Parallel Computing Toolbox
MATLAB

Jarmo Rantakokko

MATLAB®
workers

" < 4
4

Topics:

1. Parallel for-loops
Loop-level, "shared” data

2. SPMD parallelization
Same task, multiple data

3. Task parallelization
Different task, multiple data

4. GPU acceleration

10/03/16

10/03/16

@ Parallel for

UNIVERSITET

% Request 3 workers, max(min(12,#cores))
>> matlabpool 3 i

workers

parfor

% Run in parallel
parfor i=1l:n
AG)=Func(B(i)); #\

end

MATLAB®
dient

2

% Return workers
>> matlabpool close

@ Classification of variables

UNIVERSITET

Loop Loop index for arrays

Sliced input Array whos elements are read in parallel
by different workers

Sliced output Array whos elements are written in parallel
by different workers

Broadcast A variable defined before parallel and
used inside parallel, but never assigned

Reduction A variable that is accumulated in parallel

Temporary A variable that is created inside parallel,

not available outside parallel

Variables continued

UNIVERSI

twopi = 2%pi;

sum=0;

A=rand(100,1);

parfor i=1:100
Temporary =——> c=1. 0/1' y Sliced input
Ssum=sum+c;
B(i)=c*twopi*A(i);

end '\
Sliced output

Broadcast

Reduction

4 Variables continued

U
UNIVERSITET

Note: A worker has its own memory space, all
variables must be "communicated” to/from the
client. A sliced variable is only communicated on
the part that is used by the worker.

Communication is handled automatically (hidden
from user) and can destroy the performance if
you are not careful on how you access the data.

Workers can not communicate peer to peer, i.e.,
strided update of B(i+1)=... is not allowed.
Workers communicate only with client.

10/03/16

Parfor example MxM

parfor i=1l:n
for j=1:n Sliced input
for k=1:n
C(-l !J)=C(1 1J)+A(1 ’k)*B(k!J);

end “\\\ \

end Sliced output Broadcast

4 Parallel Performance

U
UNIVERSITET

Matrix—Matrix multiply

T B

11 A

///

10} ;// %/ -

ar /,// ,z'/

\ // /

.
S 7 ///B/
3 Pt 4
ey
@ P
8 4L 7
o ° /;//
P
5 i
o

4 //

i //

2t 4

bz
1‘/ L L L
2 3 4 5 6 7 8 9 0 1 12
Workers

Speedup: S=T,/T, where T, is the run-time
using one worker and T, using P workers.

10/03/16

Parallel vs Serial

UNIVERSITET

Matrix—Matrix multiply

100 - \

Time [sec]

50+ \X Client: 42 sec

Setoo

T
—— 5 —

I | . | I . I . I .
1 2 3 4 5 6 7 8 9 10 1 12
Workers

Note: C matrix is both sliced input and output.
Lot of communication to/from client-worker (both ways)!

Improved version MxM

UNIVERSITET

parfor i=1l:n

for j=1:n
d=0;
for k=1:n

d=d+A(i,k)*B(k,j);

end
c(i,j)=d;

end

end

Note: Now C is only sliced output, d is a temporary.

10/03/16

UPPSA
UNIVERSI

U LA
UNIVERSITET

Parallel Performance

Matrix—Matrix multiply Matrix-Matrix multiply
12

11
30\ Client: 28 sec 1
10|

@
Speedup

[R S - SRR

Small overhead in reading A and B, writing C

Example Enumeration Sort

for i=1:n
rank=1;
for j=1:n
if indata(i)>indata(j)
rank=rank+1;
end
end
outdata(rank)=indata(i);
end

Note: i-loop is perfectly parallel, all indata is needed
by all workers (broadcast) but outdata is written in
parallel irregularly (prohibits parfor).

10/03/16

10/03/16

4 Example Enumeration Sort

UNIVERSITET

parfor i=1:n
rank=1;
for j=1:n
if indata(i)>indata(j)
rank=rank+1;
end
end
rankarray(i)=rank;
end

=> rankarray sliced output and we can use parfor

& _»1 Ll
P Example Enumeration Sort
12 —
1f //’/
10f //’
td
9 - ///,’,,,
8f e
s 4t o
E P
3 et g
) ,,/’
5 o ’,/’
’
4F ”'1 o2
3 u ,/’
22
2t &
R 4 6 5 10 12
Workers

10/03/16

_ Example Enumeration Sort

UNIVERSITET 16
16

Time [sec]
[

Client: 0.36 sec

Workers
WTF! Serial code on Client runs 5 times faster than
parallel code on 12 workers! Why, large overhead in
starting up workers, communicating data and code
poorly optimized on workers?!

