

Jing Liu

TDB & LMB, Uppsala University Programming of Parallel Computers, Feb 2016

Topics in LA

- Solve linear equations
- Matrices operations
 - Matrices addition/ multiplication / transformation
 - * Eigenvalue/ Eigenvector
 - Transpose, projection ...
- Vector space
- **.**..

Scalar Vector Matrix

J. Liu, Feb 2016, Uppsala

Loops

- LA operations are often basic building blocks in scientific applications
- Three basic types of loops
 - Perfectly parallel loops
 - Reduction loops
 - Recursive loops
 - Combination of different loops

Perfectly parallel loops

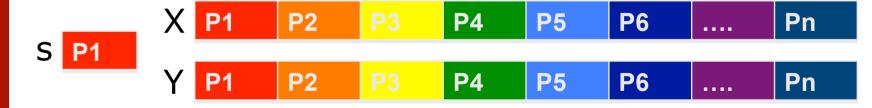
```
■ Example Z_m = \lambda X_m + Y_m
for ( i = 0; i < m; i ++ ){
Z[i] = \lambda * X[i] + Y[i];
}
```

■ MPI Scatter and MPI Gather

Reduction loops

- Limited parallelism
- Example: Dot production $s = X \cdot Y^T$

```
for ( i = 0; i < m; i ++ ) {
    s += X[i] + Y[i];
}
```



■ MPI Reduce, MPI Allreduce

Recursive loops

- Each iteration depends on the previous one
- Hardly parallelize, "serial" loop
- Example

```
for ( i = 1; i < m; i ++) {
    X[i] = X[i] + X[i-1];
}
```

J. Liu, Feb 2016, Uppsala

Nested loops

- Often the order of loops can be interchanged → for maximal parallelism, choose the perfectly-parallel loops as outmost, and parallelize over it.
- Example: Matrix-Vector multiplication

```
for ( <u>i</u> = 0; <u>i</u> < m; <u>i</u> ++){

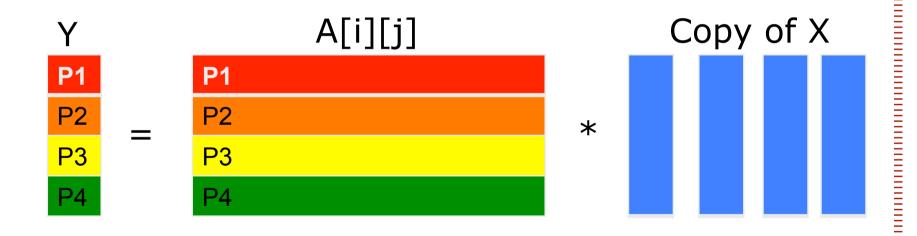
for ( <u>j</u> = 0; <u>j</u> < m; <u>j</u> ++){

Y[i] += A[i][j] * X[j];

}
```


Nested loops – Alt 1

Row-wise partition



All processors have a copy of X, one piece of A and Y.

Nested loop – Alt. 2

Block algorithm with 1D partition

Y ₁	A ₀₀	A ₀₁	A ₀₂	A ₀₃		X_0	
Y ₂	A ₁₀	A ₁₁	A ₁₂	A ₁₃	*	X_1	
Y ₃	_ A ₂₀	A ₂₁	A ₂₂	A ₂₃		X_2	
Y_4	A ₃₀	A ₃₁	A ₃₂	A ₃₃		X_3	

- Step 1: Compute Y[i] = A[i][i] * X[i] in process i, and then shift X[i] circular one step up.
- Step 2: Compute again, in which j=(i+1) mod p, shift X circular one step up.
- Repeat, in total (p-1) step

Nested loop – Alt. 2 cont.

- Non-blocking communication to shift X, before computation. MPI_Isend, MPI_Irecv, MPI_wait
- Which one is more efficient?
 - * Alt. 2 is more memory efficient.
 - * CPU efficient is all depends on the problem size, computer systems, implementations of MPI_functions, etc.

Nested loop – Alt. 3

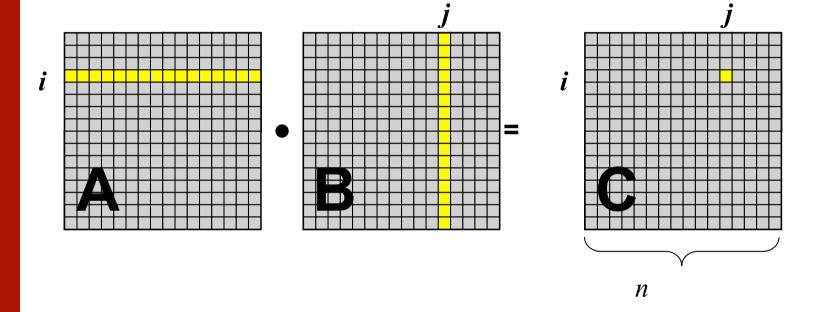
- Block algorithm 2D partition
- Processor block $\sqrt{p} * \sqrt{p}$,
- Step 1: Divide A_{mn} to √p * √p blocks, X to √p parts
- Step 2: Processor P_{ij} get block A_{ij} and X_{j} , and hold $Y_{i}^{(j)} = \mathbf{0}$
- Step 3: P_{ij} computes $Y_i^{(j)} = A_{ij} * X_j$
- Step 4: Accumulate Y_i in each row.

