Linear Algebra

on a distributed environment

Jing Liu
TDB & LMB, Uppsala University

Programming of Parallel Computers, Feb 2016

Scalar
Vector
m Solve linear equations §
m Matrices operations Matrlx

» Matrices addition/ multiplication /
transformation

» Eigenvalue/ Eigenvector
» [ranspose, projection ...

m Vector space

Topics In LA

>
@)
O
O
i
D
I_
C
O
-
©
&
G
HQ
=
(-
O
o
D
QO

m LA operations are often basic building
blocks in scientific applications
m Three basic types of loops
» Perfectly parallel loops
#» Reduction loops
» Recursive loops
» Combination of different loops

J. Liu, Feb 2016, Uppsala

Perfectly parallel loops

mExample Z =AX_ +Y_
for(1=0;i<m;i++)
Z[i] = A7 X[] + Y[iI;
J

XYz GEEN RSN

N
-
(@))
O
O
i
d
I_
C
®)
=
©
S
Q
k=
Y
O
o
)
0

m MPI| Scatter and MPI Gather

UNIVERSITET

>
@)
O
O
i
D
I_
C
O
-
(©
&
G
HC_)
=
(-
O
o
D
O

Reduction loops

m Limited parallelism
m Example: Dot production s = XeYT
for(i=0;i<m;i++){
s += X[i] + Y[il;
}
s I)Pt P2 [N P4 [P5 (P6 |.. |Pn

\(4P1 (P2 I P: (P5 |P6 |.. |Pn
m MPl Reduce, MPI| Allreduce

J. Liu, Feb 2016, Uppsala

UNIVERSITET

>
(@))
O
O
i
3
I_
C
O
-
©
&
G
HQ
=
(-
O
Q
)
QO

Recursive loops

m Each iteration depends on the previous
one

m Hardly parallelize, “serial” loop
m Example
for(i=1;1<m;i++){
X[]=X[1]+X[1-1],

J. Liu, Feb 2016, Uppsala

UNIVERSITET

>
(@))
O
O
i
3
I_
C
O
-
©
&
|
HQ
=
(-
O
Q
)
QO

Nested loops

m Often the order of loops can be
interchanged =» for maximal parallelism,
choose the perfectly-parallel loops as
outmost, and parallelize over it.

m Example: Matrix-Vector multiplication
for (i =0; i <m;i++{
for(1L=0; _j<m; j++)\
Y[i] += A[iG] * X[l;
}
}

J. Liu, Feb 2016, Uppsala

UNIVERSITET

>
@)
O
O
i
D
I_
C
O
-
(©
&
S
HC_)
=
-
O
o
D
O

Nested loops — Alt 1

m Row-wise partition

Y Ali][]] Copy of X
P1
P2

R
PR .
P3 P3
P4l [P

m All processors have a copy of X, one
piece of Aand Y.

J. Liu, Feb 2016, Uppsala

Nested loop — Alt. 2

m Block algorithm with 1D partition

i Ao A Aw Ag X
= A AR A X
A20 A21 A22 A23

m Step 1: Compute YT]i] = A[i][i] * X[i] in process i,
and then shift X[i] circular one step up.

m Step 2: Compute again, in which j=(i+1) mod p,
shift X circular one step up.

m Repeat, in total (p-1) step

Nested loop — Alt. 2 cont.

m Non-blocking communication to shift X,
before computation. MPI Isend,
MPI_Irecv, MPI_ wait

m \Which one is more efficient?
» Alt. 2 is more memory efficient.

CPU efficient is all depends on the problem
size, computer systems, implementations of
MPI|_functions, etc.

PSALA
N
>
(@))
9O
@)
L
o
|_
-
9O
-
©
=
O
<
|
@)
o
()
N

/.é::ﬂ?;’».
e
&',:::'1“{."
A
|

m Block algorithm — 2D partition
m Processor block Vp * \p,

= Step 1: Divide A__ to Vp * \p blocks, X to
\p parts

m Step 2: Processor P; get block A; and X,
and hold Y)=0

m Step 3: P; computes Y\i) = A; * X
m Step 4: Accumulate Y. in each row.

