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Machine Learning 
written examination 

Monday, April 3, 2017 

800 - 1300 

Allowed help material: Pen, paper and rubber, dictionary 

 

Please, answer (in Swedish or English) the following questions to the 
best of your ability! 

Please, only write on ONE SIDE OF THE PAPER! 

Any assumptions made, which are not already part of the problem 
formulation, must be stated clearly in your answer unless is it explicitly 
stated below that you don't have to. 

The maximum number of points is 40. To get the grade 3 (pass) a total of 
20 points is required. The grade 4 requires 27 points and grade 5 requires 
32 points. 

I will drop in to answer questions sometime between 9.00 and 9.30.  

 

In this exam, some concepts may be called by different names than the 
ones used in the book. Here is a list of useful synonyms and acronyms: 

 

 Perceptron = summation unit = SU = conventional neuron 

 Binary perceptron = perceptron with a binary step function as its 
activation function 

 MLP = Multilayer perceptron = Feedforward neural network of 
(usually sigmoidal) summation units 

 The XOR problem = special case of odd parity for 2-bit bit strings 
= Return 1 if the number of bits in the string is odd, 0 if it is even 

 Back propagation = Backprop = Generalized delta rule 

 RBF(N) = Radial Basis Function (Network) 

 Cartesian coordinate (system) = (x,y) coordinate (system) 

 SCL = Standard Competitive Learning = LVQ-I without a 
neighbourhood function 

 SOFM = (Kohonen's) Self Organizing Feature Map 

 EC = Evolutionary Computation (for example genetic algorithms) 

 PSO = Particle Swarm Optimization 

 

Olle's ants say hello to spring, and wish you good luck! 
(Olle hopes that you don't need to rely on luck) 

69 students wrote this exam. 50 passed (72%), 20 with grade 5, 20 with 
grade 4, 10 with grade 3. 19 students failed. The top score was 38 and 
the average 25.4 (median 27). 



 

1.  For neural networks, how is the risk of overtraining/overfitting affected 
(increased or decreased) by: 

a) increased network size? (number of hidden nodes and/or layers) 

COMMENT: The risk increases since the network will have more 
parameters than necessary to solve the problem, which is likely 
to lead to overfitting (= overtraining). Another way to describe it 
is that more parameters make it easier for the network to learn 
the patterns "by heart", instead of learning the underlying 
function. 

b) increased training set size? (number of input-target examples) 

COMMENT: The risk decreases. More patterns make it more 
difficult to learn the patterns by heart. 

c) increased training time? (number of passes through the training set) 

COMMENT: The risk increases. The network gets more time to 
overfit or to learn patterns by heart. 

You only have to indicate whether the risk increases or decreases. No 
explanations are necessary. .................................................................. (3) 

 



 

2. A binary perceptron defines a hyperplane in the input space and responds 
with a 1 on one side of it, 0 on the other. Here are 7 binary perceptrons: 

 

 

 

 

 

 

 

 

 

 

a) Since the nodes have two inputs, the input space is 2-dimensional 
and the hyperplane is therefore a line. One of the perceptrons above 
defines the hyperplane shown here. Which one? ........................... (2) 

COMMENT: The correct answer is B. 

The line equation of a 2-input binary perceptron (given by setting 
the weighted sum to 0, since the node flips there, and solve for x2) 
is:  

 

 

This cuts the x2 axis at /w2. and the x1 axis at /w1. So, in this 
case,  should be equal to w2 and w1 should be half of that. That's 
only true for perceptron B. 

b) One of the perceptrons defines a hyperplane which crosses origo 
(0,0). Which one? ........................................................................... (2) 

COMMENT: The correct answer is E, the only perceptron given 
here which has a 0 threhold. That makes the hyperplane cut 
through origo. 

c) Two of the perceptrons define the same hyperplane. They only 
differ on which side the node would output a 1. Which pair? ....... (1) 

COMMENT: The correct answer is A and F. They have the same 
weights, but with opposite signs. This does not change the slope 
or position of the hyperplane, only on which side the node will 
respond with +1. 

For all three sub-questions here (a,b,c), you only have to identify the 
nodes asked for (by its letter name). No explanations are necessary. 
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3. The most common architecture to solve the XOR problem is a 2-2-1 
multilayer perceptron, that is to say a network with two inputs, two 
hidden nodes and 1 output. It is actually possible to solve the XOR 
problem with only one hidden node, if the output node also has direct 
connections to the inputs, bypassing the hidden node (see figure). Find a 
set of weights for this MLP which would solve the XOR problem! ...... (3) 

For simplicity, assume that the nodes are binary. Draw the network on 
your answer sheet and include the weight values –  you don't have to 
explain how you computed them. Threshold/bias values can be written 
down in the nodes, but will be assumed to be thresholds (= subtracted). 

