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Parallel Computing Toolbox 
MATLAB  

Jarmo Rantakokko 

Topics: 

1.  Parallel for-loops 
Loop-level, ”shared” data 
 

2.  SPMD parallelization 
Same task, multiple data 
  

3.  Task parallelization 
Different task, multiple data 
 

4.  GPU acceleration 
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Parallel for 
% Request 3 workers, max(min(12,#cores)) 
>> matlabpool 3 
 
% Run in parallel 
parfor i=1:n 
   A(i)=func(B(i)); 
end 
 
% Return workers 
>> matlabpool close 
 

Classification of variables 

Classification Description 
Loop Loop index for arrays 
Sliced input Array whos elements are read in parallel 

by different workers 
Sliced output Array whos elements are written in parallel 

by different workers 
Broadcast A variable defined before parallel and 

used inside parallel, but never assigned 
Reduction A variable that is accumulated in parallel 
Temporary A variable that is created inside parallel, 

not available outside parallel 
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Variables continued 

twopi = 2*pi; 
sum=0; 
A=rand(100,1); 
parfor i=1:100 
 c=1.0/i; 
 sum=sum+c; 
 B(i)=c*twopi*A(i); 

end 

Sliced input 

Sliced output 

Reduction 

Temporary 

Broadcast 

Variables continued 

Note: A worker has its own memory space, all 
variables must be ”communicated” to/from the 
client. A sliced variable is only communicated on 
the part that is used by the worker. 
 
Communication is handled automatically (hidden 
from user) and can destroy the performance if 
you are not careful on how you access the data. 
 
Workers can not communicate peer to peer, i.e., 
strided update of B(i+1)=… is not allowed. 
Workers communicate only with client. 
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Parfor example MxM 

parfor i=1:n 
 for j=1:n 
  for k=1:n 
   C(i,j)=C(i,j)+A(i,k)*B(k,j); 
  end 
 end 

end 
Sliced output 

Sliced input 

Broadcast 

Parallel Performance 

Speedup: S=T1/TP where T1 is the run-time 
using one worker and TP using P workers. 



10/03/16	  

5	  

Parallel vs Serial 

Note: C matrix is both sliced input and output. 
Lot of communication to/from client-worker (both ways)! 

Improved version MxM 

parfor i=1:n 
 for j=1:n 
  d=0; 
  for k=1:n 
   d=d+A(i,k)*B(k,j); 
  end 
  C(i,j)=d; 
 end 

end 

Note: Now C is only sliced output, d is a temporary. 
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Parallel Performance 

Small overhead in reading A and B, writing C 

Example Enumeration Sort 
for i=1:n 
 rank=1; 
 for j=1:n 
    if indata(i)>indata(j) 

         rank=rank+1; 
    end 
 end 
 outdata(rank)=indata(i); 

end 

Note: i-loop is perfectly parallel, all indata is needed 
by all workers (broadcast) but outdata is written in 
parallel irregularly (prohibits parfor). 
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Example Enumeration Sort 
parfor i=1:n 
 rank=1;  
 for j=1:n 
    if indata(i)>indata(j) 

         rank=rank+1; 
    end 
 end 
 rankarray(i)=rank; 

end 

=> rankarray sliced output and we can use parfor 

Example Enumeration Sort 
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Example Enumeration Sort 

WTF! Serial code on Client runs 5 times faster than 
parallel code on 12 workers! Why, large overhead in 
starting up workers, communicating data and code 
poorly optimized on workers?! 

Improvement: Implement enumsort as a function 
(functions are better optimized than scripts) and 
increase the problem size (overhead in starting up 
workers and communicating data is diminished). 
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Single Program Multiple Data 
(SPMD) 

% Request 4 workers (max 12) 
>> matlabpool 4 
 
% Run in parallel on 4 workers 
spmd (4) 
   < statements > 
end 
 
% Return workers 
>> matlabpool close 

 

Variables in SPMD 

•  Each worker can read data from client 
defined outside spmd (replicated data). 

•  All data assigned inside spmd are 
composite (private) but can be accessed 
from client. Can also communicate worker-
worker with explicit send-recv calls. 

•  Large data sets can be distributed and 
divided over workers (distributed array). 
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Composite (private) data 
A=rand(100,1); 
spmd (N) 
 if (labindex()==1) 
   B=zeros(100,1); 
 else 
   B=pi*A;   
 end 

end 
 
B1=B{1}; % Worker 1’s data 
B2=B{2}; % Worker 2’s data 
etc. 

Private data, Composite object 

Worker ID  [ 1, N ]  

Replicated data 

Access 
workers data 
in client 

Communication in SPMD 

 MPI-like communication calls (small subset): 
•  labSend(variable, to) 
•  variable=labReceive(from) 
•  variable=labBroadcast(from,variable) 
•  labBarrier(), numlabs(), labindex() 

If (labindex()==1) 
 labSend(a,2); 

elseif (labindex()==2) 
 a=labReceive(1); 

end 
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But the communication is extremely slow and 
grows non-linearly with message length! 

 Pingpong-test between two workers. 