>
(@))
O
O
i
3
I_
C
O
-
©
&
|
HQ
=
(-
O
Q
)
QO

Yo =Ag0" X

Yo'= Agt "X

Yo*= Ag"X;

Yo®=Ags* X5

Y1O=A01*XO =

<
A AN AN A

Y20 - AOZ*XO =

Y30=Ass"X,

Y3'=A*X,

Y32= Ays"X;

Y33= Ags* X,

m Efficient for large matrices.
m Scalability? 2D > 1D. For many

processors, 1D partition strips become so

thin and communications time increases

fast.

J. Liu, Feb 2016, Uppsala

>
(@))
O
O
i
3
I_
C
O
-
©
&
|
HQ
=
(-
O
Q
)
QO

A

J. Liu, Feb 2016, Uppsala

C(1.)) = 2, Al1k) B(k,))

More nested Loops

m Example : Matrix-Matrix Multiplication

m | and | are perfectly parallel loops, K is

reduction loop
for(_=0; _<m;_++)
for (_=0;_<m; _++){
for(_=0;_<m;_++)
Cli][i] += Alillk] * BIKILT;

5 R\
CETEE)
&P
UNIVERSITET u | []
dlrixX-iwiatrix iiuitl
|

m 1D partitioning — choose j as the outmost
loop > partition data column wise

BOO BO1 BOZ BO3

B> Cp = Ay Bog+tA1"B1otAr"Bop+As™Bag

>
(@))
O
O
i
3
I_
C
O
-
©
&
|
HQ
=
(-
O
Q
)
QO

J. Liu, Feb 2016, Uppsala

UNIVERSITET

>
(@))
O
O
i
3
I_
C
O
-
©
&
|
HQ
=
(-
O
Q
)
QO

C = A*B, 1D partition

m A is needed In every processor.
m Alt. 1 : Every processor has completed A,
=>» Not scalable (memory?!)
m Alt. 2: Shift A around.
=» Similar idea to matrix-vector alt. 2.

=» For many processors, the stripes
(block-columns) become thin and
comm. overhead becomes large.

J. Liu, Feb 2016, Uppsala

UNIVERSITET

>
(@))
O
O
i
3
I_
C
O
-
©
&
|
HQ
=
(-
O
Q
)
QO

C = A*B, 2D partition

m Choose both i and j outmost.

= \p * \p blocks, each processor gets one

block of each matrix.
m In processor P;, compute C; =E£;1Aik =By
=> P, need all blocks Ay in block row i,

and B,;in block column |
=» Communications needed.

J. Liu, Feb 2016, Uppsala

il C = A*B, 2D partition, Alt. 1

m Simple and naive method.

m Simply distribute A in each block row, and
distribute of B in each block column, f
using MPI_functions

> limited scalability due to memory. :
= Bad performance if data don’t -
fit in catch

>
(@))
O
O
i
3
I_
C
O
-
©
&
|
HQ
=
(-
O
Q
)
QO

UNIVERSITET

>
(@))
O
O
i
3
I_
C
O
-
©
&
|
HQ
=
(-
O
Q
)
QO

C = A*B, 2D partition, Alt. 2
Cannon’s Algorithm (1969)

m Shift and compute. M*M mesh (\p * \p blocks
processors, data).

m Phase 1: shift

» Shift the i th block row of A i steps cyclically to the
left.

» Shift the j th block column of B j steps cyclically
upwards

A33 A30 A31 A32 B3O B01 B12 B23

J. Liu, Feb 2016, Uppsala

UNIVERSITET

>
(@))
O
O
i
3
I_
C
O
-
©
&
|
HQ
=
(-
O
Q
)
QO

C = A*B, 2D partition, Alt. 2
Cannon’s Algorithm Cont.

m Phase 2: Compute and shift

m For each iteration do:
» Compute C; = A, * B,; in each processor P;;, where k
= (i+j+1) mod M, where | is the number of iterations

(start from 0).
#» Shift A one step left, B one step upwards
m |n total, M-1 steps. We can do shift with non-
blocking communication, and compute while
sending.

m Read more on-line Cannon’s algorithm.

J. Liu, Feb 2016, Uppsala

C = A*B, 2D partition, Alt. 3
Fox’s Algorithm

m In total M-1 step.
m For each step k (k =0,1,..., M-1) =
» Broadcast block n of A within each block row
| (n = (i+k) mod M)
* Multiply the broadcasted block with B-block in
each processor (C; += A,,;"B,)) :
Shift blocks of B, one step upwards.

