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Machine Learning 
written examination 

Tuesday, June 13, 2017 

8
00

 - 13
00 

Allowed help material: Pen, paper and rubber, dictionary 

 

Please, answer (in Swedish or English) the following questions to the 

best of your ability! 

Please, only write on ONE SIDE OF THE PAPER! 

Any assumptions made, which are not already part of the problem 

formulation, must be stated clearly in your answer unless is it explicitly 

stated below that you don't have to. 

The maximum number of points is 40. To get the grade 3 (pass) a total of 

20 points is required. The grade 4 requires 27 points and grade 5 requires 

32 points. 

I will drop in to answer questions sometime between 9.00 and 9.30.  

 

In this exam, some concepts may be called by different names than the 

ones used in the book. Here is a list of useful synonyms and acronyms: 

 

• Perceptron = summation unit = SU = conventional neuron 

• Binary perceptron = perceptron with a binary step function as its 

activation function 

• MLP = Multilayer perceptron = Feedforward neural network of 

(usually sigmoidal) summation units 

• RBF(N) = Radial Basis Function (Network) 

• SCL = Standard Competitive Learning = LVQ-I without a 

neighbourhood function 

• GNG = Growing Neural Gas 

• EC = Evolutionary Computation (for example genetic algorithms) 

• PSO = Particle Swarm Optimization 

• ACO = Ant Colony Optimization 

• AS = Ant System (the basic form of ACO discussed on this 

course) 

 
There are fewer main questions on this exam compared to the previous one, but more 

connected sub-questions. It also contains more (sub)questions where you are expected 

to explain things. However, in all cases, there is a short explanation in a few sentences 

which would give full credit. Depending on how you explain things the length may 

vary, but if you need more than one page you are probably on the wrong track. 

18 students wrote this exam. 2 passed with grade 4, 4 passed with grade 3 and 12 

failed.  

 

Commented version of the exam questions below. 



 

1. A binary perceptron defines a hyperplane in the input space and responds 

with a +1 on one side of it, 0 on the other. The figure to the left illustrates 

four hyperplanes, together forming the shape of a diamond. Below that, a 

binary perceptron which defines one of them. The hyperplanes are 

enumerated 1-4 and they cut the x1-axis at -1 and +1 and the x2-axis at -2 

and +2.  

a) Which of the four hyperplanes is defined by the perceptron below? 

(include a test to show that your answer is correct) ...................... (3) 

COMMENT: The perceptron defines hyperplane 4.  

The line equation of a 2-input binary perceptron (given by setting 

the weighted sum to 0, since the node flips there, and solve for x2) 

is:  

 

This cuts the x2 axis at θ/w2. and the x1 axis at θ/w1. So, in this 

case, the x2 axis at 2 and the x1 axis at -1. Some point reductions 

for non-convincing arguments or lack of a test. 

b) On which side of the hyperplane does the perceptron in the figure 

respond with a +1? (include a test to show that your answer is 

correct) ........................................................................................... (1) 

COMMENT: The node reponds with +1 on the outside (of the 

diamond), i.e. with 0 on the origo-side. Easiest tested for origo. 

With both inputs equal to 0 the weighted sum is -2 (due to the 

threshold) and therefore the node's output is 0 on that side. 

c) What is the simplest way to adjust the weights of this perceptron so 

that it responds with a +1 on the other side? .................................. (2) 

COMMENT: By negating all weights (including the threshold). 

Some students negated just some of the weights, not all of them. 

This would move the hyperplane – we want to flip it, not move it.  

1p deduction if only the input weights were negated, or only the 

threshold (having the same effect, moving the hyperplane to the 

position of hyperplane 2). 2p reduction if only one of the input 

weights were negated (in effect moving the hyperplane to the 

position of hyperplane 1 or 3). 

Figures for question 1. 
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2. Multilayer perceptrons 

a) Neural networks used for function approximation usually should 

have linear outputs. Why? .............................................................. (2) 

COMMENT: Because we usually do not know the range of the 

target function, and even if we do it is unlikely that the range 

happens to be in the range of the usual sigmoid [0,1]. A function 

approximator should be able to output any value. This does not 

reduce the network's computational abilities. It is the hidden 

layer which must be non-linear, not the output layer. 

