
Performance Analysis and
Performance Metrics

Jing Liu
TDB & LMB, Uppsala University

Programming of Parallel Computers, Feb 2016

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

Goals of parallel computing
•  Three primary goals in parallel computing are:

•  Cut Turnaround time
•  Job Up-size
•  Both

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

Performance Metrics

•  How much does the performance depend on the:
-  On the algorithm?
-  On the implementation?
-  On the compiler?
-  On the MPI library? read more
-  On computer platform?

•  Can we in advance (a priori) predict the performance?
•  Can we do a posteriori analysis of the observed

performance and how?
•  How do we present our results in a report?

How do we evaluate and compare different parallel
algorithms and implementations?

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

Traditional performance metrics:

•  Execution Time (T=1.24s for 1440x1440 MxM)
•  Execution Speed (Gflop/s, Gflop/$, Gflop/W)
 flops – floating-point operations per second

⇒ Too hardware dependent
(cpu, mem, size) and do not
say anything about parallelism!

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

Traditional performance metrics:

New metrics:
•  Speedup [How much faster]
•  Sizeup [How much bigger]
•  Parallel efficiency [How efficient]
•  Isoefficiency function [How scalable]

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

Speedup
How much faster can we run on P processors than
on one single processor? Define speedup SP=T1/TP

Problem: Algorithm 1: SP=30 on 32 processors
 Algorithm 2: SP=15 on 32 processors

⇒  Is Algorithm 1 better?

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

1.  Algorithm
-  Compare with the best serial algorithm (code)

Absolut speedup
-  Compare with the same code one processor

Relative speedup

2.  Problem size
-  Constant total problem size,

 Fixed size speedup, SP = T1(w)/TP(w) w-work
-  Constant size (work) per processor

Scaled speedup, S’P = P T1(w)/TP(pw)
(Solve a P-times larger problem in parallel ó solve P original
problems on one processor and compare speedup)

Different interpretations of speedup due to:

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

Amdahl’s law
Assume that a fraction S of a program can not be
parallelized (serial part, e.g., I/O) and the other
fraction 1-S is perfectly parallel. (Const. total
problem size)

T1 = (S+(1-S)) W
TP = (S+(1-S)/P) W

⇒ SP = T1/TP = 1 / (S+(1-S)/P) → 1/S as P → ∞

Amdahl’s law: Speedup is bounded SP ≤ 1/S

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

Example:

300 km
Free speed

50 km
Max 50km/h

Autobahn

Volkswagen: T= 300/100 + 50/50 = 4h
Mercedes: T= 300/200 + 50/50 = 2.5h
Porsche T= 300/300 + 50/50 = 2h
Fighter Jet T= 300/2000+50/50 = 1.15h

No matter how much power you have the “serial part”
will ultimately limit your performance.

A B

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

Note 1: Amdahl’s law is a rough simplification, does
NOT consider communication, synchronization and
different levels of parallelism but it gives always an
upper estimate of what we possibly can achieve.

Figure: An application where the communication part is
dominating and the parallel overhead increases with P.

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

Note 2: We want to use (we can use) parallel
computers to solve bigger problems. For real
applications the parallel work normally grows faster
than the serial work as we increase the problem
size.

⇒ The serial fraction S decreases!
Increasing the problem size gives higher speedup,
explains why S’P ≥ SP.

Example; Matrix-Matrix multiplication
communication ∝ n2 while computation ∝ n3

(Computations are perfectly parallel, communication
is a “serial” part that we can not speedup up by
increasing the number of processors)
The serial fraction S decreases as we increase n!

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

Note 2 continue:

Gustafson-Barsis’ law: S’P = 1 - p + s*p
where S’P is the theoretical speedup in latency
s is the speedup in latency of the execution of the
part of the task that benefits from the improvement
of the resources of the system;
p is the percentage of the execution workload

Gustafson's law addresses the shortcomings of
Amdahl's law, which is based on the assumption of
a fixed problem size, that is of an execution
workload that does not change with respect to the
improvement of the resources.

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

Note 3: Speedup favors slow processors, non-
optimized code and bad compilers.

