
Uppsala University

Thread programming with POSIX Threads
(Pthreads)

Karl Ljungkvist

Uppsala University

What are threads?

Definition:
I Independent streams of instructions within a single

program, which can be scheduled independently by
the OS

In practice:
I A thread is a procedure/function running

independently from the main program.
I A way of utilizing multiple cores.

Lightweight process:
I Only duplicates a necessary minimal
I Most resources are shared within the process
I Less overhead

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 2/45

Uppsala University

Processes vs Threads

Processes:
I Multiple instances of the

same program, which
can communicate by
message passing

a.out

a.out

a.out

a.out

Core 0

Core 1

Core 2

Core 3

Threads:
I Single program with

parallel internal threads
sharing resources
(memory, open files, etc)

Core 0

Core 1

Core 2

Core 3

a.out
t0

t1

t2

t3

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 3/45

Uppsala University

Shared resources

A thread contains private
I Program counter
I Registers and stack pointer
I Scheduling properties (i.e. policy

and priority)
I Set of pending and blocked

signals

In addition, a Unix process
also has

I Process, process group, user, and
group IDs

I Environment
I Working directory
I Program instructions
I Stack and Heap
I File descriptors
I Signal actions
I Shared libraries
I Inter-process communication

tools
Lightweight process

I Process to thread creation overhead ∼ 10:1

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 4/45

Uppsala University

Two threads in a process

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 5/45

Uppsala University

Question

What is private to each thread in a process?
I Program counter
I Address space
I Stack pointer
I Registers
I Open files

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 6/45

Uppsala University

Usage of threads
Traditionally (single-core processor):

I Overlapping CPU work with I/O: Reading from file
mostly involves waiting for disk. Let another thread to
do useful work in the meantime.

I Priority/real-time scheduling: Prioritize important tasks
(also, allows multi-user system).

I Asynchronous event handling:
Unpredictable events, e.g. web
server requests, can be serviced
by starting dedicated thread

Today:
I Used to perform tasks in parallel

on a multi-core system.

a.out

x=f1(a);
y=f2(b);
for(...)
 A[i]=g(B[i]);
z=f3(c);
w=f4(d);
...
...

C0 C1 C2 C3

T0
T1

T2

T3

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 7/45

Uppsala University

Thread programming models
Manager-worker
Single manager thread assigns work to a
set of worker threads. Typically used for
a dynamic pool of tasks with irregular
work load.

C0 C1 C2 C3
m

w0 w1 w2 w3

Time

Peer
Similar to the manager/worker model,
but the main thread participates in the
work. Typically used for static
homogeneous tasks.

C0 C1 C2 C3
p0 p1 p2

p3

Time

Pipeline
Like a car assembly line; a task is broken
into a series of suboperations, each of
which is handled in series, but
concurrently, by a different thread.

C0 C1 C2 C3
f(A)

Time

g(A)
h(A)

q(A)

f(A)
g(A)

h(A)
q(A)

f(A)
g(A)

h(A)
q(A)

f(B)
g(B)

h(B)
q(B)

f(A)
g(A)

h(A)

f(C)
g(C)

h(C)
f(A)

g(A)
f(D)

g(D)

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 8/45

Uppsala University

Why threads?

Benefits over processes:
I Less overhead from creation
I Shared resources

I Threads can simply read each others memory
I Changes by one thread (e.g. closing a file) is visible to

others
I No communication is needed
I Same address space⇒ pointers with same value

point to same address
I However, ’interesting’ implications (see below)

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 9/45

Uppsala University

Question

Why do we use threads?
I To utilize multi-cores
I Less overhead than processes
I More error-proof than processes
I Simpler communication than processes

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 10/45

Uppsala University

Consequences of shared resources

There is a price:
I All threads can access shared resources, e.g.

memory
I Like a shared notepad; other users (threads) might

not be done writing
I Need a way to synchronize access
I Also, need explicit synchronization to maintain

algorithm integrity. For example, cannot start next
pipeline stage before the previous one is done.

Compare
I This was not a problem for MPI/processes
I Explicit message passing introduces synchronization

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 11/45

Uppsala University

Example
Context:

I Tim and Tom share a fridge
I There should always be milk
I Policy: If no milk in fridge, buy milk

Example case:
Tim Tom
Comes home, no milk in fridge
Goes to the store
Buys milk Comes home, no milk in fridge
(still buys milk, store is crowded) Goes to the store
Returns, puts milk in fridge Buys milk

Returns, fridge already contains milk
Race condition:

I Unexpected result
⇒ Solution: Put a lock on the fridge...