This was intended to be an easy question, but for some reason it 

turned out not to be – only one student got full credit. Some 

students' answers were either trivially true (more or less given by 

the question), or not true at all (claiming that linear outputs are 

necessary to make them differentiable for example). 

b) How many hidden nodes would be required (at least), for a 

conventional multilayer perceptron (with one hidden layer) to do a 

good approximation of the function below? Why? ........................ (3) 

 

 

 

 

COMMENT: Five, since the function has five monotonic regions. 

The hidden layer of a multilayer perceptron consists of sigmoidal 

nodes and sigmoids are monotonic. We therefore usually need at 

least as many hidden nodes as there are monotonic regions in the 

target function. Partial credit (2p) for counting the number of 

inflection points instead (4 in this case). 

Points deducted for arguments based on hyperplanes. They are 

not relevant here – this is function approximation, not 

classification. Function approximation does not work by trying to 

fit hyperplanes to the function (though in this case, that kind of 

reasoning would lead to the same result). 



 

c) What is the likely effect on this approximation if you have too many 

hidden nodes? ................................................................................. (2) 

COMMENT: Too many hidden nodes is likely to lead to overfitting 

and the approximation to oscillate between the training set data 

points, i.e. solutions where there are more motonic regions than 

necessary to fit the data. 

Point reductions for vague explanations or just talking about 

overfitting without saying anyting about what it means for the 

shape of the approximation. 

d) One way to reduce this effect is to restrict the freedom of the hidden 

layer nodes. Several such methods have been discussed on this 

course, for example weight decay. What is weight decay? ............ (2) 

COMMENT: Weight decay is to let each weight strive for 0. A 

simple way to implement this: After updating a weight w, update 

it again using wnew=(1-ε)wold, where ε=[0,1[ is the decay rate.  

Weight decay can be used as a pruning technique (cutting 

connections with weights ending up close to 0), but it restricts the 

freedom of the hidden layer even if we don't cut connections. (It's 

also good for numerical reasons) 

The general concept here is called regularization. Other 

regularization methods mentioned or discussed on this course 

include Early stopping, Dropout, Noise injection, Multitask-

learning, and Lagrangian optimization (adding constraint terms 

to the objective function). 

Point reductions for vague or incomplete explanations, or for 

misconceptions on what weight decay does. Some students seem 

to have confused weight decay with the idea of reducing the 

learning rate (η) over time. 



 

3. Radial basis function (RBF) networks 

a) What is computed by a hidden node in a RBF network? (in the feed-

forward phase) (a description in words is fine as long as it contains 

all relevant aspects) ....................................................................... (2) 

COMMENT: RBF hidden nodes compute the distance between the 

input vector x and the weight vector w and feed that through a 

Gaussian activation function (or similar shape), thus producing a 

node value which is at max (1) for x=w and decreasing with 

distance from w (for a Gaussian, assymptotically towards 0).  

There is no threshold weight, but on the other hand there must be 

a parameter which defines the width of the activation function 

(for a Gaussian, the standard deviation, σ). The comment in the 

question on "all relevant aspects" was intended as a hint not to 

forget the widths. 

b) How are RBF networks usually trained? ....................................... (3) 

COMMENT: The two layers are trained differently. The output 

layer is just a layer of regular perceptrons and as such can be 

trained by for example the delta-rule.  

The hidden layer positions (x), are usually trained by competitive  

learning or K-means. Their widths (σ) are usually set to a 

constant value, computed after the positions have been found, for 

example to the average distance between a node and its closest 

neighbour (in weight space). 

4. Unsupervised learning 

a) Standard competitive learning and K-Means are closely related. 

How? .............................................................................................. (2) 

COMMENT: They are equivalent, if standard competitive learning 

is trained by epoch/batch learning. (If pattern learning is used, 

standard competitive learning becomes more stochastic, due to 

the random order of patterns presentations.) 

b) What would happen to the network weights if you trained a self 

organizing feature map on random data (i.e. data drawn from a 

uniform distribution)? .................................................................... (2) 

COMMENT: They would also be uniformly distributed. The point 

of self organizing feature maps is to preserve topology, i.e. to 

preserve statistical distributions. 

Some students claimed that the weights would become equal, i.e. 

converge to the same spot. That would not preserve topology. 



 

c) In Growing Neural Gas, new nodes are inserted between the node 

with the greatest accumulated error, and the node among its current 

neighbours with the greatest error. How is this error defined? ...... (2) 

COMMENT: The error is a (discounted) accumulated distance the 

node has moved around as a winner. A node which moves around 

a lot, when it wins, is likely to need help covering the data. 