-'
N
>>
o)
ke
O
i
@
—
C
O
e
©
=
e
=
Y
O
S
D
a

UNIVERSITET

>
(@))
O
O
i
3
I_
C
O
-
©
&
G
HQ
=
(-
O
Q
)
QO

C = A*B, 2D partition

m Both Cannon’s and fox’s algorithm is
scalable.

m Which is more efficient?

#» Depends on problem size, computer system,
efficiency of MPI, etc

J. Liu, Feb 2016, Uppsala

UNIVERSITET

>
(@))
O
O
i
3
I_
C
O
-
©
&
G
HQ
=
(-
O
Q
)
QO

—e— Block-striped Algorithm
—=— Fox Algorithm
Cannon Algorithm

1000

1500

2000

Matrix Size

2500

3000

J. Liu, Feb 2016, Uppsala

UNIVERSITET

Assignment 1

Fortran/C/C++ and MPI.

Two parameters:

The number of process
#* [he size of matrices

m Randomly generate A and B
m Distribute data

m Implement Fox's algorithm

m Collect data and output.

>
(@))
O
O
i
3
I_
C
O
-
©
&
|
HQ
=
(-
O
Q
)
QO

J. Liu, Feb 2016, Uppsala

Dense matrix-matrix multiplication.

il Assignment 1, cont.

m Data generation (at rank 0): srand(),
rand() / CALL RANDOM_SEED(), CALL
RANDOM_ NUMBER()

m Data distribution: use MPI_Type vector,
MPI| Cart rank, MPI Isend, MPI Recv

m Data Collection: MPI|_Probe,
MPI| Cart_coords, MP| Recv, MPI|_ wait

>
(@))
O
O
i
3
I_
C
O
-
©
&
|
HQ
=
(-
O
Q
)
QO

UNIVERSITET

>
(@))
O
O
i
3
I_
C
O
-
©
&
|
HQ
=
(-
O
Q
)
QO

Assignment 1, cont.

m C structure / C++ class is helpful to make
a nicer code.

» Name space works for large project.

m Good coding style makes your code more
understandable and maintainable.

m \Write comments in your code to help

yourself and others.
m Demo code at https://github.com/JinLi971/MPI_DEMO

J. Liu, Feb 2016, Uppsala

Advanced Topic:
Recursive loop

UNIVERSITET

m Example:
for (1=1; i<n; i++){
X[i] += X[i-1];

1@ 1.2Q 1-3Q 1-4

>
@)
O
O
i
D
I_
C
O
-
(©
&
G
HC_)
=
(-
O
o
D
O

J. Liu, Feb 2016, Uppsala

Solve linear system with
Gaussian elimination

A linear equation with n unknown variables
a,x,+ax,+..+a,_x, ,=b

UPPSALA
UNIVERSITET

A finite set of n linear equations is called a system of linear
equations or a linear system

a0,0xO +a0,1x1 +...+ aO,n_lxn_l — bO
al’oxo + al’lxl +...+ al’n_lxn_l - bl
Ay 10X +p 11X tet @, X%, =b,

or in the matrix form:

Ax=b

>
(@))
O
O
i
3
I_
C
O
-
©
&
G
HQ
=
(-
O
Q
)
QO

J. Liu, Feb 2016, Uppsala

Solve linear system with
Gaussian elimination

UPPSALA
UNIVERSITET

a On the first stage of the algorithm, which is called the Gaussian
elimination, the initial system of linear equations is transformed
into an upper triangular system by the sequential elimination of
unknowns:

(uo,o Uy o Upug)

0 u u, _

Ux = c, - 1,1 1,n-1
L0 0 U,y

O On the second stage of the algorithm, which is called the
back substitution, the values of the variables are calculated

>
(@))
O
O
i
3
I_
C
O
-
©
&
G
HQ
=
(-
O
Q
)
QO

J. Liu, Feb 2016, Uppsala

UNIVERSITET

>
(@))
O
O
i
3
F_.
C
O
-
©
&
G
HQ
=
(-
O
Q
)
QO

Solve linear system with
Gaussian elimination

O Scheme of data at the i-th iteration of the Gaussian

elimination

Elements already

J. Liu, Feb 2016, Uppsala

driven to 0

4

P .