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 12/45

Uppsala University

Race conditions
Problem:

I Threads scheduled by operating system
I Instructions in threads might be interleaved arbitrarily
I Partial results read/overwritten
I No guarantee on ordering of operations

Solution:
I Need to prevent instruction-level interleaving in

critical section, i.e. code of sensitive operation
I Atomic – indivisible, performed entirely or not at all

Locks:
I A way of achieving atomicity:
I Only one thread at a time can

claim the lock
⇒ Only one thread at a time can be

in the critical section

int a_shared; //shared
lock_t l; //shared
...
lock(l);
int a = a_shared;
a = fun(a);
a_shared = a;

unlock(l);

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 13/45

Uppsala University

Question

Account deposit
I Shared variable account, start value 1000
I Two threads depositing to account:

Thread 1:
account += 200

Thread 2:
account += 500

I Assumption: ’+=’ operation not atomic

What are the possible results?
I 1200
I 1500
I 1700
I Something else

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 14/45

Uppsala University

Pthreads

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 15/45

Uppsala University

POSIX Threads (Pthreads)
Portable Operating System Interface for UNIX

I Portable standard for thread programming, specified
by the IEEE POSIX 1003.1c standard (1995)

I C Language
I Supported by most operating systems: Linux, Mac OS

X, Windows (partially), and others

The Pthreads API contains over 60 subroutines which can
be grouped into three major classes:

I Thread management: creating, terminating, joining
I Mutexes: provides exclusive access to code segments

and variables with the use of locks (mutual exclusion)
I Condition variables: provides synchronization and

communication between threads that share a mutex

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 16/45

Uppsala University

Creating and terminating threads
pthread create (ptr, attr, func, arg)

I Creates a thread which starts running the specified
function.
Once created, threads are peers, and may create
other threads. There is no implied hierarchy or
dependency between threads.

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 17/45

Uppsala University

Creating and terminating threads

There are several ways in which a Pthread may be
terminated:

I The thread returns from its starting routine
I The thread makes a call to pthread exit()

I The thread is canceled by another thread via the
pthread cancel() routine

I The entire process is terminated, i.e., main() finishes
without self calling pthread exit()

Note: By calling pthread exit() also in main(), i.e., on
the master thread, all threads are kept alive even though
all of the code in main() has been executed. Can also
do explicit wait with pthread join()

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 18/45

Uppsala University

Example: Hello World

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

void *HelloWorld(void *arg){
printf("Hello World!\n");
pthread_exit(NULL);

}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int t;
for(t=0; t<NUM_THREADS; t++)

pthread_create(&threads[t],
NULL,
HelloWorld,
NULL);

pthread_exit(NULL);
}

Question: How many threads
will run when executing this
program?

I 1
I 4
I 5
I 6

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 19/45

Uppsala University

Passing arguments
Note, can only pass one argument of type void*. Use
structs and type cast to void*

struct thread_data{
int field1;
double field2};

void *HelloWorld(void *arg){
struct thread_data *my_data = (struct thread_data*) arg;
int f1 = my_data->field1;
double f2 = mydata->field2;
... }

int main (int argc, char *argv[]){
...
struct thread_data data
data.field1=5; data.field2=3.14;
pthread_create(&threads[t], NULL, HelloWorld, (void*)&data);
...

See example hello arg2.c in lab.

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 20/45

Uppsala University

Joining threads (waiting)
pthread join (thread, status)
Blocks the calling thread until the specified thread
terminates.

When a thread is created, its attribute must be set to
joinable (default for most Pthreads implementations).

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 21/45

Uppsala University

Joining threads (waiting)

To explicitly create a thread as joinable:
I Declare a pthread attribute variable of the
pthread_attr_t data type

I Initialize the attribute variable with
pthread_attr_init()

I Set the attribute detached status with
pthread_attr_setdetachstate()

I Create, use, and terminate thread
I When done, free library resources used by the

attribute with pthread_attr_destroy()

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 22/45

Uppsala University

Example: join (join.c)

pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

for (t=0; t<NUM_THREADS; t++)
pthread_create(&thread[t],&attr,func,(void *)&data);

pthread_attr_destroy(&attr);

for (t=0; t<NUM_THREADS; t++)
pthread_join(thread[t], &status);

Can also set the state to PTHREAD_CREATE_DETACHED
(Default value is joinable.)