Nested loop – Alt. 3

Y_0	~	$\frac{\sum_{j}}{\sum_{j}}$	$Y_0^0 = A_{00}^* X_0$	$Y_0^1 = A_{01} X_1$	$Y_0^2 = A_{02}^* X_2$	$Y_0^3 = A_{03}^* X_3$
Y ₁	~	j 	$Y_1^0 = A_{01}^* X_0$			
Y ₂	←	· j	$Y_2^0 = A_{02}^* X_0$:	•••	
Y_3	~	j	$Y_3^0 = A_{03}^* X_0$	$Y_3^1 = A_{13}^* X_1$	$Y_3^2 = A_{23}^* X_2$	$Y_3^3 = A_{33}^* X_3$

- Efficient for large matrices.
- Scalability? 2D > 1D. For many processors, 1D partition strips become so thin and communications time increases fast.

Matrix-Matrix Multi.



$$C(i,j) = \Sigma_k A(i,k) B(k,j)$$

More nested Loops

- Example : Matrix-Matrix Multiplication
- i and j are perfectly parallel loops, k is reduction loop

J. Liu, Feb 2016, Uppsala

Matrix-Matrix Multi.

■ 1D partitioning – choose j as the outmost loop → partition data column wise

$$\begin{bmatrix} C_0 & C_1 & C_2 & C_3 \end{bmatrix}$$

 A_0 A_1 A_2 A_3

B ₀₀	B ₀₁	B ₀₂	B ₀₃
B ₁₀			
B ₂₀			
B ₃₀			B ₃₃

$$C_0 = A_0 * B_{00} + A_1 * B_{10} + A_2 * B_{20} + A_3 * B_{30}$$

...

C = A*B, 1D partition

- A is needed in every processor.
- Alt. 1: Every processor has completed A,
 - → Not scalable (memory?!)
- Alt. 2: Shift A around.
 - → Similar idea to matrix-vector alt. 2.
 - → For many processors, the stripes (block-columns) become thin and comm. overhead becomes large.

C = A*B, 2D partition

- Choose both i and j outmost.
- √p * √p blocks, each processor gets one block of each matrix.
- In processor P_{ij} , compute $C_{ij} = \sum_{k=0}^{\sqrt{p}-1} A_{ik} * B_{kj}$
 - → P_{ij} need all blocks A_{ik} in block row i, and B_{ki} in block column j
 - → Communications needed.

C = A*B, 2D partition, Alt. 1

- Simple and naïve method.
- Simply distribute A in each block row, and distribute of B in each block column, using MPI_functions
 - → limited scalability due to memory.
 - → Bad performance if data don't fit in catch

C = A*B, 2D partition, Alt. 2 Cannon's Algorithm (1969)

- Shift and compute. M*M mesh (√p * √p blocks processors, data).
- Phase 1: shift
 - Shift the i th block row of A i steps cyclically to the left.
 - Shift the j th block column of B j steps cyclically upwards

A ₀₀	A ₀₁	A ₀₂	A ₀₃
A ₁₁	A ₁₂	A ₁₃	A ₁₀
A ₂₂	A ₂₃	A ₂₀	A ₂₁
A ₃₃	A ₃₀	A ₃₁	A ₃₂

B ₀₀	B ₁₁	B ₂₂	B ₃₃
B ₁₀	B ₂₁	B ₃₂	B ₀₃
B ₂₀	B ₃₁	B ₀₂	B ₁₃
B ₃₀	B ₀₁	B ₁₂	B ₂₃

C = A*B, 2D partition, Alt. 2 Cannon's Algorithm Cont.

- Phase 2: Compute and shift
- For each iteration do:
 - * Compute $C_{ij} = A_{ik} * B_{kj}$ in each processor P_{ij} , where $k = (i+j+l) \mod M$, where l is the number of iterations (start from 0).
 - Shift A one step left, B one step upwards
- In total, M-1 steps. We can do shift with nonblocking communication, and compute while sending.
- Read more on-line <u>Cannon's algorithm</u>.

