
Uppsala UniversityDepartment of Information Te
hnologyS
ienti�
 Computing Programming of Parallel Computers2011-03-18
Programming of Parallel Computers, 10hp, 2011-03-18Time: 8

00 � 13
00Help: NoneEa
h of the six problems below 
an give up to �ve points. For maximum points, you must givedetailed answers and motivate your assumptions. Grade 3: 12p, Grade 4: 18p, Grade 5: 24p1. When parallelizing an appli
ation we 
an use di�erent te
hniques, (a) Manager-Worker, (b)Peer, and (
) Pipeline. Des
ribe these te
hniques and give an example of an appli
ation ordes
ribe a situation where it is suitable to use the respe
tive te
hniques.2. Des
ribe the key di�eren
es between MPI, Pthreads and OpenMP.3. Des
ribe the key di�eren
es between CUDA and OpenCL.4. In the 
ourse we have been looking at the Enumeration sort algorithm as a 
ase study andparallelized it with both OpenMP and Pthreads.Enumeration sortfor j=1 to nrank(j)=0for i=1 to nif (indata(i)<indata(j)) rank(j)=rank(j)+1end forend for Figur 1: The Enumeration sort algorithm.Sket
h a distributed memory parallelization of the algorithm using MPI (the syntax does nothave to be exa
t and the program not 
omplete but the relevant 
ode segments, details andarguments must be in
luded). An additional requirement is that both the indata and the rankarrays are partitioned and distributed over the pro
essors. Moreover, neither of the arraysshould be gathered into any of the pro
essors as a global array.



5. This task is to simulate Conway's Game of Life. The universe of the Game of Life is a two-dimensional orthogonal grid of square 
ells, ea
h of whi
h is in one of two possible states, liveor dead. Every 
ell intera
ts with its eight neighbors, whi
h are the 
ells that are dire
tlyhorizontally, verti
ally, or diagonally adja
ent. At ea
h step in time, the following transitionso

ur:� Any live 
ell with fewer than two live neighbours dies, as if 
aused by underpopulation.� Any live 
ell with more than three live neighbours dies, as if by over
rowding.� Any live 
ell with two or three live neighbours lives on to the next generation.� Any dead 
ell with exa
tly three live neighbours be
omes a live 
ell.A new generation is 
reated by applying the above rules simultaneously to every 
ell. Thegame stops when the number of live 
ells ex
eeds a given maximal number of live 
ells orwhen all 
ells are dead. Sket
h a parallel implementation of the Game of Life using Pthreads.6. The Qui
k-sort algorithm 
an be des
ribed as:fun
tion qui
ksort(array, left, right)if (right>left) thenpivotIndex=left+(right-left)/2pivotNewIndex=partition(array, left, right, pivotIndex)qui
ksort(array, left, pivotNewIndex-1)qui
ksort(array, pivotNewIndex+1, right)end ifend fun
tion Figur 2: Qui
k-sort algorithmWhere the fun
tion partition reorders the array into two parts, with elements smaller re-spe
tively larger than the pivot and returns the split point pivotNewIndex.One idea to parallelize the Qui
k-sort algorithm is to let one pro
essor do re
ursion in a fewlevels. When it hits the maximal number of re
ursion levels it 
reates two tasks where ea
htask is to sort the remaining fra
tion of the list serially with Qui
k-sort. It puts the tasks to awork queue from where the other pro
essors pi
ks up work. Sket
h a parallel implementationin OpenMP of Qui
k-sort using the idea above. Assume that you have the fun
tion partitionavailable. Good Lu
k!


