
10/03/16	

1	

Parallel Computing Toolbox
MATLAB

Jarmo Rantakokko

Topics:

1.  Parallel for-loops
Loop-level, ”shared” data

2.  SPMD parallelization
Same task, multiple data

3.  Task parallelization
Different task, multiple data

4.  GPU acceleration

10/03/16	

2	

Parallel for
% Request 3 workers, max(min(12,#cores))
>> matlabpool 3

% Run in parallel
parfor i=1:n
 A(i)=func(B(i));
end

% Return workers
>> matlabpool close

Classification of variables

Classification Description
Loop Loop index for arrays
Sliced input Array whos elements are read in parallel

by different workers
Sliced output Array whos elements are written in parallel

by different workers
Broadcast A variable defined before parallel and

used inside parallel, but never assigned
Reduction A variable that is accumulated in parallel
Temporary A variable that is created inside parallel,

not available outside parallel

10/03/16	

3	

Variables continued

twopi = 2*pi;
sum=0;
A=rand(100,1);
parfor i=1:100
 c=1.0/i;
 sum=sum+c;
 B(i)=c*twopi*A(i);

end

Sliced input

Sliced output

Reduction

Temporary

Broadcast

Variables continued

Note: A worker has its own memory space, all
variables must be ”communicated” to/from the
client. A sliced variable is only communicated on
the part that is used by the worker.

Communication is handled automatically (hidden
from user) and can destroy the performance if
you are not careful on how you access the data.

Workers can not communicate peer to peer, i.e.,
strided update of B(i+1)=… is not allowed.
Workers communicate only with client.

10/03/16	

4	

Parfor example MxM

parfor i=1:n
 for j=1:n
 for k=1:n
 C(i,j)=C(i,j)+A(i,k)*B(k,j);
 end
 end

end
Sliced output

Sliced input

Broadcast

Parallel Performance

Speedup: S=T1/TP where T1 is the run-time
using one worker and TP using P workers.

10/03/16	

5	

Parallel vs Serial

Note: C matrix is both sliced input and output.
Lot of communication to/from client-worker (both ways)!

Improved version MxM

parfor i=1:n
 for j=1:n
 d=0;
 for k=1:n
 d=d+A(i,k)*B(k,j);
 end
 C(i,j)=d;
 end

end

Note: Now C is only sliced output, d is a temporary.

10/03/16	

6	

Parallel Performance

Small overhead in reading A and B, writing C

Example Enumeration Sort
for i=1:n
 rank=1;
 for j=1:n
 if indata(i)>indata(j)

 rank=rank+1;
 end
 end
 outdata(rank)=indata(i);

end

Note: i-loop is perfectly parallel, all indata is needed
by all workers (broadcast) but outdata is written in
parallel irregularly (prohibits parfor).

10/03/16	

7	

Example Enumeration Sort
parfor i=1:n
 rank=1;
 for j=1:n
 if indata(i)>indata(j)

 rank=rank+1;
 end
 end
 rankarray(i)=rank;

end

=> rankarray sliced output and we can use parfor

Example Enumeration Sort

10/03/16	

8	

Example Enumeration Sort

WTF! Serial code on Client runs 5 times faster than
parallel code on 12 workers! Why, large overhead in
starting up workers, communicating data and code
poorly optimized on workers?!

Improvement: Implement enumsort as a function
(functions are better optimized than scripts) and
increase the problem size (overhead in starting up
workers and communicating data is diminished).

10/03/16	

9	

Single Program Multiple Data
(SPMD)

% Request 4 workers (max 12)
>> matlabpool 4

% Run in parallel on 4 workers
spmd (4)
 < statements >
end

% Return workers
>> matlabpool close

Variables in SPMD

•  Each worker can read data from client
defined outside spmd (replicated data).

•  All data assigned inside spmd are
composite (private) but can be accessed
from client. Can also communicate worker-
worker with explicit send-recv calls.

•  Large data sets can be distributed and
divided over workers (distributed array).

10/03/16	

10	

Composite (private) data
A=rand(100,1);
spmd (N)
 if (labindex()==1)
 B=zeros(100,1);
 else
 B=pi*A;
 end

end

B1=B{1}; % Worker 1’s data
B2=B{2}; % Worker 2’s data
etc.

Private data, Composite object

Worker ID [1, N]

Replicated data

Access
workers data
in client

Communication in SPMD

 MPI-like communication calls (small subset):
•  labSend(variable, to)
•  variable=labReceive(from)
•  variable=labBroadcast(from,variable)
•  labBarrier(), numlabs(), labindex()

If (labindex()==1)
 labSend(a,2);

elseif (labindex()==2)
 a=labReceive(1);

end

10/03/16	

11	

But the communication is extremely slow and
grows non-linearly with message length!

 Pingpong-test between two workers.