UPPSALA \ Client: 9.87 sec
UNIVERSITET 10 L

Time [sec]
(]

Workers

Improvement: Implement enumsort as a function
(functions are better optimized than scripts) and
increase the problem size (overhead in starting up
workers and communicating data is diminished).

10/03/16

Single Program Multiple Data
(SPMD)

% Request 4 workers (max 12)
>> matlabpool 4

% Run in parallel on 4 workers
spmd (4)

< statements >
end

% Return workers
>> matlabpool close

Variables in SPMD

» Each worker can read data from client
defined outside spmd (replicated data).

* All data assigned inside spmd are
composite (private) but can be accessed
from client. Can also communicate worker-
worker with explicit send-recv calls.

« Large data sets can be distributed and
divided over workers (distributed array).

10/03/16

Composite (private) data

A
UNIVERSITET

A=rand(100,1); workeriD [1,N]
spmd (N)
if (labindex()==1)
B=zeros(100,1);

else Replicated data
B=pi*A;—
end T~
end Private data, Composite object

B2=B{2}; % Worker 2’s data workers data

B1=B{1}; % worker 1’s data}» Access
etc. in client

Communication in SPMD

MPI-like communication calls (small subset):
* labSend(variable, to)

» variable=labReceive(from)

* variable=labBroadcast(from,variable)

* labBarrier(), numlabs(), labindex()

If (Tabindex()==1)
Tabsend(a,?2);
elseif (Tabindex()==2)
a=labReceive(l);
end

10

10/03/16

But the communication is extremely slow and
grows non-linearly with message length!

UPPSALA
UNIVERSITET

15
1

<« 27kbit/s

Time [sec]

Message Length x10°

Pingpong-test between two workers.

Distributed data

UNIVERSI

len=1e7;
Adist=distributed.rand(1.Ten);
B=distributed.zeros(1,len);
spmd
for i=drange(l:1en)
B(i)=pi*Adist(i)4

Partitions of A and B,
private and local data

end
end
Bglob=gather(B); Blocal=gather(B,lab)
0 Full size, all elements

collected to client

The distributed arrays are split into different
partitions (private data) and assigned to the
different workers. The function drange picks
out each partitions iteration indexes.

11

U LA
UNIVERSITET

Distributed data

User can also define partitions by using
distribution objects, codistributor1d and
codistributor2dbec.

Ex: Distribute A into 4 partions of sizes 10,
10, 15 and 15 in the first dimension (index).

A=zeros(50,100);

dim=1; part=[10 10 15 15];

spmd 4
distlb=codistributorld(dim,part);
Adist=codistributed(A,distlD);
for i=drange(1:50)

Adist(i, :)=.

end

end

Performance in SPMD

Use composite data (private) and replicated arrays.
Reading and writing distributed arrays takes very long
time! (But, allows to solve larger problem that would
not fit into one processors memory if run on a cluster.)

Note, workers can not access neighbour data!
for i=drange(1:100)
B(i)=pi*Adist(i+1);
end
Not allowed => Communicate explicitly with labSend
and labReceive.

Also, restrict the communication to small data sets,
the communication time grows quickly with message
length. Use functions for parallel code!!!

10/03/16

12

10/03/16

function [resultarr]=enumspmd(indata,nsize,workers)

UPPSALA

UNIVERSITET spmd (WO rke r's)
outdata=zeros(nsize,1);
slice=nsize/numlabs();
il=(labindex()-1)*sTice+1;
i2=11-1+sT1ice;
for i=i1:1i2

rank=1;
for j=l:nsize
if (indata(j)<indata(i))
rank=rank+1;
end
end
outdata(rank)=indata(i);
end
end

resultarr=outdata{l};
for i=2:workers

resultarr=max(resultarr,outdata{i});
end

UPPSAL, Mr

UNIVERSITET
12
Client: 9.87 sec
10

Time [seq]

Workers

Enumeration sort using SPMD, some extra
overhead in communication client-worker
and reduction of distributed outdata-array.

13

10/03/16

=4 Task parallelism

UNIVERSITET

Can create independent tasks (defined as
Matlab functions) and schedule them to
available workers (cores).

Can define arbitrary number of tasks (not
limited to 12) and let the system schedule
and load balance the work.

Note, we use functions for tasks. Then all
data are local and private in the workers.

