
26/01/16	

1	

Parallel Computer Architecture
(brief overview)

Jarmo Rantakokko

Aim: Give an overview of
different types of systems
and to give understanding
on what performance we
can expect from these

What is a parallel computer?

Answer 1: A set of connected processors/cores
Answer 2: “All” modern computers are parallel
 computers (even single core computers)

Compare:
•  EDSAC (1949) 500kHz 100 Flop/s
•  Cray 1 (1979) 80 MHz 4 Mflop/s
•  Cray 1 (1983) 80 MHz 12 Mflop/s
•  Intel P4 (2004) 3.8 GHz 7.6 Gflop/s
•  Intel i7 (2010) 2.3 GHz 37 Gflop/s
•  Nvidia (2012) 732MHz 3.95 Tflop/s

Explanation: Interior parallelism!

26/01/16	

2	

EDSAC
(Priceless, one of a kind)

Cray 1 ($5,000,000)

Nvidia ($120)

The von Neumann model

For each instruction:
1.  Fetch instruction
2.  Decode instruction
3.  Fetch operands
4.  Execute instruction
5.  Write result back

Observations (problems)
1.  Each stage is performed sequentially
2.  A lot of traffic to and from memory

> Several cycles for an instruction to complete.
> Slow devices/operations stalls execution.
> Contention on the data bus to memory.

26/01/16	

3	

Solutions to run faster:

1.  Increase clock rate
⇒ Slow devices (memory) still stalls execution
⇒ More contention on the memory bus
⇒ High power consumption
 Increase freq, increase voltage, p~f*v2

 (Energy cost, cooling problem, battery time)

2.  Introduce parallelism

a.  Within a CPU
b.  Multiple CPUs

Parallelism within a processor:
1.  Parallel busses

 Wider data bus
 Separate data and instruction bus

2. Instruction pipeline

⇒ One instruction per time unit

26/01/16	

4	

How does the performance
depend on the pipeline?

-  Largest machine instruction limits
 the time unit (the speed of pipeline)
-  Uniform stages (no dead time, higher efficiency)
-  Number of stages (more parallelism/speedup)
-  Number of consecutive instruction (startup time minor)

Short, uniform instruction length => RISC processor
(Reduced Instruction Set Computer)
Super-pipelined processor: Extremely short and
simple instructions (long pipelines). Can run with
higher frequency.

Problem: Branches in code, disrupts the pipeline

 Branch prediction in hardware

3. Arithmetical pipelines
Floating point operations are heavy operations, can be
decomposed into smaller operations, for example,
decomposing an adder to adding a few bits at a time.

Useful for loops with arithmetic operations
for (i=0;i<n;i++)

 s[i]=a[i]+b[i]; Without pipeline: 4n t.u.
With pipeline: 4+n-1 t.u.

26/01/16	

5	

4. Multiple operating units

Multiple units for floating point operations (add,mult),
integer arithmetic unit, logic unit, branch unit, etc,

⇒  Parallel instruction stream with 2-4 flops/cycle

Problem:
Serial sections (ordered instructions) limit performance.
•  Use out-of-order and speculative execution in

hardware, i.e., precompute results without knowing
if the instruction will execute or not.

•  Use multiple software threads and fill the units with
instructions from the parallel threads, multithreading.

MEMORY PROBLEM:
Enhancements (1) - (4) => Memory can’t keep up
delivering data at processor speed!

Types of memory
DRAM: Dynamic Random Access Memory

 Charged based devices, needs to be
 refreshed at read/write – takes time ~10-8 s
 Cheap but slow, use for main memory.

