Enumeration Sort

Algorithm:

For each element compare how many
elements are smaller => Rank or sorting
order of this element. Put the elements in
a new array according to the ranks.

|15 |27 [3 [25 [8 [19 |1 |21 |6 [22 |

Rank=4

|1 |3 |6 |8 [15|19] 21| 22] 25| 27|

Parallelism:

Computing the rank for each element is
a perfectly parallel operation but to
do this we need to compare each
element to all other elements.

Alternative 1:

Copy all data to all processor but divide
the work, i.e., let each processor
compute the ranks for a subset of the
elements. Merge (reduce) results
then.

07/03/16

|15 |27 [3 |25 [8 |19 |1 |21 |6 [22 |

Po

| 3| s las] | | [25]27]

|15 |27 [3 |25 [8 |19 |1 |21 |6 |22 |

P, 7

(1| e | | J19f21]22] [|

Alternative 2:

Split indata/outdata arrays and
compute the rank for each element at
a time, i.e., compute partial ranks on
each processor in parallel and do a
reduction of the rank.

|15 |27 [3 [25 [8 [19 |1 |21 |6 [22 |
[::] Prank=2 [::} Prank=2

\firank=4

L [1 Jasp |] |] |

07/03/16

Alternative 3:

Reformulate algorithm. Save ranks in a
new array and compute outdata in the
end using the rank-array, i.e.,
outdata[rank[i]]=indata[i];

In parallel, split indata and rank-arrays
and compute partial ranks in parallel
with compute-and-shift. Use an extra
copy of the indata-array which is
shifted p-times. In each step compute
the partial ranks for each element and
add to the rank-array.

[$)]
(@]

—e— Alt 1: Full Arrays
Alt 2: Bcast-Allreduce
—e— Alt 3: Block SendRecv
| —e— Alt 4: Non-blocking comm

N
(8]

EN
o

W
(&)
T

w
(@]
T

[T(nproc)

[\S)
(&)
T

Speedup, T(1)
= N
4)] o

0 10 20 30 40 50 60 70 80
Number of processes

07/03/16