Elements that will

not be changed

—Pi1vot row

|___Elements that will
be changed

UPPSALA
UNIVERSITET

>
(@))
O
O
i
3
I_
C
O
-
©
&
G
HQ
=
(-
O
Q
)
QO

Solve linear system with
Gaussian elimination

a Gaussian elimination:

- Atstep i, 0<i<n-1, of the algorithm the nonzero elements
below the diagonal in column / are eliminated by replacing each
row k, where i< k< n-1, with the sum of the row k and the row j
multiplied by the value (-a,;/a;),
- All the necessary calculations are determined by the
equations:

a'yi = ay —(ay /a;)- a;

7 i<j<n-li<k<n-1,0<i<n-1
b'y = by —(ay / a;)-b;,

J. Liu, Feb 2016, Uppsala

U
UNIVERSITET

>
(@))
O
O
i
3
I_
C
O
-
©
&
G
HQ
=
(-
O
Q
)
QO

Solve linear system with
Gaussian elimination

0 Back substitution

After the matrix of the linear system was transformed to the upper
rectangular type, it becomes possible to calculate the unknown variables:

* We can solve the last equation directly, since it has only a single
unknown Xx,,_;,

* After we have determined the x,,_,, we can simplify the other equatior
by substituting the value of x,_,,

 Then the equation n-2 has only the single unknown x,,_, and can be
solved and so on.

The calculations of the back substitution can be represented as follows:

Xp-1= bn—l /an—l,n—b

n-1
X; = (bl - Zaljxj')/aii, 1= n_2,n_3,...,0

j=i+l

J. Liu, Feb 2016, Uppsala

Solve linear system with
Gaussian elimination

UNIVERSITET

m Parallel Gaussian elimination

a'kj = Ay —(ay /aii)°aija
b'y = by —|(ay; / a;;) b,

12

m Parallel back substitution:

X,.1=b,_,/a

>
(@))
O
O
i
3
I_
C
O
-
©
&
G
HQ
=
(-
O
Q
)
QO

n-1 n=1n=1»
n-|
x; = (b; - Za,;,-xj)/a,-,-, i=n-2,n-3,..0
j:i+l

J. Liu, Feb 2016, Uppsala

Solve linear system with
Gaussian elimination

UNIVERSITET

m Scaling issue: # processors < matrix size
» rowwise cyclic striped Decomposition

O

>
@)
O
O
i
D
I_
C
O
-
(©
&
G
HQ
=
(-
O
o
D
QO

J. Liu, Feb 2016, Uppsala

Solve linear system with
Gaussian elimination

m MPI calls

= MP|_Scatterv
= MIP|_Barrier
» MP| Bcast
»= MP| Rsend
» MP|_Recv

-' LA
N

>
(@)
)
@)
O
o
|_
C
O
e
®
=
O
I=
Y
@)
S
()
e

More Advanced Topic:
BLAS

m CPUs:

» Armadillo : Matlab style, C++ coding .

» CBLAS :GNU supported.

#» Support: AMD -> ACML; IBM -> ESSL;
Apple -> Accelerate framework; HP -> MLIB;
SUN -> Sun Performance Library,

Intel Math Kernel Library

m GPUs: NVIDIA -> CuBLAS
OPENCL : third part support.

>
(@))
O
O
i
3
I_
C
O
-
©
&
G
HQ
=
(-
O
Q
)
QO

UNIVERSITET

>
(@))
O
O
i
3
I_
C
O
-
©
&
|
HQ
=
(-
O
Q
)
QO

More Advanced Topic:
Sparse Matrix

m A sparse matrix is a matrix populated
primarily with zeros. -
m Save sparse matrix:
» Dictionary of keys
List of lists
#» Coordinate list
Yale format
* Etc.

J. Liu, Feb 2016, Uppsala

" J More Advanced Topic:
Application using LA

m PageRank: imaging incredible large
matrix

m Modern Digital imaging.
Video tracking: Xbox Kinect

m Genetics

More Advanced Topic:
Application using LA

m Schedule & auto tuning
» [est cases and pre-determined
» Dynamically schedule

m Kernel and Convolution

» Performs in parallel computers, edges of ;
each blocks need to fix, according to the size :
of the kernel :

-'
N
>
(@))
O
@)
-
3
|_
C
O
e
(qV)
S
O
I=
Y
@)
S
(D)
a