Other attributes that can be set are stacksize and
scheduling policy. (For more info see Pthreads manual.)

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 23/45

Uppsala University

Global and local data
Data allocated on the stack, i.e., within functions, is local
and private to the threads. All other data is global.

// Global data accessible to all threads
int GlobData[Nsize];

void *threadfunc(void *arg){
// Local data private to the calling thread
int LocData[Nsize];
int *array = (int *) arg;
...

}

int main(int argc, char *argv){
// Global data but needs to be passed to threads
int GlobData2[Nsize];
...
pthread_create(&thread, NULL, threadfunc, (void *) GlobData2);
...

}

See data.c
Karl Ljungkvist | karl.ljungkvist@it.uu.se | 24/45

Uppsala University

Question

What does pthread join do?

I Waits for another thread to finish
I Merges two given threads
I Synchronizes all running threads

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 25/45

Uppsala University

Mutexes

Recall Race condition:
Unsynchronized parallel writes to unprotected
memory will give unpredictable results.

Mutex variables
I Lock variables
I Mutual exclusion
I One of the primary means of implementing thread

synchronization and for protecting shared data.

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 26/45

Uppsala University

Mutexes
A typical sequence in the use of a mutex is as follows:

I Create and initialize a mutex variable
I Several threads attempt to lock the mutex
I Only one succeeds and that thread owns the mutex
I The owner thread performs some set of actions
I The owner unlocks the mutex
I Another thread acquires the mutex and repeats the

process
I Finally the mutex is destroyed

When several threads compete for a mutex, the losers
block at that call - an unblocking call is available with
“trylock” instead of the “lock” call. (Trylock is much faster,
it does not block but it also does not have to deal with
queues of multiple threads waiting on the lock.)

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 27/45

Uppsala University

Mutex functions

pthread mutex init (mutex, attr)
pthread mutex destroy (mutex)
phtread mutex lock (mutex)
pthread mutex trylock (mutex)
pthread mutex unlock (mutex)

The mutex attribute can be set to:
I PTHREAD_MUTEX_NORMAL_NP

I PTHREAD_MUTEX_RECURSIVE_NP

I PTHREAD_MUTEX_ERRORCHECK_NP

Or just use attr=NULL for default values.

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 28/45

Uppsala University

Example: mutex (mutex.c)

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5
pthread_mutex_t mutexsum;
int sum=0;

void *addone(void *arg){
pthread_mutex_lock (&mutexsum);
sum += 1;
pthread_mutex_unlock (&mutexsum);
pthread_exit(NULL);}

int main (int argc, char *argv[]){
...
pthread_mutex_init(&mutexsum, NULL);
for(t=0; t<NUM_THREADS; t++)
pthread_create(&threads[t], NULL, addone, NULL);

for (t=0; t<NUM_THREADS; t++)
pthread_join(thread[t], &status);

printf("Sum = %d\n",sum);

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 29/45

Uppsala University

Condition variables

Example: wait for a condition
Two threads, one must wait for the other to complete
some operations.
volatile int cond = 0; // suspect to unpredictable changes

thread 1:
... (do stuff)
cond = 1;

thread 2:
while(cond==0);
... (do stuff)

Problem:
Thread 2 will busy wait – CPU cycles wasted.

Need a way to let thread 2 sleep, and a way of letting
thread 1 waking it up...

⇒ Condition variable

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 30/45

Uppsala University

Condition variables

A condition variable is used for synchronization of threads.
It allows a thread to block (sleep) until a specified
condition is reached.

pthread cond init (cond, attr) – use attr=NULL
pthread cond destroy (cond)
phtread cond wait (cond, mutex) – block thread
pthread cond signal (cond) – wake one thread
pthread cond broadcast (cond) – wake all threads

A condition variable is always used in conjunction with a
mutex lock. Proper locking and unlocking of the
associated mutex variable is important.