(Improvements: SDRAM, DDR SDRAM, RDRAM using
multiple memory banks, can overlap accesses)

SRAM: Static Random Access Memory

 Gate based devices (transistors)
 No need for refreshment, fast but expensive,
 use for registers and cache

26/01/16	

6	

To keep costs down, create memory hierarchy:

Registers

Caches

Main memory

Virtual mem (disk)

Speed

Size

Analogy: Memory hierarchy – Phone numbers

Head

Address book

Phone book

Data base

Memory Hierarchies

Caches: L1 Cache (~128kB, on chip)
L2 Cache (~4MB, on/off chip)
L3 Cache (+8MB, off chip)

Types of caches (techniques to store/replace data):
•  direct mapped – pages alphabetical order
•  fully associative – blank pages
•  set associative – free sections, each section ordered

Memory hierarchies makes it very important with data
layout and data accesses in your codes!

Register
Cache
Main memory
Virtual memory

Cache miss
Page fault, TLB miss

26/01/16	

7	

TLB: Translation Lookaside Buffer
Fast translation table between virtual and physical mem

Virtual mem Physical mem

P2

P1

P3

P4

P5
Pages
~8kB

P1

P2

P3

P4

P5

TLB

If the page’s location is not in TLB we get a miss and
need to find the page in the physical memory, costly!

Performance vs memory

Note: Bad access pattern (bad cache reuse) in
code will move performance location to the right
and good access pattern (cache optimization) will
move performance location to the left!

P
er

fo
rm

an
ce

Problem size

Fits in cache

Fits in main memory

Virtual mem in use

26/01/16	

8	

Vector processors

1.  Vector instructions
Vadd, vmult, etc (complex instructions)

2.  Vector registers
Compare scalar registers in RISC

3.  Memory pipelines (1024 memory banks)
Pipeline memory accesses, no need for
caches, deliver data at clock speed

4.  Vector units
Arithmetical pipelines

5.  Compiler directives for vectorization of code
Similar as for OpenMP

Performance vs memory

P
er

fo
rm

an
ce

Problem size

Very expensive, manufactured in small volumes,
limited to numerical applications with long vectors.

Ex: Cray 1 (1976), Cray X1 (2003), Nec SX, Fujitsu
VPP, Earth Simulator (#1 at top500 in 2002-2004)

26/01/16	

9	

In summary:
A “traditional” processors is very parallel!
But, the parallelism is on a low level and “hidden” for
programmer. Compiler exploits it with loop unrolling,
reordering, merging, splitting etc., if using aggressive
optimization flags (-fast, -O3, -O5, -unroll, or similar).
Manual tuning of code is still necessary!

Moreover, cache optimization becomes increasingly
important, e.g., by exploiting temporal and spatial data
locality and cache blocking, we can easily improve
performance with a factor of 10x.

⇒ Huge gap between practical performance and

theoretical peak performance (marketing numbers).
(Course High Performance Computing and Programming, 5hp, period 4)

Multicore processor design

I

I

I

I

I

I

I

I

Issue
logic

Thread

PC

Pipelines

In the “traditional” processor we run one thread and
issue instructions from this to the multiple pipelines.

26/01/16	

10	

Problems with “traditional” processor
design:

#1: Running out of ILP
Not enough instructions to feed pipelines

#2: Wire delay is starting to hurt
Thinner wires, higher resistance, slower speed

#3: Memory is the bottleneck
Slow memory accesses stalls the execution

#4: Power is the limit, P~F*V2
Cooling problem, high energy cost, low battery time

Solving all the problems, exploring
parallelism:

#1: Running out of ILP
> Feed one CPU with instructions from many threads

#2: Wire delay is starting to hurt
> Multiple small cores with private L1$, shorter paths

#3: Memory is the bottleneck
> Overlap memory accesses from many threads

#4: Power is the limit
> Multiple cores, lower F and V, better performance

26/01/16	

11	

SMT: Simultaneous MultiThreading

I

I

I

I

I

I

I

I

Issue
logic

Thread 1

Thread N
…

PC

PC

Pipelines

Can feed the multiple pipelines with instruction from
many threads.