Slow code
Fast code

Processors

Ti
m

e

Slow code
Fast code

Processors

S
pe

ed
up

When optimizing the code it is usually the parallel
fraction (computational part) that is improved, not
the serial fraction (I/O etc)
⇒ The serial fraction S becomes larger for the fast

code and speedup is penalized.
(What happens if you cache optimize your MxM in assignment 1?)

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

Note 3: Program optimization in diff. levels

•  Design level
•  Algorithm and data structure

•  Array / doubled list
•  Quicksort / Insert sort

•  Source code
•  Build level
•  Compile level
•  Assembly level
•  Run time
•  Platform dependent/ independent optimization

•  Intel / AMD

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

Sizeup
How much bigger problem can we solve on P
processors than on one processor on the same time?

Find wP such that TP(wP) = T1(w1) constant runtime
⇒ Define sizeup SzP= wP/w1

Note 1: Sizeup is less dependent of processor
speed and level of optimization than speedup.
(Runtime is not an explicit part of the metric.)

Note 2: Sizeup reflects the second goal of parallel
computing, i.e., we want to solve larger problems in
the same time. E.g., in weather forecasting we use
the extra computational power for a more accurate
solution (with more grid points).

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

Parallel Efficiency
How efficiently are we using the parallel computer?

Define parallel efficiency: EP = SP/P (0<ΕP≤1)
(For ideal speedup SP=P we get full efficiency)

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

Isoefficiency function 1
How scalable is our algorithm? (Theoretical metric)

It has been observed that efficiency increases with the
problem size (why?) and decreases with increasing
the number of processors (why?). The idea is to keep
Ep(w) constant, while increasing w and p
simultaneously.

Def: “How much should we increase the problem size
when we add more processors to keep the efficiency
EP constant”

⇒ w=f(p) isoefficiency function

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

Isoefficiency function 2

Def: “How much should we increase the problem size
when we add more processors to keep the efficiency
EP constant”
⇒ w=f(p) isoefficiency function

•  If f(p) is linear (or constant) the algorithm is highly

scalable
•  If f(p) is exponential the algorithm is poorly scalable

Model the runtime theoretically and compute w=f(p)
from EP=T1(w)/pTP(w) for a constant EP. The
isoefficiency function is used to compare the growth
rates of two algorithms theoretically.

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

Note:
Very difficult to model/predict parallel runtimes with
theoretical models. Processors run asynchronously,
unpredictable cache utilization, disturbances from other
processes and users. (Can still compare algorithms
theoretically and derive upper limits, e.g., roofline model)

⇒ Large variations in runtime from run to run!

When measuring runtime, make many runs and take the
best time. Gives least disturbances and more consistent
timing (speedup) with less spikes (outliers).

[Twelve Ways to Fool the Masses When Giving Performance Results
on Parallel Computers, David H. Bailey, Supercomputing Review, Aug.
1991, pg. 54—55.]

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

The Roofline model:
Goals:
•  Provide everyone with a graphical aid that provides:

realistic expectations of performance and productivity
•  Show inherent hardware limitations for a given kernel
•  Show potential benefit and priority of optimizations
•  Roofline model will be unique to each architecture

•  FLOPS:Bytes
•  Arithmetic Intensity
•  Locality and cache behavior

Read more on Roofline model.

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

The Roofline model 2:

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

The Roofline model 3:

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

The Roofline model 4:
Uniqueness
•  There is no single ordering or roofline model
•  The order of ceilings is generally (bottom up):

•  inherent in algorithm
•  compiler
•  the programmer
•  kernel limitation

•  Example
•  Fused multiply-add balance is inherent in

many LA routines
•  Many stencils are dominated by adds

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

Parallel Overhead

Why don’t we get optimal speedup (SP=P, EP=1)
when we run on a parallel computer?

1.  Interprocessor communication
2.  Load imbalance, runtime depends on the

most heavily loaded processor
3.  Serial parts or parts with limited parallelism
4.  Extra computations compared to the best

serial algorithm (e.g., recursive loops)
5.  Synchronization of processors
6.  Startup/rescheduling time of processes
7.  Time sharing of shared resources

(processors, memory, network bandwidth)
with other users and processes

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

About assignments:

1.  Assignment 1:MPI
 Jing

2.  Assignment 2: Pthreads
 Anton & Jing

3.  Assignment 3: OpenMP
Anton