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 31/45

Uppsala University

Condition variables

pthread cond wait():

pthread_mutex_lock(mutexvar);

if (!condition)
pthread_cond_wait(condvar,mutexvar);

pthread_mutex_unlock(mutexvar);

pthread_cond_wait() blocks a thread until the
condition variable is signaled. It will automatically release
the mutex while it waits. After the thread is awakened,
mutex will be automatically locked for use by the thread.

Note, wait does not use any CPU cycles until it is woken up
(mutex_lock uses CPU cycles for polling)

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 32/45

Uppsala University

Condition variables

pthread cond signal(), pthread cond broadcast():

pthread_mutex_lock(mutexvar);

if (condition)
pthread_cond_signal(condvar);

pthread_mutex_unlock(mutexvar);

pthread_cond_signal() is used to wake up another
thread which is waiting on the condition variable. It
should be called after mutexvar is locked, and must
unlock mutexvar in order for pthread_cond_wait() to
complete.

If more than one thread is in a blocking wait, use
pthread_cond_broadcast() to wake all.

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 33/45

Uppsala University

Questions

Question: Why do we need condition variables?

I To avoid race conditions
I To prevent threads from busy waiting
I To achieve atomicity

Question: Why do we need a mutex with a condition
variable?

I To allow threads to awake owning a mutex
I To include the wait command in a critical section
I To control which threads can call signal

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 34/45

Uppsala University

Example: barrier

pthread_mutex_t lock;
pthread_cond_t signal;
int waiting=0, state=0;

void barrier(){
pthread_mutex_lock (&lock);
int mystate=state;
waiting++;
if (waiting==nthreads){
waiting=0; state=1-mystate;
pthread_cond_broadcast(&signal);}

while (mystate==state)
pthread_cond_wait(&signal,&lock);

pthread_mutex_unlock (&lock);
}

Note: use while-statement since spurious wake ups of
threads sleeping in wait may occur.

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 35/45

Uppsala University

Barrier (2)

pthread barrier t:

I Not part of standard
I Still, supported by most implementations

pthread barrier init (barrier,
attr,
nthr) – create barrier

pthread barrier destroy (barrier) – destroy barrier
pthread barrier wait (barrier) – all nthr threads

wait
Example:
pthread_barrier_t bar;
pthread_barrier_init(&bar, NULL, nthreads)
pthread_barrier_wait(&bar);

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 36/45

Uppsala University

Example: Enumeration sort

Sort an array of numbers:
for (j=0;j<len;j++)
{

rank=0;
for (i=0;i<len;i++)
if (indata[i]<indata[j]) rank++;

outdata[rank]=indata[j];
}

Parallelization idea:
For each element (j) count how many other elements (i)
are smaller than it.
⇒ Perfectly parallel since all the (j) iterations are
independent.

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 37/45

Uppsala University

Example: Enumeration sort
Solution 1: (enumsort.c)
For each task (element) start a new thread, but start only
NUM_THREADS threads at a time.
for (int j=0;j<len;j+=NUM_THREADS){ /* Manager */

for(int t=0; t<NUM_THREADS; t++){
el=j+t;
pthread_create(&threads[t],&attr,findrank,(void*)el);}

for(int t=0; t<NUM_THREADS; t++)
pthread_join(threads[t], &status);

}

void *findrank(void *arg){ /* Worker */
int rank=0;long j=(long)arg;

for (int i=0;i<len;i++)
if (indata[i]<indata[j]) rank++;

outdata[rank]=indata[j];
pthread_exit(NULL);}

(Q) What’s the problem?

I Race condition
– incorrect result

I Too small tasks
– bad performance

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 38/45

Uppsala University

Example: Enumeration sort

Solution 1:
I Little work per task
I High overhead in creating and

terminating threads
I Also, lots of synchronization points

Time
Solution 2:
Define larger tasks, let each task be to count the rank of
len/nthreads elements⇒ only one task per thread and
totally nthreads tasks. Minimal synchronization and thread
management overheads.

