the questions:

a) What is the formula giving the relation between the number of threads and reursion

levels in eah of the funtions above?

b) If you need to implement QuikSort algorithm based on divide and onquer - whih

approah would you selet? Why? Whih approah is the fastest? Why?

5. Matrix-Matrix multipliation an be formulated as (Strassen, 1969), rewriting C = AB on

blok form

�

C11 C12

C21 C22

�

=

�

A11 A12

A21 A22

� �

B11 B12

B21 B22

�

and then omputing (7 multiplies, 18 adds)

P1 = (A11 +A22)(B11 +B22) C11 = P1 + P4 � P5 + P7

P2 = (A21 +A22)B11 C12 = P3 + P5

P3 = A11(B12 �B22) C21 = P2 + P4

P4 = A22(B21 �B11) C22 = P1 + P3 � P2 + P6

P5 = (A11 +A12)B22

P6 = (A21 �A11)(B11 +B12)

P7 = (A12 �A22)(B21 +B22)

Moreover, the 7 blok-matrix-matrix multiplies an be done reursively with the same algo-

rithm until the blok size is small enough, e.g. 32 by 32 elements. The �nal matrix bloks are

multiplied with standard matrix-matrix multipliation. Sketh a reursive version of Strassen's

algorithm and parallelize it with OpenMP using the task-diretive. You an assume that you

have the funtions:

void mult(double *C, double *A, double *B, int n);

void add(double *C, double *A, double *B, int n);

void sub(double *C, double *A, double *B, int n);

for standard matrix multipliation (C = A � B), addition (C = A + B) and subtration

(C = A � B) of nxn matries available. Take speial are on how you do the mallos and

explain why this is important.

6. The buketsort algorithm an be desribed as:

1. De�ne k number of bukets in the interval [min,max℄ and �lter the elements

into the k bukets, i.e., all elements in the interval [bstart(j),bstop(j)℄ are plaed

in buket j, for j=1 to k.

2. Sort the bukets independently with, e.g., the quiksort algorithm.

Assume that the data we want to sort omes from a normal distribution. Now we want

to implement the algorithm in C and parallelize it with MPI. For your disposal you ha-

ve the serial funtion init(double *data,int start,int stop) whih initializes the da-

ta sequene that we want to sort in the interval from start to stop. The generation of

one data element is independent of other data points, i.e, alling init(data,1,len) and

init(&data[0℄,1,len/2); init(&data[len/2℄,len/2+1,len) is equivalent. You also have

the funtion quiksort(double *data,int left,int right) whih sorts the data in plae.

Sketh a memory e�ient parallel implementation of the buketsort algorithm in C using MPI.

Explain what the parallel overheads are in your implementation and how you ould minimize

these overheads.

Good Luk!