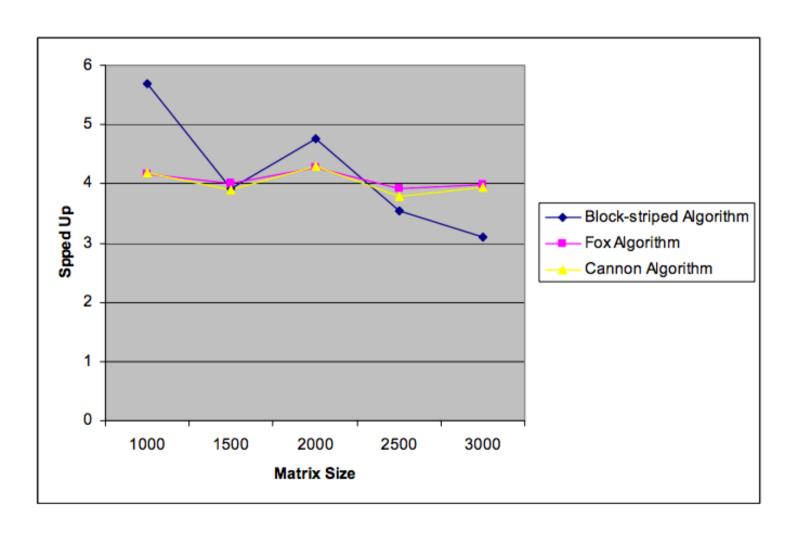
C = A*B, 2D partition, Alt. 3 Fox's Algorithm

- In total M-1 step.
- For each step k (k = 0,1,..., M-1)
 - Broadcast block n of A within each block row i (n = (i+k) mod M)
 - Multiply the broadcasted block with B-block in each processor (C_{ii} += A_{in}*B_{ni})
 - Shift blocks of B, one step upwards.

C = A*B, 2D partition

- Both Cannon's and fox's algorithm is scalable.
- Which is more efficient?
 - Depends on problem size, computer system, efficiency of MPI, etc

C = A*B, 2D partition



Assignment 1

- Dense matrix-matrix multiplication.
- Fortran/C/C++ and MPI.
- Two parameters:
 - The number of process
 - The size of matrices
- Randomly generate A and B
- Distribute data
- Implement Fox's algorithm
- Collect data and output.

Assignment 1, cont.

- Data generation (at rank 0): srand(), rand() / CALL RANDOM_SEED(), CALL RANDOM_NUMBER()
- Data distribution: use MPI_Type_vector, MPI_Cart_rank, MPI_Isend, MPI_Recv
- Data Collection: MPI_Probe,
 MPI_Cart_coords, MPI_Recv, MPI_wait

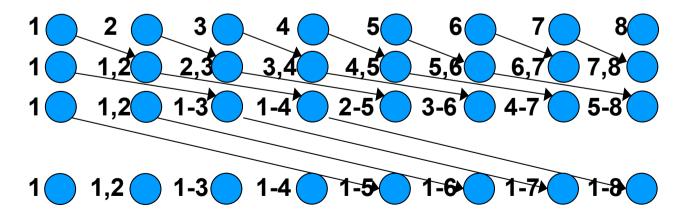
Assignment 1, cont.

- C structure / C++ class is helpful to make a nicer code.
 - Name space works for large project.
- Good coding style makes your code more understandable and maintainable.
- Write comments in your code to help yourself and others.
- Demo code at https://github.com/JinLi971/MPI_DEMO

Advanced Topic: Recursive loop

Example:

```
for ( i=1; i<n; i++){
    X[i] += X[i-1];
}
```



A *linear equation* with **n** unknown variables

$$a_0 x_0 + a_1 x_1 + \dots + a_{n-1} x_{n-1} = b$$

A finite set of *n* linear equations is called a system of linear equations or a linear system

$$a_{0,0}x_0 + a_{0,1}x_1 + \dots + a_{0,n-1}x_{n-1} = b_0$$

 $a_{1,0}x_0 + a_{1,1}x_1 + \dots + a_{1,n-1}x_{n-1} = b_1$
 \dots
 $a_{n-1,0}x_0 + a_{n-1,1}x_1 + \dots + a_{n-1,n-1}x_{n-1} = b_{n-1}$

or in the matrix form:

$$Ax = b$$

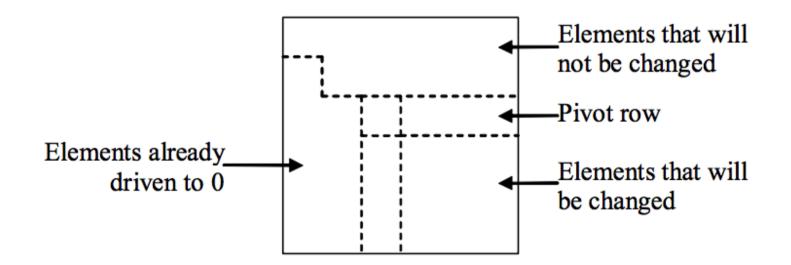
On the first stage of the algorithm, which is called the Gaussian elimination, the initial system of linear equations is transformed into an upper triangular system by the sequential elimination of unknowns:

$$Ux = c,$$

$$U = \begin{pmatrix} u_{0,0} & u_{0,1} & \dots & u_{0,n-1} \\ 0 & u_{1,1} & \dots & u_{1,n-1} \\ & & \dots & \\ 0 & 0 & \dots & u_{n-1,n-1} \end{pmatrix}$$

