

Institutionen för informationsteknologi

Olle Gällmo

Universitetsadjunkt

Adress:

Lägerhyddsvägen 2

Box 337

751 05 Uppsala

Telefon:

018 - 471 10 09

Telefax:

018 – 51 19 25

Hemsida:

user.it.uu.se/~crwth

Epost:

olle.gallmo@it.uu.se

Information Technology

Olle Gällmo

Lecturer

Address:

Lägerhyddsvägen 2

Box 337

SE-751 05 Uppsala

SWEDEN

Telephone:

+46 18 - 471 10 09

Telefax:

+46 18 – 51 19 25

Web site:

user.it.uu.se/~crwth

E-mail:

olle.gallmo@it.uu.se

Machine Learning
written examination

Tuesday, August 22, 2015

14
00

 - 19
00

Allowed help material: Pen, paper and rubber, dictionary

Please, answer (in Swedish or English) the following questions to the

best of your ability!

Please, only write on ONE SIDE OF THE PAPER!

Any assumptions made, which are not already part of the problem

formulation, must be stated clearly in your answer unless is it explicitly

stated below that you don't have to.

The maximum number of points is 40. To get the grade 3 (pass) a total of

20 points is required. The grade 4 requires 27 points and grade 5 requires

32 points.

I will drop in to answer questions sometime around 15.30.

In this exam, some concepts may be called by different names than the

ones used in the book. Here is a list of useful synonyms and acronyms:

 XOR = Exclusive OR (in Boolean logic)

 Multilayer perceptron = MLP = Feedforward network of (usually

sigmoidal) summation units

 Back propagation = Backprop = Generalized delta rule

 RPROP = Resilient back propagation

 RBF(N) = Radial Basis Function (Network)

 SCL = Standard Competitive Learning = LVQ-I without a

neighbourhood function

 SO(F)M = Self Organizing (Feature) Map

 GNG = Growing Neural Gas

 Population methods = search algorithms with multiple search

points, including genetic algorithms (GA), genetic programming

(GP), particle swarm optimization (PSO) and ant colonly

optimization (ACO).

Good luck!

12 students wrote this exam. 1 passed with grade 5, 2 passed with grade 4, 4
passed with grade 3 and 5 failed. The top score was 35.

Commented version of the exam questions below.

 Supervised learning

1. A very common challenge in machine learning, which almost all learning

algorithms must face, is to avoid overtraining. Explain the concept, and

how noise injection may help prevent this!! (3+2=5)

COMMENT: Overtraining (= overfitting) typically occurs when a learning system

with too great representational power (for example a neural network with too many

hidden nodes) is trained on too little data, or for too long. This increases the risk

that the learning system will either learn the training set examples by heart, or

create a more complex solution than necessary to fit the data. An overtrained system

will not generalize well, i.e. it will perform badly on new data, not seen during

training.

Point reductions for some vague descriptions (for example being unclear when/why

it occurs)

Noise injection is to add a small amount of noise to the input values every time an

input pattern is presented to the learning system, so that the patterns never look

quite the same. It forces the learning system to find more general representations.

Some students suggested (without penalty) that this is done by extending the training

set with slightly modified copies of the existing patterns. That would work too, but

maybe not as well since all patterns would still look the same every time they are

presented.

Point reductions for suggesting that the noise is added in the form of extra inputs,

for suggesting that noise injection is to extend the set with new random patterns

(how would you then decide the target values?), or not being clear that it's the input

values which are modified, not the desired outputs (which would make the input-

output mapping non-functional).

2. Define a binary perceptron (formally, i.e. write down the mathematical

expressions for what it computes), and explain why a single binary

perceptron cannot solve the XOR problem! (3+2=5)

Comment:



























 






0

0

01

1

#

 where
0,0

0,1

w

x

inputsn

xwxwS
S

S
y

n

i

ii

n

i

ii

where y is the output, wi is a weight, xi is an input and  is the threshold. Point

reductions for incomplete definitions, or for describing some special case (e.g. only

for two inputs which is not what "binary" means here), for having a sigmoidal

activation function (not binary), or no activation function at all. Many students did

not answer this first part of the question, in which a formal definition was explicitly

asked for. A general description without any information on how the node computes

its output value, received no points.