% Create scheduler
sched=findResource('scheduler’', 'type', 'Tocal');
UNIVERS joblist=createlob(sched); % Create a job queue

% Insert tasks to the queue
taskl=createTask(joblist,@matmul,l, {A B});
task2=createTask(jobTlist,@matmul,l, {A2 B2});
task3=createTask(jobTlist,@matinv,1,{A});
submit(joblist); % Submit the job

% wait for task2
waitForState(task2);
Res=get(task2, 'OoutputArguments');
C2=Res{l};

% wait for all tasks
waitForstate(joblist);
results=getAlToutputArguments(joblist);
Cl=results{1l}; C3=results{3};

destroy(joblist); % Destroy the job queue

14

10/03/16

Performance with Tasks

Starting workers and scheduling tasks to workers is
EXTREMLY slow, taking several minutes.

UNIVERSITET

=> Each task needs to take at least 10’s of minutes or
hours to execute to get any parallel performance!

MathWorks answer: Use MATLAB Distributed
Computing Server (MDCS), the local scheduler in
parallel toolbox was at first developed to allow you to
quickly locally test your code before running it in

(1) large quantities with (2) large amounts of data on
a (3) MDCS cluster.

GPU Acceleration

UPPSALA
UNIVERSITET

% Establish data on GPU

>> A=rand(100,100);

>> Agpu=gpuArray(A);

>> bgpu=gpuArray.ones(100,1);

% Compute on GPU, mldivide
>> xgpu=Agpul\bgpu;

% Gather data from GPU
>> x=gather(xgpu) ;

15

Built in functions on GPU
UPPSALA
UNIVERSITE

abs complex filter ipermute mldivide sec
acos cond filter2 iscolumn mod sech
acosh conj find isempty mpower shiftdim
acot conv fft isequal mrdivide sign
acoth conv2 fft2 isaqualn mtimes sin
acsc convn £ftn isfinite NaN single
acsch cos fftshift isfloat ndgrld sinh
all cosh fix isinf ndims size
angle cot flip isinteger ne sort
any coth fliplr islogical nnz sprintf
arrayfun cov flipud ismatrix norm sqrt
asec cross floor ismember normest squeeze
asech csc fprintf isnan not std
asin csch full isnumeric num2str sub2ind
asinh ctranspose gamma isreal numel subsasgn
atan cumprod gammaln isrow ones subsindex
atan2 cumsum gather issorted pagefun subsref
atanh det ge issparse perms sum
beta diag gt isvector permute svd
betaln diff horzcat kron plot (and related) tan
bitand disp hypot ldivide plus tanh
bitcmp display ifft le pow2 times
bitget dot ifft2 length power trace
bitor double ifftn log prod transpose
bitset eig ifftshift logl0 qr tril
bitshift eps imag loglp rank triu
bitxor eq ind2sub log2 rdivide true
blkdiag erf inf logical real uint16
bsxfun erfc intlé 1t reallog uint32
cast erfcinv int2str lu realpow uint64
cat erfex int32 mat2str realsqrt uint8
ceil erfinv int64 max rem uminus
chol exp intg mean repmat uplus
circshift expml interpl meshgrid reshape var
classUnderlying eye interp2 min rot90 vertcat
colon false inv minus round zeros

UPPSALA
UNIVERSITE

User functions on GPU

10/03/16

% Apply function to each element of array on GPU
>> ygpu=arrayfun(myfun,xgpu);
(The first time you call arrayfun to run a particular function on the GPU, there is some

overhead time to set up the function for GPU execution. Subsequent calls of arrayfun
with the same function can run significantly faster.)

% Evaluate CUDA kernel on GPU
>> ygpu=feval (KERN, xgpu) ;

16

UPI
UNIVERSITET

UPI
UNIVERSITET

Performance using GPU

Hardware: Nvidia GeForce GT 650M,
384 cores, 1024MB

Results: Slow down, no improvement,
not even for built in functions
such matrix-matrix multiplication!

Summary

* Four constructs for parallelism
- For-loops with parfor, similar to OpenMP
- Single Program Multiple Data, SPMD, with
MPI-like communication calls
- Task parallelism with dynamic scheduling
- GPU acceleration

* Private memory on the workers. Can distribute
and replicate data but not access other workers
data without explicit communication in SPMD.

» Performance is NOT comparable to MPI/
Pthreads/OpenMP/CUDA, the parallel overheads
are high. Only for large scale problems a
significant speedup can be achieved.

10/03/16

17

