
page ! /!1 4

Operating systems I
(1DT044)

Operating systems and process-oriented
programming

(1DT096)

Final written exam

Friday 2018-03-16, Fyrishov, 14:00 - 19:00

!

Correct answers

Mixed concepts

LC Concept LS Statement

A System call K Suspends the execution of the parent process while the child executes.

B Critical section O A notification sent to a process in order to notify it of an event that occurred.

C Paging G A non-preemptive scheduling algorithm.

D TLB Sits between the main memory and the CPU registers.

E Context switch A wrapper around the command interpreter that adds useful features that makes it
easer to enter commands.

F Round Robin H Entire process will block if a thread makes a blocking system call.

G SJF L Controls the hardware and coordinates its use among the various application
programs for the various user.

H Many-to-one B Requires mutual exclusion.

I fork Q A concurrent programming algorithm for mutual exclusion.

J exec C Solves the problem with external fragmentation.

K wait S Amount of time it takes from when a request was submitted until the first response
is produced.

L Operating systems A Requesting service from the kernel of the operating system.

M Message-passing I A process creates a copy of itself.

N Pipe T Total memory space exists to satisfy a request, but it is not contiguous.

O Signal D Improves virtual address translation speed.

P Race condition E Enables multiple processes to share a single CPU and is an essential feature of a
multitasking operating system.

Q Peterson's solution N A simplex FIFO communication channel that may be used for one-way
interprocess communication (IPC).

R Throughput R Number of processes that complete their execution per time unit.

S Response time P Behaviour of an electronic, software or other system where the output is
dependent on the sequence or timing of other uncontrollable events.

T External fragmentation Requires a priori information.

F Assigns a fixed time unit per process, and cycles through them.

J Runs an executable file in the context of an already existing process.

M Useful for exchanging smaller amounts of data, because no conflicts need be
avoided.

A variation on linked allocation.

page ! /!2 4

Module 1

1.1) B

1.2) D

1.3) A

1.4) C

1.5) C

Module 2

2.1) D

2.2) 0 = New, 1 = Ready, 2 = Running, 3 = Terminated, 4 = Waiting

2.3) a = fork, b = exec, c = wait, d = exit

2.4) a = I/O request completion, b = I/O request, c/d = time slice interrupt, c/d = fork()

2.5) D

2.6) A

Module 3

3.1) C

3.2) D

3.3) Average response time = 5/4 = 1.25, Average waiting time = 30/4 = 7.5

3.4)

PSJF P1 P2 P3 P4 P1 (2 pt)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

RR, q = 3 P1 P2 P1 P3 P2 P4 P1 P4 (2 pt)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

page ! /!3 4

Module 4

4.1) B
4.2) Mutual exclusion, No preemption, Hold and wait, Circular wait
4.3) D
4.4) C
4.5)

Yes, the state is safe as we found a sequence <T1, T0, T2, T3, T4> that made it possible for all tasks
to be grated all their needs at once.

Other similar sequences are also possible. For example by starting with T3 or T4. For all sequences
the amount of available resources at the end must be [12, 12, 14, 3].

Module 5

5.1) C

5.2) Virtual address space = 4 GiB, Physical address space = 256 MiB, page/fram size = 4 KiB

5.3) A

5.4) B

Allocation Max Need Available

Task A B C D A B C D A B C D Done Step A B C D Choice
T0 4 1 0 0 6 5 6 0 2 4 6 0 TRUE 1 0 2 5 1 T1
T1 2 3 6 0 2 5 6 0 0 2 0 0 TRUE 2 2 5 11 1 T0
T2 4 5 3 1 6 5 3 2 2 0 0 1 TRUE 3 6 6 11 1 T2
T3 0 0 0 1 0 5 7 1 0 5 7 0 TRUE 4 10 11 14 2 T3
T4 2 1 0 0 2 1 0 0 0 0 0 0 5 10 11 14 3 T4

- 12 12 14 3 -

page ! /!4 4

