
07/03/16	

1	

Enumeration Sort

Algorithm:
For each element compare how many

elements are smaller => Rank or sorting
order of this element. Put the elements in
a new array according to the ranks.

15 27 3 25 8 19 1 21 6 22

15 3 27 25 22 21 19 8 6 1

Rank=4	

Parallelism:
Computing the rank for each element is

a perfectly parallel operation but to
do this we need to compare each
element to all other elements.

Alternative 1:
Copy all data to all processor but divide

the work, i.e., let each processor
compute the ranks for a subset of the
elements. Merge (reduce) results
then.

07/03/16	

2	

15 27 3 25 8 19 1 21 6 22

15 3 27 25 8

15 27 3 25 8 19 1 21 6 22

22 21 19 6 1

P0

P1

Alternative 2:
Split indata/outdata arrays and

compute the rank for each element at
a time, i.e., compute partial ranks on
each processor in parallel and do a
reduction of the rank.

15 27 3 25 8 19 1 21 6 22

15

15 15 Prank=2 Prank=2

Grank=4

07/03/16	

3	

Alternative 3:
Reformulate algorithm. Save ranks in a

new array and compute outdata in the
end using the rank-array, i.e.,
outdata[rank[i]]=indata[i];

In parallel, split indata and rank-arrays
and compute partial ranks in parallel
with compute-and-shift. Use an extra
copy of the indata-array which is
shifted p-times. In each step compute
the partial ranks for each element and
add to the rank-array.