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 39/45

Uppsala University

Example: Enumeration sort
Solution 2: (enumsort2.c)

void *findrank(void *arg){
int j1 = ((struct index_t *) arg).j1;
int j2 = ((struct index_t *) arg).j2;
for (j=j1;j<j2;j++){

int rank=0;
for (i=0;i<len;i++)
if (indata[i]<indata[j]) rank++;

outdata[rank]=indata[j];}
}

struct index_t {
int j1, j2;

};

int chunksize=len/NUM_THREADS;
for (t=0; t<NUM_THREADS-1; t++)
{

index[t].j1=t*chunksize; index[t].j2=(t+1)*chunksize;
pthread_create(&threads[t], &attr, findrank, (void *)&index[t]);

}
index[t].j1=t*chunksize; index[t].j1=(t+1)*chunksize;
findrank((void *)&index[NUM_THREADS-1]);

for(t=0; t<NUM_THREADS-1; t++)
pthread_join(threads[t], &status);

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 40/45

Uppsala University

Example: Reader/writer problem

Situation:
I Shared data, which several threads access
I Some threads are writers, update memory
I Other are readers, don’t change data

Protection needed:
I Read-write lock:

I read_lock
I read_unlock
I write_lock
I write_unlock

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 41/45

Uppsala University

Example: Reader/writer problem
First attempt:
volatile int num_readers = 0;
volatile int writer_here = 0; /* 0 or 1 */

void read_lock() {
while (writer_here);
num_readers++;

}

void read_unlock() {
num_readers--;

}

void write_lock() {
while (writer_here || num_readers > 0);
writer_here = 1;

}

void write_unlock() {
writer_here = 0;

}

I All fine?

No,
I Simultaneous
read_lock and
write_lock can
succeed!

I Only allow one
thread to access
the state
simultaneously

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 42/45

Uppsala University

Example: Reader/writer problem

Second attempt:
volatile int num_readers = 0;
volatile int writer_here = 0;
pthread_mutex_t mtx;

void read_lock() {
pthread_mutex_lock(mtx);
while (writer_here);
num_readers++;
pthread_mutex_unlock(mtx);

}
void read_unlock() {
pthread_mutex_lock(mtx);
num_readers--;
pthread_mutex_unlock(mtx);

}

void write_lock() {
pthread_mutex_lock(mtx);
while (writer_here ||

num_readers > 0);
writer_here = 1;
pthread_mutex_unlock(mtx);

}
void write_unlock() {
pthread_mutex_lock(mtx);
writer_here = 0;
pthread_mutex_unlock(mtx); }

Better?
I Deadlock: can get stuck

in while loop
I Waiting thread can’t

hold the mutex

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 43/45

Uppsala University

Example: Reader/writer problem
Third attempt:
volatile int num_readers = 0;
volatile int writer_here = 0;
pthread_mutex_t mtx;

void read_lock() {
int success=0;
while(!success) {

pthread_mutex_lock(mtx);
if(writer_here)
pthread_mutex_unlock(mtx);

else success=1;
}
num_readers++;
pthread_mutex_unlock(mtx);

}
void read_unlock() {
pthread_mutex_lock(mtx);
num_readers--;
pthread_mutex_unlock(mtx); }

void write_lock() {
int success=0;
while(!success) {

pthread_mutex_lock(mtx);
if (writer_here ||

num_readers > 0)
pthread_mutex_unlock(mtx);

else success=1;
}
writer_here = 1;
pthread_mutex_unlock(mtx);

}
void write_unlock() {
pthread_mutex_lock(mtx);
writer_here = 0;
pthread_mutex_unlock(mtx); }

OK?
I Incorrect, need two mutexes
I Wasteful

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 44/45

Uppsala University

Example: Reader/writer problem
Final attempt:
volatile int num_readers = 0;
volatile int writer_here = 0;
pthread_mutex_t mtx;
pthread_cond_t cond_r, cond_w;

void read_lock() {
pthread_mutex_lock(mtx);
while(writer_here)

pthread_cond_wait(cond_r);
num_readers++;
pthread_mutex_unlock(mtx);

}
void read_unlock() {
pthread_mutex_lock(mtx);
num_readers--;
if (num_readers==0)

pthread_cond_signal(cond_w);
pthread_mutex_unlock(mtx); }

void write_lock() {
pthread_mutex_lock(mtx);
while (writer_here ||

num_readers > 0)
pthread_cond_wait(cond_w);

writer_here = 1;
pthread_mutex_unlock(mtx);

}
void write_unlock() {
pthread_mutex_lock(mtx);
writer_here = 0;
pthread_cond_signal(cond_w);
pthread_cond_broadcast(cond_r);
pthread_mutex_unlock(mtx); }

Karl Ljungkvist | karl.ljungkvist@it.uu.se | 45/45

