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Enumeration Sort 
 
Algorithm: 
For each element compare how many 

elements are smaller => Rank or sorting 
order of this element. Put the elements in 
a new array according to the ranks. 
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Parallelism: 
Computing the rank for each element is 

a perfectly parallel operation but to 
do this we need to compare each 
element to all other elements. 

Alternative 1: 
Copy all data to all processor but divide 

the work, i.e., let each processor 
compute the ranks for a subset of the 
elements. Merge (reduce) results 
then.  
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Alternative 2: 
Split indata/outdata arrays and 

compute the rank for each element at 
a time, i.e., compute partial ranks on 
each processor in parallel and do a 
reduction of the rank. 
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Alternative 3: 
Reformulate algorithm. Save ranks in a 

new array and compute outdata in the 
end using the rank-array, i.e., 
outdata[rank[i]]=indata[i]; 

In parallel, split indata and rank-arrays 
and compute partial ranks in parallel 
with compute-and-shift. Use an extra 
copy of the indata-array which is 
shifted p-times. In each step compute 
the partial ranks for each element and 
add to the rank-array. 