COMMENT: For example, make the output node an OR gate of the 
two network inputs and the hidden node an AND. Then connect 
the hidden node with the output node with a negative weight, so 
that the output will fire only if one of the inputs are 1, but not 
both. For example: 

 

 

 

 

 

 

 

Minor point reductions for minor errors or obscurities, for 
example if the thresholds were set exactly on the limit where the 
node flips. You then must know if the node flips at > or at >= 0.  

0 credit if the suggested solution was too far off (it should have 
been easy to test your solution). For some reason, some students 
came up with non-symmetric networks (weighing one input more 
than the other), which is a peculiar idea since since the problem 
is symmetric. There were also some suggested solutions where 
the top node had 0-weights  to the inputs (only cared about the 
hidden node) which should be obvious can not work. 

Figure for question  3: 
A 2-1-1 MLP to solve 
the XOR problem. 
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4. The update equation for the back propagation algorithm can, under 
certain assumptions discussed below, be written as: 

ijji xw  , where 

  jjjjj ydyy  1 , or 

 
k

kkjjjj wyy  1  

a) One of the  equations apply to the hidden layer(s), one applies to 
the output layer. Which is which? (no explanation required) ....... (1) 

COMMENT: The first  equation is for the output layer, the 
second (with the sum) for the hidden layer(s). 

b) One assumption made in these equations is that the objective 
function to be minimized is the squared error. Which part or parts 
would change if we wanted to change that, to minimize something 
else? (no explanation required) ..................................................... (2) 

COMMENT: Only (dj-yj) in the equation for the output layer 
nodes, would change. The equation for the hidden layer is not 
affected (the hidden nodes are affected, indirectly, through the 
sum over k, but the equation as such is not). 

c) Both equations assume that the nodes are sigmoidal (to be more 
precise, that the activation functions are logistic). Which part or 
parts would change if we used another activation function for the 
nodes? (no explanation required) .................................................. (2) 

COMMENT: yj(1-yj) would change in both equations where it 
occurs. This is the derivative of the logistic function, y=1/(1+e-S), 
and  controls its slope. Answers which did not include  received 
full credit, since  is very often set to 1 in practice. 



 

5. MLP v.s. RBF 

a) Consider the classification problem depicted here to the left. The 
task is to separate the outer (black) circle from the inner (grey), in a 
Cartesian (x,y) coordinate system. Which architecture should be 
most suitable for this task (require the fewest number of nodes) – a 
multilayer perceptron or a radial basis function network? Why? 
(explanation should not require more than a few sentences) .......... (3) 

COMMENT: RBFN should work best since it puts out 
hyperspheres in the input space, i.e. one node is sufficient to 
separate the two classes in this case. A MLP would have to form a 
circular(ish) region by combining hyperplanes, in this case at 
least three hidden nodes (= a triangle with extremely rounded 
corners), plus one output node. 

Some students had confused hyperspheres and Voronoi regions. 
Voronoi regions are not really applicable here. In contrast to 
competitive learning, there is no "winner" here or search for the 
closest node. 

Some point reductions for bad explanations and/or for not being 
clear (or being wrong) on what the discriminants do in the input 
space. 

b) Why is it relevant for the previous subquestion, that the coordinate 
system is Cartesian? (explanation should not require more than a 
few sentences) .................................................................................. (2) 

COMMENT: Because it affects the shapes. For example, if we 
transformed the coordinate system to polar coordinates in this 
case, the problem would become trivial for a MLP, but more 
difficult for RBF. A single binary perceptron node would suffice 
(and it would in this case actually only require one of the two 
input values – the distance from origo). 

Some students claimed that MLP and/or RBFN are only defined 
for Cartesian space. This is not true. The network as such does 
not "know" anything about the coordinate system used. It just 
makes the problem more or less difficult because the shapes (of 
both data and discriminants) change. 

Some students seemed to think that Cartesian means 2D, and 
that this problem therefore is Cartesian by definition. Instead 
they explained how MLP and RBFs behave differently in higher 
dimensions, which is not what was asked for here. 