☐ On the second stage of the algorithm, which is called *the* back substitution, the values of the variables are calculated

 Scheme of data at the i-th iteration of the Gaussian elimination



□ Gaussian elimination:

- At step i, $0 \le i < n-1$, of the algorithm the nonzero elements below the diagonal in column i are eliminated by replacing each row k, where $i < k \le n-1$, with the sum of the row k and the row i multiplied by the value $(-a_{ki}/a_{ii})$,
- All the necessary calculations are determined by the equations:

$$a'_{kj} = a_{kj} - (a_{ki} / a_{ii}) \cdot a_{ij},$$

 $b'_{k} = b_{k} - (a_{ki} / a_{ii}) \cdot b_{i},$ $i \le j \le n-1, i < k \le n-1, 0 \le i < n-1$

□ Back substitution

After the matrix of the linear system was transformed to the upper rectangular type, it becomes possible to calculate the unknown variables:

- We can solve the last equation directly, since it has only a single unknown x_{n-1} ,
- After we have determined the x_{n-1} , we can simplify the other equation by substituting the value of x_{n-1} ,
- Then the equation n-2 has only the single unknown x_{n-2} and can be solved and so on.

The calculations of the back substitution can be represented as follows:

$$x_{n-1} = b_{n-1} / a_{n-1,n-1},$$

 $x_i = (b_i - \sum_{i=i+1}^{n-1} a_{ij} x_j) / a_{ii}, i = n-2, n-3,...,0$

Parallel Gaussian elimination

$$a'_{kj} = a_{kj} - (a_{ki} / a_{ii}) \cdot a_{ij},$$

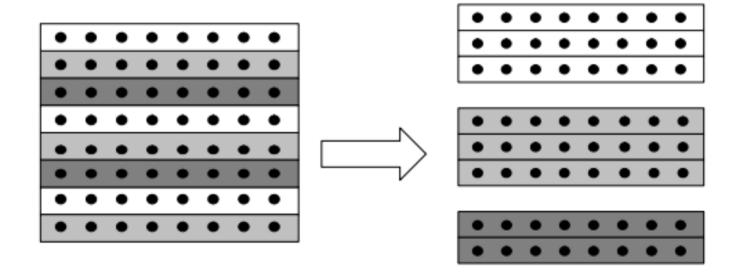
 $b'_{k} = b_{k} - (a_{ki} / a_{ii}) \cdot b_{i},$

Parallel back substitution:

$$x_{n-1} = b_{n-1} / a_{n-1,n-1},$$

 $x_i = (b_i - \sum_{j=i+1}^{n-1} a_{ij} x_j) / a_{ii}, i = n-2, n-3,...,0$

- Scaling issue: # processors < matrix size</p>
 - rowwise cyclic striped Decomposition



- MPI calls
 - MPI_Scatterv
 - MPI Barrier
 - MPI_Bcast
 - MPI_Rsend
 - MPI_Recv

More Advanced Topic: BLAS

CPUs:

- Armadillo : Matlab style, C++ coding .
- CBLAS :GNU supported.
- Support: AMD -> ACML; IBM -> ESSL;
 Apple -> Accelerate framework; HP -> MLIB;
 SUN -> Sun Performance Library,

Intel Math Kernel Library

■ GPUs: NVIDIA -> CuBLAS

OPENCL: third part support.

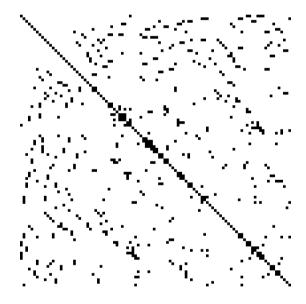
More Advanced Topic: Sparse Matrix

A sparse matrix is a matrix populated

primarily with zeros.

Save sparse matrix:

- Dictionary of keys
- List of lists
- Coordinate list
- Yale format
- # Etc.



More Advanced Topic: Application using LA

- PageRank: imaging incredible large matrix
- Modern <u>Digital imaging</u>.
 - Video tracking: Xbox Kinect
- Genetics
- Cryptography
- Economic
- More ...

More Advanced Topic: Application using LA

- Schedule & auto tuning
 - Test cases and pre-determined
 - Dynamically schedule
- Kernel and Convolution
 - Performs in parallel computers, edges of each blocks need to fix, according to the size of the kernel