Overlap memory accesses with computations

26/01/16	

12	

CMP: Chip MultiProcessor (MultiCore)

I

I

I

I

I

I

I

I
Issue
logic

Thread 1

Thread N

…
PC

Issue
logic

PC

Consequences:

Non-parallelized programs will not utilize
the full potential > Waste of resources

Non-parallized programs will run slower
on the new CPUs (lower frequency)

=> Need parallel programming even for
 one single CPU !

26/01/16	

13	

Intel Core2 Quad (IT-servers)

Intel Nehalem Core i7 (Kalkyl – Uppmax)

26/01/16	

14	

Intel Dunnington, 6 core (x2 in iMac)

Intel Xeon E5-series

26/01/16	

15	

Intel Xeon Phi Co-processor
(Many Integrated Core Arcitechture)

•  60-72 Compute cores
•  4 threads per core
•  Up to 1.2 Tflops
•  Tianhe-2 Supercomputer

gullviva.it.uu.se: 1 CPU with 16 cores
tintin.uppmax.uu.se: 320 CPUs with 8 cores

26/01/16	

16	

Graphical Processing Units (GPU)
Main vendors NVIDIA, AMD

Architectural features:
•  Many simple processing elements (16-2668)
•  1000s – 1 000 000s of threads
•  Hardware thread scheduling (1 cycle)
•  Focus on throughput (data parallel tasks)
•  Limited memory (small on chip mem)
•  Limited bandwidth CPU ó GPU (bottleneck)

•  Big caches, hierarchy
•  Branch predictors
•  Out-of-order
•  Multiple-issue
•  Speculative execution
•  Double-precision

Reduce mem latency with
caches and hide with other
instructions

•  None or small caches
•  1000’s of threads
•  1 cycle context switch
•  SIMT instructions (32 threads)
•  Single precision

Hide mem latency with work
from other threads

CPU vs GPU

Larger portion
Compute device

Larger portion
caches

26/01/16	

17	

Graphical Processing Units (GPU)

NVIDIA Tesla K20X
•  2668 cores
•  3.95 Tflops SP (1.31 DP)
•  6 Gbyte Mem
•  Power 235W
•  Price > $3200
(Used in Titan supercomputer)

NVIDIA GeForce 650M
•  384 cores
•  650 Gflops SP
•  1 Gbyte Mem
•  Power 64W
•  Price $120
(C.f. CPU: 4 core, 2.3GHz,
4 flop/cycle => 37 Gflops DP)

GPU is a significant source of computational power!

Models for Parallel Computers

1. Shared memory (multiprocessor)

CPU CPU CPU CPU

$ $ $ $

Interconnect

Main memory

Ex: IT-servers, 2 proc sharing memory

26/01/16	

18	

Problem:

-  Not scalable (above 64 proc)
Memory bottleneck becomes worse

-  Cache-coherency problem (CC)
Several processors have the same data
element in its cache and one changes the
data, the other caches must be invalidated.
(Handled with snoop or directory based
protocols.)

Important problem to consider when
programming OpenMP, we have true sharing
and false sharing effects which results in
communication of invalid data in caches.

2. Distributed memory (multicomputers)

CPU CPU CPU CPU

Interconnect

Mem Mem Mem Mem

Separate memory for each CPU
Ex: PC-cluster with Ethernet interconnect

26/01/16	

19	

3. Cluster of SMP’s (symmetric multiprocessor)

Connect several shared memory computers.
If hardware supports global address space we
have a numa-machine.

Ex: Cluster of IT-servers, 2 processor nodes
connected with Ethernet.