Some students seemed to think that the coordinate system is 
somehow connected to the activation function and that a 
problem in non-Cartesian space would no longer be 
differentiable. 

Figure for question 5: 
Two cirular regions. 



 

6. Consider the competitive learning network depicted here to the left. The 
three circles on top are the nodes. The numbers by the connections are 
the weights. The black circles at the bottom are the inputs and the 
numbers below are the current input values. What happens now: 

a) Which node wins, given this input, and why? (explanation should 
not require more than a few sentences) ......................................... (2) 

COMMENT: The leftmost node wins, since its weight vector, [1.4, 
0.3],  is closest (Euclidean distance) to the input vector, [1.0, 0.5]).  

Some students had the network compute weighted sums instead 
of distances, which in this case would identify the same winner, so 
that's OK, but in general the weights should be normalized first if 
you want to define the winner this way. Also, if you compute 
weighted sums, the winner is the node with the greatest weighted 
sum, not the smallest. 

b) What happens to the weights of the network if the standard 
competitive learning rule is applied to this situation with step length 
=0.5? Write down the new set of weights and justify your answer 
(the explanation should not require more than a few sentences)... (3) 

COMMENT: The weight vector of the winner is moved halfway 
(since =0.5) towards the input vector, so the new weight vector 
of that node is [1.2, 0.4]. The rest of the weights in the network 
are left unchanged in standard competitive learning. 

Surprisingly many students computed weight changes without 
using the input values (for example, just multiplying the weight 
with the step length). It should be obvious that no learning rule 
could work if it does not care about the input values. 

Some students had the right idea, but did some minor 
mathematical error (sign errors for example) which moves the 
node away from the input. The mistakes may have been minor, 
but it should have been obvious in those cases that the result was 
wrong (further away from the input). 
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Figure for question 6: 
Competitive Learning 



 

7. What is the purpose of the neighbourhood function used in self 
organizing feature maps? Please explain how the neighbourhood function 
is used, what it typically looks like (as a function), and why it is needed 
(what we want to achieve)!..................................................................... (3) 

COMMENT: In SOFM, the nodes are connected in a 
neighbourhood structure (usually a 2D grid). Instead of just 
moving the winner (the weight vector which is closest to the 
input vector), as in competitive learning, we move all weight 
vectors towards the input, but to a degree which depends on how 
far that node is from the winner in the network structure. 

This is done by defining a neighbourhood function f(j,k) where j is 
the index of the node to move and k is the index of the winner 
node. This function should have a max=1 for the winner itself 
(j=k) and then decrease with distance between j and k. A 
Gaussian function, for example. This neighbourhood function is 
used as a multiplier in the update formula: 

  jiiji wxkjfw  ,  

This is what makes self organizing feature maps a map, i.e. 
topologically preserving, so that inputs close to each other in the 
input space will also activate areas close to each other on the 
grid. In other words, this is what makes the 2D map approximate 
the density function in the high-dimensional input space.  

Most common reasons for point reductions: 

 no discussion on topological preservation (or something 
to that effect). Despite several warnings during the 
course, a great majority of the students claimed that the 
task of the neighbourhood function is to avoid the winner-
takes-all scenario of competitive learning. It does indeed 
reduce this risk, but it is a side-effect, not the reason.  

 not being explicit about the distance measure for the 
neighbourhood function, being a distance between nodes 
in the structure, not in the input space.  

 not showing or arguing how the function is applied (to the 
update formula, or in words) 

Some students had confused the neighbourhood structure (the 
grid – deciding who is neighbour to whom) with the 
neigbourhood function (deciding how much to move them). 



 

8. Consider a navigation problem (sketched below) where we want a 
reinforcement learning agent to find the shortest path from A to B. There 
is a dangerous area between A and B (a region of states where the agent 
would be punished or possibly even killed if it enters), so the agent must 
find a path around it, to avoid the area. 

If we train both a Q-learning agent and a Sarsa agent on this problem, 
with constant and non-zero control parameters, the Q-Learning agent 
would typically converge to a shorter route (closer to the danger zone) 
than Sarsa, which would seem to be more careful and converge to a 
slightly longer route around the dangerous area. Why? ......................... (4) 

(If you can't answer the specific question, you can still get partial credit 
by describing the difference between Q-Learning and Sarsa in other 
ways) 

COMMENT: Q-Learning updates the Q-value Q(s,a) for state s and 
action a, based on the maximum Q-value in the next state, s'. It 
does not matter if the agent selected another action there, due to 
exploration, the maximum Q-value in state s' will still be used to 
update Q(s,a). So even if the agent explores from s' and therefore 
enters the danger zone, Q(s,a) will not be affected. 

