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Goals of parallel computing 
•  Three primary goals in parallel computing are: 

•  Cut Turnaround time 
•  Job Up-size 
•  Both 
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Performance Metrics 

•  How much does the performance depend on the: 
-  On the algorithm? 
-  On the implementation? 
-  On the compiler? 
-  On the MPI library? read more 
-  On computer platform? 

 
•  Can we in advance (a priori) predict the performance? 
•  Can we do a posteriori analysis of the observed 

performance and how? 
•  How do we present our results in a report? 

How do we evaluate and compare different parallel 
algorithms and implementations?  
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Traditional performance metrics: 

•  Execution Time (T=1.24s for 1440x1440 MxM) 
•  Execution Speed (Gflop/s, Gflop/$, Gflop/W) 
        flops – floating-point operations per second  

⇒ Too hardware dependent  
(cpu, mem, size) and do not 
say anything about parallelism! 
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Traditional performance metrics: 

New metrics: 
•  Speedup      [ How much faster ] 
•  Sizeup      [ How much bigger ] 
•  Parallel efficiency   [ How efficient  ] 
•  Isoefficiency function  [ How scalable ] 
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Speedup 
How much faster can we run on P processors than 
on one single processor? Define speedup SP=T1/TP 
 

Problem:  Algorithm 1: SP=30 on 32 processors 
   Algorithm 2: SP=15 on 32 processors 

 
⇒  Is Algorithm 1 better? 
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1.  Algorithm 
-  Compare with the best serial algorithm (code) 

Absolut speedup    
-  Compare with the same code one processor                                 

Relative speedup 

2.  Problem size 
-  Constant total problem size, 

 Fixed size speedup, SP = T1(w)/TP(w)  w-work 
-  Constant size (work) per processor 

Scaled speedup, S’P = P T1(w)/TP(pw)  
(Solve a P-times larger problem in parallel ó solve P original 
problems on one processor and compare speedup) 

Different interpretations of speedup due to: 
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Amdahl’s law 
Assume that a fraction S of a program can not be 
parallelized (serial part, e.g., I/O) and the other 
fraction 1-S is perfectly parallel. (Const. total 
problem size) 

T1 = (S+(1-S)) W 
TP = (S+(1-S)/P) W 

⇒ SP = T1/TP = 1 / (S+(1-S)/P)  →  1/S  as P → ∞ 

Amdahl’s law: Speedup is bounded SP ≤ 1/S 
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Example: 

300 km 
Free speed 

50 km 
Max 50km/h 

Autobahn 

Volkswagen:  T= 300/100 + 50/50 = 4h 
Mercedes:  T= 300/200 + 50/50 = 2.5h 
Porsche   T= 300/300 + 50/50 = 2h 
Fighter Jet  T= 300/2000+50/50 = 1.15h 
 
No matter how much power you have the “serial part” 
will ultimately limit your performance. 

A B 
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Note 1: Amdahl’s law is a rough simplification, does 
NOT consider communication, synchronization and 
different levels of parallelism but it gives always an 
upper estimate of what we possibly can achieve.  

Figure: An application where the communication part is 
dominating and the parallel overhead increases with P. 
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Note 2: We want to use (we can use) parallel 
computers to solve bigger problems. For real 
applications the parallel work normally grows faster 
than the serial work as we increase the problem 
size. 
 
⇒ The serial fraction S decreases!  
Increasing the problem size gives higher speedup, 
explains why S’P ≥ SP.  
 
Example; Matrix-Matrix multiplication  
communication ∝ n2 while computation ∝ n3 

(Computations are perfectly parallel, communication 
is a “serial” part that we can not speedup up by 
increasing the number of processors) 
The serial fraction S decreases as we increase n! 
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Note 2 continue: 
 
Gustafson-Barsis’ law: S’P = 1 - p + s*p  
where S’P is the theoretical speedup in latency  
s is the speedup in latency of the execution of the 
part of the task that benefits from the improvement 
of the resources of the system; 
p is the percentage of the execution workload 
 
Gustafson's law addresses the shortcomings of 
Amdahl's law, which is based on the assumption of 
a fixed problem size, that is of an execution 
workload that does not change with respect to the 
improvement of the resources. 
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Note 3: Speedup favors slow processors, non-
optimized code and bad compilers. 