4. Parallel Vector Processors (PVP)

Connect several vector processors

Ex: Earthsimulator (2002), 5120 vector processors

26/01/16	

20	

Flynn’s taxonomy: (characterize parallel computers)

Instruction stream: single (same instr on all cpus)
 multiple (diff instr on diff cpus)

Data stream: single (same data on all cpus)

 multiple (diff data on diff cpus)

 SISD
“Traditional serial CPU”

 MISD
“Not applicable”

 SIMD
“Array processor”

 MIMD
“General parallel comp”

Instruction stream
Single

Single

Multiple

Multiple

Data
stream

Array processor (SIMD)

A A A A A A A A A A A A

Master
 CPU

Master – Controll processor, front end
A – Slave processor, ALU+Mem

The slave processors are synchronized, all doing the
same operation at the same time (SI) but with different
data (MD). Popular ~20y ago, Thinking Machine CM5
with up 64k slave processors. (C.f. GPU today)

26/01/16	

21	

Network (interconnect)

The performance of the network is often critical
for the total performance of the parallel computer
(depends on the application).

1. Dynamic interconnects

Crossbar switch
+ Multiple independent paths
-  Expensive P2 switches
-  Not scalable

Multi stage switch
-  Less paths
+ Less expensive
+ More scalable

26/01/16	

22	

2. Bus based network

Processors are connected with a global shared bus
+ Simple to construct
+ Inexpensive
- Saturates at a small number of processors
 (especially with snooping protocols)

3. Static networks (expensive, dedicated)

•  Completely connected (all to all)
•  Star connected
•  Linear array
•  2D/3D Mesh or torus
•  Fat tree (wider connections close to root)
•  Hypercube

Example: 1,2,3, and 4 dim Hypercubes

26/01/16	

23	

Communication models

1.  Store-and-forward
Each intermediate node waits for the entire
message to arrive before it forwards it.
Inefficient but avoids blocking paths

2.  Cut-through
The message is decomposed into smaller
pieces and pipelined through the network
⇒ Tc= ts + n tw
ts – start up time, time for the first piece to reach
the receiver (algorithm, switch time, distance)
tw – transfer rate (1/bandwidth)
n – message length

Use “pingpong” program to measure ts and tw at lab 1.

Latency 2.5 us
Bandwidth 10.7 GB/s

On the Mac

26/01/16	

24	

On the IT servers

Communication
Optimization is
really important !

Parallel Computers at Uppsala University

IT-servers:
•  beurling.it.uu.se
•  celsius.it.uu.se
•  geijer.it.uu.se
•  fries.it.uu.se
•  linne.it.uu.se
•  polhem.it.uu.se
•  scheele.it.uu.se
•  sernander.it.uu.se
•  svedberg.it.uu.se
•  tiselius.it.uu.se

Intel Core2 Quad
10 nodes x 2
CPUs x 4 cores
Gigabit Ethernet
between nodes

•  gullviva.it.uu.se
•  tussilago.it.uu.se
•  vitsippa.it.uu.se

AMD Opteron
16 core

26/01/16	

25	

Kalkyl.uppmax.uu.se (2010)
 - 348 nodes x 2 proc x 4 cores = 2784 cores
 - Intel Xeon 5520 (Nehalem, Core i7) 2.26 GHz
 - DDR Infiniband interconnect
 - Peak performance 20,5 Tflop/s
 - Total memory 9,5 TByte RAM

Halvan.uppmax.uu.se (2011)
 - 1 node x 8 proc x 8 cores = 64 cores
 - Intel Xeon 6550 2.00 GHz
 - Shared memory 2048 GByte RAM

Tintin.uppmax.uu.se (2012)
 - 160 nodes x 2 proc x 8 core = 2560 cores
 - AMD Opteron 6220
 - QDR Infiniband interconnect
 - 64 GByte RAM per node (10.2 Tbyte)
 - 4 GPU Nvidia M2050, each 448 cores.

Milou.uppmax.uu.se (2013)
 - 208 nodes x 2 proc x 8 core = 3328 cores
 - Intel Xeon E5-2660
 - 4xQDR Infiniband interconnect
 - 128 GByte RAM per node (26.6 Tbyte)

26/01/16	

26	

Guided tour at UPPMAX server room,
gather inside entrance at Ångström
Laboratory at 15.00 (and 15.20).