Full credit for the second part required that the student illustrated the XOR problem

as a classification problem, to show that the classes are not linearly separable,

together with at least a statement that the perceptron forms a linear discriminant

(line, or hyperplane). (I did not require proof of the latter though, since the question

was to “explain” this, not to “show” or “prove”.)

It is not the node being binary (the step function) which makes the perceptron form a

hyperplane. The shape of the discriminant is a consequence of the weighted sum

(linear combination).

 3. Describe the back propagation learning rule, with enough detail for a

reader to be able to take your description and implement it! You may

assume that the reader knows what neurons, weights, and multilayer

perceptrons are, but not how they are trained ... (5)

See handout (slides) from lecture 4.

Point reductions for factual errors, but mostly for incomplete descriptions. The

question formulation had a strong requirement on details here, which is very

difficult to satisfy if you don't formulate the answer as an algorithm.

4. Explain the basic principle for manipulating step lengths in RPROP! .. (3)

The idea is to look at the sign of the partial derivative, ∂E/∂w. It if keeps its sign, it

indicates that we are moving downhill and can increase speed (increase the step-

length). If it changes sign we have probably overshot a minimum and should reduce

it.

Some point reductions for being unclear what the sign represents (it's that it flips

which is interesting, it's not the case that positive is "good" or negative is "bad"), or

for just stating general principles such as reducing the step length over time (which

is a good principle but not what RPROP does).

5. Radial basis function networks belong to a family of algorithms

sometimes called "Localized Learning Systems". What is the difference

between RBFs and MLPs, which makes the RBFs "localized" and the

MLPs more global? .. (2)

RBF hidden nodes (only the hidden nodes) compute a distance between the input

vector and a weight vector, whereas MLP hidden nodes compute weighted sums.

This makes the RBF discriminant a hypersphere (assuming Euclidean distance),

which covers a local region, whereas MLP hidden nodes form hyperplanes which

are infinite. Each hyperplane cuts the whole universe in half.

RBFs feed this distance through a Gaussian function, which has a maximum for 0

and decreases when the distance increases. In other words, a RBF hidden node only

responds with high values for patterns close to its region, and with very low values

for 'outliers' far from that region. MLP hidden nodes feed their weighted sums

through a sigmoid. The response only depends on the distance from the hyperplane,

which is infinitely long, and the maximum/minimum values are for patterns infinitely

far from it.

 Unsupervised learning

6. Explain the winner-takes-all problem in standard competitive learning,

and what can be done to avoid it (still using SCL)! (2+2=4)

Competitive learning is to move the closest node (codebook vector) towards the

latest input vector, to make it more likely to win also next time the same input vector

is presented. The winner-takes-all problem occurs when a few nodes, in the extreme

case only one node, wins all the time because they are closer than the other nodes to

all the data. The other nodes will never win and therefore never move. At best this

leads to underutilization of the network, at worst all the data is classified to the

same class.

The most common way to avoid this is to initialize the weight vectors by drawing

vectors from the input data, so that each node is guaranteed to win for at least one

input vector. Another way is to include the frequency of winning in the distance

measure, so that a node that wins a lot will appear to be further away than it

actually is.

Introducing a neighbourhood function works as well, but is no longer SCL (by

definition, see first page). Some point reductions also for not being clear why the

winner wins and/or what happens when it does.

7. Self-organizing feature maps have a fixed neighbourhood topology,

Growing Neural Gas has a dynamic neighbourhood and Standard

Competitive Learning has no neighbourhood at all. Explain what this

means in all three cases!. .. (3)

The neighbourhood topology decides which nodes in the network, if any, are moved

together with the winner towards the input.

In SCL there is no such neighbourhood, i.e. only the winner is moved.

In SOFM, the neighbourhood is hard-coded as a grid and in that sense fixed, though

the amount by how much a neighbour is moved towards the input may change over

time. In other words, who is neighbour to whom is fixed, but the step length is not.