27kbit/s

Distributed data
len=1e7;
Adist=distributed.rand(1.len);
B=distributed.zeros(1,len);
spmd
 for i=drange(1:len)
 B(i)=pi*Adist(i);
 end

end
Bglob=gather(B); Blocal=gather(B,lab)

The distributed arrays are split into different
partitions (private data) and assigned to the
different workers. The function drange picks
out each partitions iteration indexes.

Full size, all elements
collected to client

Partitions of A and B,
private and local data

10/03/16	

12	

User can also define partitions by using
distribution objects, codistributor1d and
codistributor2dbc.

Ex: Distribute A into 4 partions of sizes 10,
10, 15 and 15 in the first dimension (index).

Distributed data

A=zeros(50,100);
dim=1; part=[10 10 15 15];
spmd 4
 dist1D=codistributor1d(dim,part);
 Adist=codistributed(A,dist1D);
 for i=drange(1:50)
 Adist(i,:)=…
 end

end

Performance in SPMD
Use composite data (private) and replicated arrays.
Reading and writing distributed arrays takes very long
time! (But, allows to solve larger problem that would
not fit into one processors memory if run on a cluster.)

Note, workers can not access neighbour data!
 for i=drange(1:100)
 B(i)=pi*Adist(i+1);
 end

Not allowed => Communicate explicitly with labSend
and labReceive.

Also, restrict the communication to small data sets,
the communication time grows quickly with message
length. Use functions for parallel code!!!

10/03/16	

13	

function [resultarr]=enumspmd(indata,nsize,workers)

spmd (workers)

 outdata=zeros(nsize,1);
 slice=nsize/numlabs();

 i1=(labindex()-1)*slice+1;
 i2=i1-1+slice;
 for i=i1:i2

 rank=1;
 for j=1:nsize

 if (indata(j)<indata(i))
 rank=rank+1;
 end
 end
 outdata(rank)=indata(i);
 end

end

resultarr=outdata{1};
for i=2:workers

 resultarr=max(resultarr,outdata{i});
end

Enumeration sort using SPMD, some extra
overhead in communication client-worker
and reduction of distributed outdata-array.

10/03/16	

14	

Task parallelism

Can create independent tasks (defined as
Matlab functions) and schedule them to
available workers (cores).

Can define arbitrary number of tasks (not
limited to 12) and let the system schedule
and load balance the work.

Note, we use functions for tasks. Then all
data are local and private in the workers.

% Create scheduler
sched=findResource('scheduler','type','local');
joblist=createJob(sched); % Create a job queue

% Insert tasks to the queue
task1=createTask(joblist,@matmul,1,{A B});
task2=createTask(joblist,@matmul,1,{A2 B2});
task3=createTask(joblist,@matinv,1,{A});
submit(joblist); % Submit the job

% Wait for task2
waitForState(task2);
Res=get(task2,'OutputArguments');
C2=Res{1};

% Wait for all tasks
waitForState(joblist);
results=getAllOutputArguments(joblist);
C1=results{1}; C3=results{3};

destroy(joblist); % Destroy the job queue

10/03/16	

15	

Performance with Tasks
Starting workers and scheduling tasks to workers is
EXTREMLY slow, taking several minutes.

⇒  Each task needs to take at least 10’s of minutes or
hours to execute to get any parallel performance!

MathWorks answer: Use MATLAB Distributed
Computing Server (MDCS), the local scheduler in
parallel toolbox was at first developed to allow you to
quickly locally test your code before running it in
(1) large quantities with (2) large amounts of data on
a (3) MDCS cluster.

GPU Acceleration

% Establish data on GPU
>> A=rand(100,100);
>> Agpu=gpuArray(A);
>> bgpu=gpuArray.ones(100,1);

% Compute on GPU, mldivide
>> xgpu=Agpu\bgpu;

% Gather data from GPU
>> x=gather(xgpu);

10/03/16	

16	

Built in functions on GPU

User functions on GPU

% Apply function to each element of array on GPU
>> ygpu=arrayfun(myfun,xgpu);

(The first time you call arrayfun to run a particular function on the GPU, there is some
overhead time to set up the function for GPU execution. Subsequent calls of arrayfun
with the same function can run significantly faster.)

% Evaluate CUDA kernel on GPU
>> ygpu=feval(KERN,xgpu);

10/03/16	

17	

Performance using GPU
Hardware: Nvidia GeForce GT 650M,

 384 cores, 1024MB

Results: Slow down, no improvement,
not even for built in functions
such matrix-matrix multiplication!

Summary
•  Four constructs for parallelism

-  For-loops with parfor, similar to OpenMP
-  Single Program Multiple Data, SPMD, with
 MPI-like communication calls
-  Task parallelism with dynamic scheduling
-  GPU acceleration

•  Private memory on the workers. Can distribute
and replicate data but not access other workers
data without explicit communication in SPMD.

•  Performance is NOT comparable to MPI/
Pthreads/OpenMP/CUDA, the parallel overheads
are high. Only for large scale problems a
significant speedup can be achieved.

