
10/03/16	

1	

Unified Parallel C, UPC

Jarmo Rantakokko

Parallel Programming Models

MPI Pthreads
OpenMP

UPC

Different w.r.t. Performance/Portability/Productivity

10/03/16	

2	

Partitioned Global Address Space, PGAS

Shared
address
space X[0]

Private
address
space

ptr: ptr: ptr:

X[1] X[P]

Thread0 Thread1 Threadn

The languages share the global address space abstraction
•  Shared memory is logically partitioned by processors
•  Global arrays have fragments in multiple partitions
•  Remote memory may stay remote: no automatic caching implied
•  One-sided communication: reads/writes of shared variables
•  Both individual and bulk memory copies

+ Simple as shared memory, helps in exploiting locality
- Can result in subtle bugs and race conditions

Implementations of PGAS

•  UPC, Unified Parallel C
v1.0 completed February of 2001
v1.3 released November 2013

•  CAF, Co-Array Fortran
v1.0 completed 1998
Now, included in Fortran 2008 standard

•  Titanium (Berkeley), X10 (IBM)
PGAS extensions to JAVA

•  Chapel
New language developed by Cray inc
v1.10 released October 2014

10/03/16	

3	

MPI-2: One sided communication

•  Create a window
MPI_Win_create(…,win) – Memory where to read/write

•  Read and write
MPI_Get(…,win) – Remote read
MPI_Put(…,win) – Remote write
MPI_Accumulate(…,win) – Remote update

•  Synchronize
 MPI_Win_lock(…) – Lock window (excl access)
 MPI_Win_unlock(…) – Unlock window
MPI_Win_fence(…) – Ensure op are complete
…

Remote memory accesses, i.e., we can read and
write to another processors memory without macthing
send-receive calls. (Similar to PGAS.)

Process 1 Process 2

MPI_Win_create(…)

MPI_Win_lock(…)
MPI_Put(…)
MPI_Get(…)
MPI_Win_unlock(…)

MPI_Win_fence(…)

MPI_Win_create(…)

MPI_Window_lock(…)
MPI_Get(…)
MPI_Put(…)
MPI_Win_unlock(…)

MPI_Win_fence(…)

10/03/16	

4	

UPC Language at a glance

•  A partitioned global address space language
•  SPMD model with independent threads
•  An explicit parallel extension of ANSI C

•  shared for shared global data
•  [partition] for data layout of arrays
•  forall for parallel execution
•  Synchronization with barrier,fence,lock
•  Collective operations, broadcast, scatter,
gather, reduce, prefix

•  Shared dynamic memory allocation,
upc_all_alloc, upc_global_alloc

•  Get owner/affinity of data, upc_threadof
•  Different pointer types to shared data

Hello World in UPC

•  Any legal C program is also a legal UPC program
•  If you compile and run it as UPC with P threads, it will

run P copies of the program.

#include <upc_relaxed.h> /* needed for UPC */
#include <stdio.h>
main() {
 printf("Thread %d of %d: hello UPC world\n",
 MYTHREAD, THREADS);
}

Compile and run:
> upcc –pthreads –o hello helloworld.c
> upcrun –n 4 hello

10/03/16	

5	

Private vs shared variables in UPC
•  Normal C variables and objects are allocated in the

private memory space for each thread.
•  Shared variables are allocated only once, with thread 0
 shared int ours; // Shared on thread 0
 int mine; // Private on all threads

•  Shared variables may not have dynamic lifetime: may
not occur in a in a function definition, except as static.

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
mine: mine: mine:

Thread0 Thread1 Threadn

ours:

Private vs shared variables in UPC

#include <upc_relaxed.h>
#include <stdio.h>

shared int ours; //Shared data
main() {
 int mine; // Private data
 mine=MYTHREAD;
 if (MYTHREAD==THREADS-1) ours=-1;
 upc_barrier;
 printf(”Mine %d and ours %d\n”,
 mine,ours);
}

10/03/16	

6	

Shared arrays in UPC
•  Shared scalars always live in thread 0
•  Shared arrays are spread cyclicly over the threads (default)
•  Shared array elements are spread across the threads

shared int x[THREADS] /* 1 element per thread */
shared int y[3][THREADS] /* 3 elements per thread */
shared int z[3][3] /* 2 or 3 elements per thread */

•  In the pictures below, assume THREADS = 4
–  Blue elts have affinity to thread 0

x

y

z

As a 2D array, y is
logically blocked by
columns

Think of linearized C
array, then map in
round-robin

z is not blocked by
columns

π =

Example, shared arrays in UPC

As a case study we can compute the constant pi using
numerical integration of the following integral:

A trivial way to parallelize this is to split the sum over
the threads and compute local sums that are
accumulated in the end.