In GNG, the neighbourhood is changing over time, by updating a graph. Nodes that

strive for the same cluster may become neighbours, i.e. be connected in this graph if

they were not already, and neighbouring nodes that strive for different clusters may

have their neighbour status revoked, by cutting the edge between them in the graph.

Point reductions for incomplete descriptions, most commonly not mentioning how

the neighbourhood is defined (by a graph), what the effect is (that it decides which

nodes to move), or implying that edges in GNG can only be removed (not created).

 Reinforcement learning

8. Draw a state transition graph for a board game (or similar) being played

by a reinforcement learning agent! Then use this graph to explain how Q-

values are updated in Q-Learning, and how this is different from Sarsa!

(The explanation is more important than remembering the exact update

equations, though that probably helps) ... (5)

See graph to the left (a similar example was discussed on lecture 8). The choices

marked with * are the greedy choices (the ones with max Q-value). Q-Learning

updates Q-values toward the max Q-value in the next state, i.e. it assumes that the

agent will choose a greedy move there. Sarsa updates Q-values towards the Q-value

of the chosen action (greedy or not). In the figure, in a, we chose the greedy action

(b=b*) so there is no difference in that case. In b, however, we chose c which is not

the greedy action (c*), so Q-Learning and Sarsa will update the Q-value of b

towards different values.

Point reductions for failing to illustrate the differences (no graph at all, graphs that

do not illustrate state transitions, or linear ones without any choices to be made, for

example). (Very few students seemed to know what a state transition graph is, which

is surprising in itself but even more so since this is how the difference between Q-

Learning and Sarsa was first explained on the course.) Point reductions also for

claiming that the Q-learning is greedy, which it isn't, and/or for other

misconceptions on what the Q-values are updated towards.

Common mistake which was not punished: Several students wrongly claimed that Q-

values in Q-learning are monotonically increasing and that they can only decrease

in Sarsa. This is not true. Q-values can decrease also in Q-learning, depending on

(for example) their initial values (even if initialized to 0, the max Q-value in a state

may be negative) or if the environment is non-stationary.

Population methods

9. Population methods, for example genetic algorithms and particle swarm

optimization, usually don't follow, or depend on, gradients in the search

space. Explain what this means and why this should be both an advantage

(at least one, there are several) and a disadvantage! (3)

To follow gradients in the search space is to use the slope of the objective function

(its derivative) to decide in which direction to move, for example in the direction of

the steepest descent. (Many students did not answer this part)

Pro: The most important advantage (required for full credit) of not following

gradients is that it should reduce the risk to get stuck in local optima. If we always

follow gradients, we will almost certainly get stuck in the closest local optimum.

Pro: Another advantage is that the objective function does not have to be

differentiable. In classification, for example, we usually want to minimize the

number of misclassifications, which is an integer and not differentiable so we have

to express the objective function in some other way if the method requires gradients.

Pro: A third possible advantage is that it might be too time-consuming to compute

gradients for each member of a large population. Population methods work best if

the computations per member are as simple as possible.

Cons: The disadvantage of not following gradients is that it probably makes it more

difficult to find the exact optimum when close to it. Fine-tuning is difficult if you

throw away information on gradients.

Unjustified claims that one way is faster than the other did not receive points.

10. Genetic Programming

a) Describe the most common basic form of recombination

(crossover) used in Genetic Programming! (Note, GP, not GA). .. (3)

GP operates on parse trees, as illustrated in class. Crossover is to select a random a

sub-tree of each parent and swap them.

Some point reductions for vagueness (illustrated examples would probably have

helped). No points to students who did not heed the warning (within parenthesis, the

question was about genetic programming, not genetic algorithms)

b) Given this crossover operator, can we be sure that the new

individual encodes a legal (evaluable) expression? If not, is this a

problem? ... (2)

No, we cannot. In fact, it is very likely that crossover produces non-functional

offspring this way, unless we put constraints on how the subtrees are selected. Even

a simple operation such as swapping two constants may lead to a division-by-zero

error, for example.

In theory it works anyway, since the non-functional individuals are not likely to get

a high fitness, so they will probably not be selected for the next generation anyway.

But this can be very inefficient. If we want GP to perform better than random

search, we must consider this issue.