5. Most reinforcement learning algorithms are variants of an even more 

general concept called temporal difference learning. Use the state 

transition graph below to explain temporal difference learning 

 

 

 

 

 

a) Define V(s) recursively in terms of the following rewards and 

values! ............................................................................................ (2) 

COMMENT: V(s) = r + γV(s'), where γ is a discount factor in the 

range [0,1[. 

This is a relation, not an update rule. Learning rates do not apply 

here. Nor do exploration rates (ε) which some students had 

confused with the discount factor. 

b) Show how values are updated, using the TD(0) update rule! ........ (2) 

COMMENT: They are updated proportionally (the learning rate, 

η, is the proportionality constant) to the TD-error, which is the 

difference between the two sides of the equation from the 

previous question. The update rule then becomes: V(s) := V(s) + 

η[r + γV(s') – V(s)]. 

c) In Q-Learning and Sarsa, values are associated to state-action pairs 

instead of just states, as in TD(0). A common way to make sure that 

Q-Learning/Sarsa agents explore is to use the ε-greedy algorithm. 

What is ε-greedy? ........................................................................... (2) 

COMMENT: ε-greedy is perhaps the simplest way to implement 

stochastic action selection. With probability ε, the agent explores 

(selects a random action). Otherwise (= with probability 1-ε) it 

exploits what it knows, i.e. takes the action that is currently 

believed to be best, i.e. the one with the highest Q-value. 

Some students in effect just repeated what was given in the 

question – that ε-greedy is for exploration. The question here was 

how ε-greedy does this. Some point reductions also for not 

V(s) V(s’) V(s’’) 

s s’ s’’ states: 

rewards: 

values: 

r r’ r’’ 

... 



 

stating how actions are selected (randomly) when ε-greedy 

decides to explore. 

6. Population methods (evolutionary computing and swarm intelligence) 

a) How does the choice of using fitness or rank selection affect the risk 

of premature convergence in evolutionary computing, and why? . (3)  

COMMENT: Fitness selection may lead to greater risk of 

premature convergence, than rank selection. 

In Fitness selection, individuals are selected proporationally to 

their fitness value. If one individual has a much greater fitness 

then the others, that individual will be very likely to be selected 

and may therefore quickly dominate the population (in effect 

pulling all other individuals to it = premature convergence). 

In rank selection we instead select proportionally to rank in a list 

sorted after fitness. The best individual still has the greatest 

selection probability, but not that much greater than number 

two in the list (even if there is a big difference in actual fitness). 

Some students misunderstood what rank selection does, or failed 

to compare it to fitness selection, just explaining how both may 

lead to premature convergence.  

b) Which design choices in particle swarm optimization affect the risk 

of premature convergence, and how?............................................. (3) 

COMMENT: I should have asked for the 'most important' choices. 

Of course there may be others than than the one I had intended 

for students to discuss here, but the most important are:  

1. The neighbourhood structure (how sparse/dense it is). 

The sparser the structure is, the less risk of premature 

convergence, since the particles will not affect each other 

directly. Therefore gbest (which is the densest form of 

lbest) is more likely to cause problems than lbest using a 

ring structure, for example.  

2. The weight parameters, θ1 and θ2, in the update formula, 

which control the balance of the cognitive and social 

components in the update formula. If the social 

component is too strong, the population will be more 

likely to converge prematurely. 

3. Population size (larger is better), (Not required for full 

credit) 

Some students mentioned Vmax as well, but not with sufficiently 

good arguments on how it would affect premature convergence. 



 

c) Which design choices in Ant System (the basic form of ant colony 

optimization discussed on this course) affect the risk of premature 

convergence, and how? .................................................................. (2) 

COMMENT: The intended answer here was the choice of the 

parameters α and β, which control the balance between 

following pheromone trails v.s. acting on local information in the 

update formula. It's the same argument as for the balance of the 

cognitive/social components in PSO. If the "social component" 

(which here corresponds to the pheromone trails) is to strong it is 

more likely to converge prematurely. 

Population size does not have the same effect here, and if it does 

it may actually affect the risk both ways (but I did not expect 

students to note that). Same thing with evaporation rate – for 

normal value is should not affect this much, but in extreme cases 

it may (no evaporation rate at all for example, which may  

saturate the paths). 

Full credit only required a good discussion on α and β. 

 