27kbit/s 

Distributed  data 
len=1e7;  
Adist=distributed.rand(1.len); 
B=distributed.zeros(1,len); 
spmd 
 for i=drange(1:len) 
   B(i)=pi*Adist(i);   
 end 

end 
Bglob=gather(B); Blocal=gather(B,lab) 

The distributed arrays are split into different 
partitions (private data) and assigned to the 
different workers. The function drange picks 
out each partitions iteration indexes. 

Full size, all elements 
collected to client 

Partitions of A and B, 
private and local data 
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User can also define partitions by using 
distribution objects, codistributor1d and 
codistributor2dbc.  
 
Ex: Distribute A into 4 partions of sizes 10, 
10, 15 and 15 in the first dimension (index). 

Distributed  data 

A=zeros(50,100); 
dim=1; part=[10 10 15 15]; 
spmd 4 
 dist1D=codistributor1d(dim,part); 
 Adist=codistributed(A,dist1D); 
 for i=drange(1:50) 
  Adist(i,:)=… 
 end 

end 

Performance in SPMD 
Use composite data (private) and replicated arrays. 
Reading and writing distributed arrays takes very long 
time! (But, allows to solve larger problem that would 
not fit into one processors memory  if run on a cluster.) 
 
Note, workers can not access neighbour data!  
 for i=drange(1:100) 
   B(i)=pi*Adist(i+1);   
 end 

Not allowed => Communicate explicitly with labSend 
and labReceive. 

Also, restrict the communication to small data sets, 
the communication time grows quickly with message 
length. Use functions for parallel code!!! 
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function [resultarr]=enumspmd(indata,nsize,workers) 
 
spmd (workers)  

 outdata=zeros(nsize,1);       
 slice=nsize/numlabs();    

  i1=(labindex()-1)*slice+1;     
 i2=i1-1+slice;     
 for i=i1:i2        

   rank=1;         
   for j=1:nsize            

    if (indata(j)<indata(i))              
    rank=rank+1;             
    end         
   end         
   outdata(rank)=indata(i);     
  end 

end 
 
resultarr=outdata{1}; 
for i=2:workers     

 resultarr=max(resultarr,outdata{i}); 
end 

Enumeration sort using SPMD, some extra 
overhead in communication client-worker 
and reduction of distributed outdata-array. 
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Task parallelism 

Can create independent tasks (defined as 
Matlab functions) and schedule them to 
available workers (cores). 
 
Can define arbitrary number of tasks (not 
limited to 12) and let the system schedule 
and load balance the work. 
 
Note, we use functions for tasks. Then all 
data are local and private in the workers. 

% Create scheduler 
sched=findResource('scheduler','type','local'); 
joblist=createJob(sched); % Create a job queue 
 
% Insert tasks to the queue 
task1=createTask(joblist,@matmul,1,{A B}); 
task2=createTask(joblist,@matmul,1,{A2 B2}); 
task3=createTask(joblist,@matinv,1,{A}); 
submit(joblist); % Submit the job 
 
% Wait for task2 
waitForState(task2); 
Res=get(task2,'OutputArguments'); 
C2=Res{1}; 
 
% Wait for all tasks 
waitForState(joblist); 
results=getAllOutputArguments(joblist); 
C1=results{1}; C3=results{3}; 
 
destroy(joblist); % Destroy the job queue 
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Performance with Tasks 
Starting workers and scheduling tasks to workers is 
EXTREMLY slow, taking several minutes. 
 
⇒  Each  task needs to take at least 10’s of minutes or 
hours to execute to get any parallel performance! 

MathWorks answer: Use MATLAB Distributed 
Computing Server (MDCS), the local scheduler in 
parallel toolbox was at first developed to allow you to 
quickly locally test your code before running it in      
(1) large quantities with (2) large amounts of data on 
a (3) MDCS cluster. 

GPU Acceleration 

% Establish data on GPU 
>> A=rand(100,100); 
>> Agpu=gpuArray(A); 
>> bgpu=gpuArray.ones(100,1); 
 
% Compute on GPU, mldivide 
>> xgpu=Agpu\bgpu;  
 
% Gather data from GPU 
>> x=gather(xgpu); 
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Built in functions on GPU  

User functions on GPU  

% Apply function to each element of array on GPU 
>> ygpu=arrayfun(myfun,xgpu); 
 
(The first time you call arrayfun to run a particular function on the GPU, there is some 
overhead time to set up the function for GPU execution. Subsequent calls of arrayfun 
with the same function can run significantly faster.) 

 
% Evaluate CUDA kernel on GPU 
>> ygpu=feval(KERN,xgpu); 
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Performance using GPU  
Hardware:  Nvidia GeForce  GT 650M,  

    384 cores, 1024MB 

Results: Slow down, no improvement, 
not even for built in functions 
such matrix-matrix multiplication! 

Summary 
•  Four constructs for parallelism 

-  For-loops with parfor, similar to OpenMP 
-  Single Program Multiple Data, SPMD, with 
  MPI-like communication calls 
-  Task parallelism with dynamic scheduling 
-  GPU acceleration 

•  Private memory on the workers. Can distribute 
and replicate data but not access other workers 
data without explicit communication in SPMD. 
 
•  Performance is NOT comparable to MPI/
Pthreads/OpenMP/CUDA, the parallel overheads 
are high. Only for large scale problems a 
significant speedup can be achieved. 


