Enumeration Sort

Algorithm:

For each element compare how many
elements are smaller => Rank or sorting
order of this element. Put the elements in
a new array according to the ranks.
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Parallelism:

Computing the rank for each element is
a perfectly parallel operation but to
do this we need to compare each
element to all other elements.

Alternative 1:

Copy all data to all processor but divide
the work, i.e., let each processor
compute the ranks for a subset of the
elements. Merge (reduce) results
then.

07/03/16



|15 |27 [3 |25 [8 |19 |1 |21 |6 [22 |

Po

| 3| s las] | | [25]27]

|15 |27 [3 |25 [8 |19 |1 |21 |6 |22 |

P, 7

(1| e | | J19f21]22] [ |

Alternative 2:

Split indata/outdata arrays and
compute the rank for each element at
a time, i.e., compute partial ranks on
each processor in parallel and do a
reduction of the rank.
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Alternative 3:

Reformulate algorithm. Save ranks in a
new array and compute outdata in the
end using the rank-array, i.e.,
outdata[rank[i]]=indata[i];

In parallel, split indata and rank-arrays
and compute partial ranks in parallel
with compute-and-shift. Use an extra
copy of the indata-array which is
shifted p-times. In each step compute
the partial ranks for each element and
add to the rank-array.
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