Slow code 
Fast code 

Processors 

Ti
m

e 

Slow code 
Fast code 

Processors 

S
pe

ed
up

 

When optimizing the code it is usually the parallel 
fraction (computational part) that is improved, not 
the serial fraction (I/O etc) 
⇒ The serial fraction S becomes larger for the fast 

code and speedup is penalized. 
(What happens if you cache optimize your MxM in assignment 1?) 
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Note 3: Program optimization in diff. levels 

•  Design level 
•  Algorithm  and data structure 

•  Array / doubled list 
•  Quicksort / Insert sort 

•  Source code 
•  Build level 
•  Compile level 
•  Assembly level 
•  Run time 
•  Platform dependent/ independent optimization 

•  Intel / AMD 



In
fo

rm
at

io
ns

te
kn

ol
og

i 

Institutionen för informationsteknologi | www.it.uu.se 

Sizeup 
How much bigger problem can we solve on P 
processors than on one processor on the same time?  
 
Find wP such that   TP(wP) = T1(w1)  constant runtime 
⇒ Define sizeup SzP= wP/w1  

Note 1: Sizeup is less dependent of processor 
speed and level of optimization than speedup. 
(Runtime is not an explicit part of the metric.) 
 
Note 2: Sizeup reflects the second goal of parallel 
computing, i.e., we want to solve larger problems in 
the same time. E.g., in weather forecasting we use 
the extra computational power for a more accurate 
solution (with more grid points). 
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Parallel Efficiency 
How efficiently are we using the parallel computer?  
 
Define parallel efficiency: EP = SP/P   (0<ΕP≤1) 
(For ideal speedup SP=P we get full efficiency) 
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Isoefficiency function 1 
How scalable is our algorithm? (Theoretical metric) 
 
It has been observed that efficiency increases with the 
problem size (why?) and decreases with increasing 
the number of processors (why?). The idea is to keep 
Ep(w) constant, while increasing w and p 
simultaneously.  
 
Def: “How much should we increase the problem size 
when we add more processors to keep the efficiency 
EP constant”  
 
⇒ w=f(p) isoefficiency function 
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Isoefficiency function 2 
 
Def: “How much should we increase the problem size 
when we add more processors to keep the efficiency 
EP constant”  
⇒ w=f(p) isoefficiency function 
 
•  If f(p) is linear (or constant) the algorithm is highly 

scalable 
•  If f(p) is exponential the algorithm is poorly scalable 
 
Model the runtime theoretically and compute w=f(p) 
from EP=T1(w)/pTP(w) for a constant EP. The 
isoefficiency function is used to compare the growth 
rates of two algorithms theoretically. 
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Note:  
Very difficult to model/predict parallel runtimes with 
theoretical models. Processors run asynchronously, 
unpredictable cache utilization, disturbances from other 
processes and users. (Can still compare algorithms 
theoretically and derive upper limits, e.g., roofline model) 
 
⇒ Large variations in runtime from run to run! 
 
When measuring runtime, make many runs and take the 
best time. Gives least disturbances and more consistent 
timing (speedup) with less spikes (outliers). 

[ Twelve Ways to Fool the Masses When Giving Performance Results 
on Parallel Computers, David H. Bailey, Supercomputing Review, Aug. 
1991, pg. 54—55. ] 
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The Roofline model: 
Goals:  
•  Provide everyone with a graphical aid that provides: 

realistic expectations of performance and productivity  
•  Show inherent hardware limitations for a given kernel   
•  Show potential benefit and priority of optimizations 
•  Roofline model will be unique to each architecture 

•  FLOPS:Bytes 
•  Arithmetic Intensity 
•  Locality and cache behavior 

Read more on Roofline model. 
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The Roofline model 2: 
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The Roofline model 3: 
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The Roofline model 4: 
Uniqueness 
•  There is no single ordering or roofline model 
•  The order of ceilings is generally (bottom up): 

•  inherent in algorithm 
•  compiler 
•  the programmer 
•  kernel limitation 

•  Example 
•  Fused multiply-add balance is inherent in 

many LA routines 
•  Many stencils are dominated by adds 
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Parallel Overhead 

Why don’t we get optimal speedup (SP=P, EP=1) 
when we run on a parallel computer? 

1.  Interprocessor communication 
2.  Load imbalance, runtime depends on the 

most heavily loaded processor 
3.  Serial parts or parts with limited parallelism 
4.  Extra computations compared to the best 

serial algorithm (e.g., recursive loops) 
5.  Synchronization of processors 
6.  Startup/rescheduling time of processes 
7.  Time sharing of shared resources 

(processors, memory, network bandwidth) 
with other users and processes 
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About assignments: 

1.  Assignment 1:MPI 
 Jing 

2.  Assignment 2: Pthreads 
  Anton & Jing 

3.  Assignment 3: OpenMP 
Anton 

 
  