Create one shared array of local sums and let one
thread add to a global sum.

10/03/16	

7	

#include <upc_relaxed.h>

shared double locsum[THREADS];
shared double pi=0;
int main(int argc, char *argv[]) {

 int i, start, stop;
 const int intervals = 100000000L ;
 double dx=1.0/intervals, x;

 start=MYTHREAD*intervals/THREADS+1;
 stop=start+intervals/THREADS-1;
 if (MYTHREAD==THREADS-1) stop=intervals;

 locsum[MYTHREAD] = 0.0;
 for (i = start; i <= stop; i++) {
 x = dx*(i - 0.5);
 locsum[MYTHREAD] += dx*4.0/(1.0 + x*x);
 }
 upc_barrier;

 if (MYTHREAD==0){
 for (i=0;i<THREADS;i++) pi+=locsum[i];
 }
 upc_barrier;

Case Study π

Blocking of shared arrays in UPC
•  All non-array objects have affinity with thread zero.
•  Array layouts are controlled by layout specifiers:

–  shared int array[N] – (default, cyclic layout)
–  shared [*] int array[N] – (blocked, 1 block/thr)
–  shared [0] int array[N] – (all on one thread)
–  shared [b] int array[N] – (user def block size)

•  Element i has affinity with thread
 (i / block_size) % THREADS

•  In 2D and higher, linearize the elements as in a C
representation, and then use above mapping

10/03/16	

8	

Synchronization in UPC
UPC has several forms of barriers:

•  Barrier: block until all other threads arrive
 upc_barrier [label];

•  Split-phase barriers
 upc_notify; // this thread is ready for barrier

 {compute;} // compute unrelated to barrier
 upc_wait; // wait for others to be ready
•  Fence construct: ensure that all shared references

issued before are complete
 upc_fence;

•  Locks for critical sections (exclusive access)
 upc_all_lock_alloc,upc_lock_free
 upc_lock,upc_unlock,upc_lock_attempt

#include <upc_relaxed.h>

shared double pi=0;
int main(int argc, char *argv[]) {

 int i, start, stop;
 const int intervals = 100000000L ;
 double dx=1.0/intervals, x,locsum;
 upc_lock_t *sum_lock = upc_all_lock_alloc();

 start=MYTHREAD*intervals/THREADS+1;
 stop=start+intervals/THREADS-1;
 if (MYTHREAD==THREADS-1) stop=intervals;

 locsum = 0.0;
 for (i = start; i <= stop; i++) {
 x = dx*(i - 0.5);
 locsum += dx*4.0/(1.0 + x*x);
 }

 upc_lock(sum_lock);
 pi+=locsum;
 upc_unlock(sum_lock);
 upc_barrier;

Case Study π

10/03/16	

9	

”Communication” operations in UPC

Collective operations in: <upc_collective.h>:
•  upc_all_broadcast
•  upc_all_scatter
•  upc_all_gather
•  upc_all_gather_all
•  upc_all_exchange
•  upc_all_permute
•  upc_all_reduce
•  upc_all_prefix_reduce

One sided read/write point-to-point:
•  upc_memcpy -- shared to shared
•  upc_memput -- private to shared
•  upc_memget -- shared to private

#include <upc_relaxed.h>
#include <upc_collective>

shared double locsum[THREADS];
shared double pi=0;
int main(int argc, char *argv[]) {

 int i, start, stop;
 const int intervals = 100000000L ;
 double dx=1.0/intervals, x;

 start=MYTHREAD*intervals/THREADS+1;
 stop=start+intervals/THREADS-1;
 if (MYTHREAD==THREADS-1) stop=intervals;

 locsum[MYTHREAD] = 0.0;
 for (i = start; i <= stop; i++) {
 x = dx*(i - 0.5);
 locsum[MYTHREAD] += dx*4.0/(1.0 + x*x);
 }

 upc_all_reduceD(&pi,locsum,UPC_ADD,THREADS,1,NULL,
 UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