Sarsa, on the other hand, updates Q(s,a) based on the action 
actually selected in s', so if that was an exploratory move into the 
danger zone, Q(s,a) will be directly affected by that. This will in 
effect push down the expected value for Q(s,a) which may make it 
worth while to take a longer route around the danger zone. 

[Actually, it is not certain that the expected value of Q(s,a) will be 
pushed down sufficiently to make a detour worth while. It also 
depends on the exploration rate and how strongly we reward 
taking the shortest route. For example, in how large the positive 
reward for reaching the goal is, compared to the cost of getting 
there. I did not expect students to find that weakness in the 
problem formulation, and as far as I could tell, no one did] 

Minor point reductions for simply not describing this very well 
(not being convincing). For example not being clear that the 
interesting part is what happens to the values in state s, not in 
state s'. Major point reductions for claiming that Q-Learning is 
greedy, i.e. does not explore at all. 

Some students claimed that Q-values in Q-learning can only grow 
(i.e. that r+max(Q(s',a'))-Q(s,a) is always positive). This is not 
true  in general (though it was for the lab on this course). It 
assumes that the environment is stationary, and it depends on 
the initial Q-values and on the reward strategy. The maximum 
reward may very well be a negative value, for example. This 
mistake did in most cases not affect grading though.



 

 

9. It has been claimed in some course books that that one important 
difference between particle swarm optimization and evolutionary 
computation is that PSO has memory (the particles remember their 
personal bests), while EC does not. This is not strictly true – EC may also 
have such a memory. What is that concept in EC which corresponds to 
the memory in PSO? (explanation should not require more than a few 
sentences) ............................................................................................... (3) 

COMMENT: Elitism – to guarantee that the best individual(s) in 
the population are copied/reproduced as they are, unaltered, to 
the next generation. This way we know that the best solution is 
preserved. 

Partial credit (2p) to descriptions which in effect are elitism, but 
which did not mention the name, or vice versa (mentioning the 
name but not decribing it well enough). 

Reproduction in itself is not the answer (though partial credit 
was given for it, 1p) since it depends on which individual is 
selected (probabilistically). The point with elitism is that 
reproduction of the best individual(s) is guaranteed and 
therefore a reliable memory of the best solution found so far. 

The genotype is not the answer either. This corresponds to the 
position of the particle in PSO, i.e. the position in the search space 
where it is right now (x in PSO, not p). In a way, this is also a form 
of memory, but it is very short-term, since we move/jump around 
all the time. 

Fitness is not a memory either, it's an evaluation. It's the position 
we should remember, not the evaluation of that position. There is 
no use remembering how much gold we found at a treasure site if 
we don't remember where it was.  



 

10. The velocity update equation of the particle swarm optimization method 
lbest, in its basic form, can we written as: 
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where vi,d(t) is the velocity of particle i in dimension d at time t, xi,d(t) is 
the position of particle i in dimension d at time t, and U(0,1) and U(0,2) 
are random numbers drawn from a uniform distribution in the range 
[0,1] and [0,2], respectively. 

a) Explain the variables pi,d and pl,d! .................................................. (2) 

COMMENT: pi,d is the best position found so far by this particle (i), 
pl,d is the best position found so far by any particle among this 
particle's neighbours. This neighbhourhood is fixed and defined 
by a graph, for example a ring structure or a hypercube. 

Point reductions (very common) for not explaining the 
neighbourhood (at least that it is structural and not topological) 

b) 1 and 2 are constants, usually recommended to be set close to 2. 
What's the intuition behind this recommendation? Why 2? .......... (2) 

COMMENT: Since the average is then close to 1. 1 and 2 
controls the step length towards the personal best and the local 
best, respectively. Setting the value close to 2 means that the 
average value will be close to 1, i.e. the search will be centered 
(roughly) around the best positions found so far. There is usually 
no point to go back the exact best positions again, but to search 
around them seems reasonable. 

Some students seemed to think that the question was about the 
PSO extension called constriction (which imposes conditions on 
these two parameters – the sum 1 + 2 must be greater than 4 if 
constriction is used). 

Some students only described the intuition behind the 
parameters as such (how they are weighing the cognitive/social 
components against each other), but missed the main point: Why 
the values should be close to 2. 

(explanations should not require more than a few sentences for each 
sub-question) 