Case Study π

10/03/16	

10	

Work sharing with upc_forall

•  UPC adds a special type of loop
upc_forall(init; test; loop; affinity)
 statement;

•  Programmer indicates the iterations are independent
and that there are no dependencies across threads

•  Affinity expression indicates which iterations to run on
each thread. It may have one of two types:
•  Integer: affinity%THREADS is MYTHREAD
•  Pointer: upc_threadof(affinity) is MYTHREAD

#include <upc_relaxed.h>
#include <upc_collective>

shared double locsum[THREADS];
shared double pi=0;
int main(int argc, char *argv[]) {

 const int intervals = 100000000L ;
 double dx=1.0/intervals, x;

 locsum[MYTHREAD] = 0.0;
 upc_forall (int i = 0; i <= intervals; i++, i) {
 x = dx*(i - 0.5);
 locsum[MYTHREAD] += dx*4.0/(1.0 + x*x);
 }

 upc_all_reduceD(&pi,locsum,UPC_ADD,THREADS,1,NULL,
 UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

Iterations are divided cyclicly as:
thread 0: 0, 3, 6, 9, etc
thread 1: 1, 4, 7, 10, etc
thread 2: 2, 5, 8, 11, etc

Case Study π

10/03/16	

11	

#include <upc_relaxed.h>
#include <upc_collective>

shared double locsum[THREADS];
shared double pi=0;
int main(int argc, char *argv[]) {

 const int intervals = 100000000L ;
 double dx=1.0/intervals, x;

 locsum[MYTHREAD] = 0.0;
 upc_forall (int i = 0; i <= intervals; i++,
 i*THREADS/(intervals+1)) {
 x = dx*(i - 0.5);
 locsum[MYTHREAD] += dx*4.0/(1.0 + x*x);
 }

 upc_all_reduceD(&sum,locsum,UPC_ADD,THREADS,1,NULL,
 UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

Iteration space is divided in equal blocks of size
block=intervals/THREADS, e.g., thread 0 gets
consecutive iterations i=0,1,2,…, block-1

Case Study π

Case Study, thread affinity

shared [*] double v1[N], v2[N], v3[N];

void main() {
 int i;
 upc_forall(i=0; i<N; i++; &v3[i])
 v3[i]=v1[i]+v2[i];
}

Vector addition with blocked layout and
owner computes:

Affinity is pointer, owner
is threadof(&v3[i])

Thread 0: i=0,…,N/THREADS-1
Thread 1: i=N/THREADS,…,2*N/THREADS-1
Thread 2: i=2*N/THREADS,…,3*N/THREADS-1

10/03/16	

12	

Private Shared
Private PP (p1) PS (p3)

Shared SP (p2) SS (p4)

Where does the pointer reside?

Where does
the pointer
point?

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to
 shared space */

Shared to private is not recommended.

UPC Pointers

UPC Pointers

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to
 shared space */

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
p1:

Thread0 Thread1 Threadn

p2:

p1:

p2:

p1:

p2:

p3:

P4[1]: p4[n]:

Pointers to shared often require more storage and are more
costly to dereference; they may refer to local or remote memory.

P4[0]:

10/03/16	

13	

int *p1;
•  These pointers are fast (just like C pointers)
•  Use to access local data in part of code performing local work
•  Often cast a pointer-to-shared to one of these to get faster

access to shared data that is local
shared int *p2;
•  Use to refer to remote data
•  Larger and slower due to test-for-local + possible

communication
int *shared p3;
•  Not recommended
shared int *shared p4;
•  Use to build shared linked structures, e.g., a linked list

UPC Pointers

•  Pointer arithmetic supports blocked and non-
blocked array distributions, i.e., pointers to
blocked arrays should follow the same blocking

 shared [block] double arr[N];
 shared [block] double *p=&arr[0];
•  Casting of shared to private pointers is allowed

but not vice versa !
•  When casting a pointer-to-shared to a pointer-to-

local, the thread number of the pointer to shared
may be lost

•  Casting of a pointer-to-shared to a private pointer
is well defined only if the pointed to object has
affinity with the local thread

UPC Pointers

10/03/16	

14	

UPC Dynamic memory allocation

upc_all_alloc

UPC Dynamic memory allocation

upc_global_alloc

10/03/16	

15	

UPC Dynamic memory allocation

upc_alloc

Case Study MxM, performance

A (N × N) is decomposed row-wise
into blocks of size (N×N)/THREADS
as shown below:

B (N × N) is decomposed column
wise into N/THREADS blocks as
shown below:

Thread 0
Thread 1

Thread THREADS-1

 0 .. (N*N / THREADS) -1
 (N*N / THREADS)..(2*N*N / THREADS)-1

 ((THREADS-1)×N*N) / THREADS ..
(THREADS*N*N / THREADS)-1

Columns 0: (N/THREADS)-1

Columns ((THREAD-1) × N)/THREADS:(N-1)

Thread 0 Thread THREADS-1

Note: N is assumed to be multiple of THREADS

 Exploit locality in matrix multiplication

N

N N

N

10/03/16	

16	

Case Study MxM, performance
#define N 1024
shared [N*N/THREADS] double A[N][N];
shared [N*N/THREADS] double C[N][N];
shared [N/THREADS] double B[N][N];

int main(int argc, char *argv[]) {
 int i, j , l; // private variables

 upc_forall(i = 0 ; i<N ; i++; &C[i][0]) {
 for (j=0 ; j<N ;j++) {
 C[i][j] = 0;
 for (k= 0 ; k<N ;k++)
 C[i][j] += A[i][k]*B[k][j];
 } }

The UPC code for the matrix multiplication is almost the same
size as the sequential code. Shared variable declarations include
the keyword shared and work is parallelized with upc_forall.

Note: We are only addressing local partitions with
affinity to our thread of A and C, using local pointers
will speedup the code (no test of local/remote).

#define N 1024
shared [N*N/THREADS] double A[N][N];
shared [N*N/THREADS] double C[N][N];
shared [N/THREADS] double B[N][N];

int main(int argc, char *argv[]) {
 int i, j , l; // private variables
 double *AP, *CP;

 upc_forall(i = 0 ; i<N ; i++; &C[i][0]) {
 AP=(double *)A[i]; CP=(double *)C[i];
 for (j=0 ; j<N ;j++) {
 CP[j] = 0;
 for (l= 0 ; l<N ;l++)
 CP[j] += AP[l]*B[l][j];
 } }

10/03/16	

17	

Note: B is needed in all threads, make a local copy of B

#define N 1024
shared [N*N/THREADS] double A[N][N];
shared [N*N/THREADS] double C[N][N];
shared [N/THREADS] double B[N][N];

int main(int argc, char *argv[]) {
 int i, j , l; // private variables
 double *AP, *CP;
 double BP[N][N];

 for(i=0; i<N; i++)
 for(j=0; j<THREADS; j++)
 upc_memget(&BP[i][j*(N/THREADS)],
 &B[i][j*(N/THREADS)], (N/THREADS)*sizeof(double));

 upc_forall(i = 0 ; i<N ; i++; &C[i][0]) {
 AP=(double *)A[i]; CP=(double *)C[i];
 for (j=0 ; j<N ;j++) {
 CP[j] = 0;
 for (l= 0 ; l<N ;l++)
 CP[j] += AP[l]*BP[l][j];
 } }

Case Study MxM

Threads MxM, v1 MxM, v2 MxM, v3
1 42.4 24.7 8.27
2 22.4 9.97 4.46
4 8.04 3.16 2.62
8 5.55 2.30 2.67

Table: Run times MxM in UPC, N=1024,
Mac, Intel Core i7, 4 physical cores

•  v1 uses references to shared arrays with slow accesses
•  v2 uses local references to A and C with fast accesses
•  v3 makes a local copy of B which requires extra memory

10/03/16	

18	

UPC installations
•  UPC Berkeley 2.18 installed on Tintin, Uppmax

- module load openmpi
-  module load upc/berkeley_2.18
-  upcc –T=64 file.c // Compile for 64 proc
-  upcrun –n 64 a.out // Run

•  GNU UPC installed in Tintin, Uppmax
-  module load upc/gcc_4.8
-  upc -O3 -fupc-threads-64 file.c // Compile 64 proc
-  ./a.out // Run
-  (upc –O3 file.c; ./a.out –n 64)

•  Your laptop
-  Binaries for Windows and Mac OS X available at Berkeley
-  Build GNU UPC or UPC Berkeley from source files

Note, we can run UPC in parallel over several nodes with
physically distributed memory on Uppmax.

•  GNU UPC
http://www.gccupc.org

•  Berkeley UPC
http://upc.lbl.gov

•  UPC Community
http://upc.gwu.edu

UPC References

