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Abstract

This paper surveys the field of reinforcement learning from a computer-science perspective. It
is written to be accessible to researchers familiar with machine learning. Both the historical basis
of the field and a broad selection of current work are summarized. Reinforcement learning is the
problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic
environment, The work described here has a resemblance to work in psychology, but differs
considerably in the details and in the use of the word “reinforcement.” The paper discusses central
issues of reinforcement learning, including trading off exploration and exploitation, establishing
the foundations of the field via Markov decision theory, learning from delayed reinforcement,
constructing empirical models to accelerate learning, making use of generalization and hierarchy,
and coping with hidden state. It concludes with a survey of some implemented systems and an
assessment of the practical utility of current methods for reinforcement learning.

1. Imtroduction

Reinforcement learning dates back to the early days of cybernetics and work in statistics, psychology,
neuroscience, and computer science. In the last five to ten years, it has attracted rapidly increasing
interest in the machine learning and artificial intelligence communities. Its promise is beguiling—a
way of programming agents by reward and punishment without needing to specify how the task is
to be achieved. But there are formidable computational obstacles to fulfilling the promise.

This paper surveys the historical basis of reinforcement learning and some of the current work
from a computer science perspective. We give a high-level overview of the field and a taste of some
specific approaches. It is, of course, impossible to mention all of the important work in the field;
this should not be taken to be an exhaustive account.

Reinforcement learning is the problem faced by an agent that must learn behavior through trial-
and-error interactions with a dynamic environment. The work described here has a strong family
resemblance to eponymous work in psychology, but differs considerably in the details and in the use
of the word “reinforcement.” It is appropriately thought of as a class of problems, rather than as a
set of techniques.

There are two main strategies for solving reinforcement-learning problems. The first is to search
in the space of behaviors in order to find one that performs well in the environment. This approach
has been taken by work in genetic algorithms and genetic programming, as well as some more
novel search techniques [101]. The second is to use statistical techniques and dynamic programming
methods to estimate the utility of taking actions in states of the world. This paper is devoted
almost entirely to the second set of techniques because they take advantage of the special structure
of reinforcement-learning problems that is not available in optimization problems in general. It is
not yet clear which set of approaches is best in which circumstances.
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Figure 1: The standard reinforcement-learning model.

The rest of this section is devoted to establishing notation and describing the basic reinforcement-
learning model. Section 2 explains the trade-off between exploration and exploitation and presents
some solutions to the most basic case of reinforcement-learning problems, in which we want to max-
imize the immediate reward. Section 3 considers the more general problem in which rewards can be
delayed in time from the actions that were crucial to gaining them. Section 4 considers some clas-
sic model-free algorithms for reinforcement learning from delayed reward: adaptive heuristic critic,
TD(A) and Q-learning. Section 5 demonstrates a continuum of algorithms that are sensitive to the
amount of computation an agent can perform between actual steps of action in the environment.
Generalization—the cornerstone of mainstream machine learning research—has the potential of con-
siderably aiding reinforcement learning, as described in Section 6. Section 7 considers the problems
that arise when the agent does not have complete perceptual access to the state of the environ-
ment. Section 8 catalogs some of reinforcement learning’s successful applications. Finally, Section 9
concludes with some speculations about important open problems and the future of reinforcement
learning.

1.1 Reinforcement-Learning Model

In the standard reinforcement-learning model, an agent is connected to its environment via percep-
tion and action, as depicted in Figure 1. On each step of interaction the agent receives as input,
i, some indication of the current state, s, of the environment; the agent then chooses an action, «,
to generate as output. The action changes the state of the environment, and the value of this state
transition is communicated to the agent through a scalar reinforcement signal, r. The agent’s behav-
ior, B, should choose actions that tend to increase the long-run sum of values of the reinforcement
signal. It can learn to do this over time by systematic trial and error, guided by a wide variety of
algorithms that are the subject of later sections of this paper.
Formally, the model consists of

e a discrete set of environment states, S;
e a discrete set of agent actions, A4; and
o a set of scalar reinforcement signals; typically {0, 1}, or the real numbers.

The figure also includes an input function I, which determines how the agent views the environment
state; we will assume that it is the identity function (that is, the agent perceives the exact state of
the environment) until we consider partial observability in Section 7.

An intuitive way to understand the relation between the agent and its environment is with the
following example dialogue.
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Environment: You are in state 65. You have 4 possible actions.

Agent: I'll take action 2.

Environment: You received a reinforcement of 7 units. You are now in state 15.
You have 2 possible actions.

Agent: I'll take action 1.

Environment: You received a reinforcement of -4 units. You are now in state 65.
You have 4 possible actions.

Agent: T'll take action 2.

Environment: You received a reinforcement of 5 units. You are now in state 44,

You have 5 possible actions,

The agent’s job is to find a policy #, mapping states to actions, that maximizes some long-run
measure of reinforcement. We expect, in general, that the environment will be non-deterministic;
that is, that taking the same action in the same state on two different occasions may result in different
next states and/or different reinforcement values. This happens in our example above: from state 65,
applying action 2 produces differing reinforcements and differing states on two occasions. However,
we assume the environment is stationary; that is, that the probabilities of making state transitions
or receiving specific reinforcement signals do not change over time.!

Reinforcement learning differs from the more widely studied problem of supervised learning in
several ways. The most important difference is that there is no presentation of input/output pairs,
Instead, after choosing an action the agent is told the immediate reward and the subsequent state,
but is not told which action would have been in its best long-term interests. It is necessary for the
agent to gather useful experience about the possible system states, actions, transitions and rewards
actively to act optimally. Another difference from supervised learning is that on-line performance is
important: the evaluation of the system is often concurrent with learning.

Some aspects of reinforcement learning are closely related to search and planning issues in arti-
ficial intelligence. Al search algorithms generate a satisfactory trajectory through a graph of states.
Planning operates in a similar manner, but typically within a construct with more complexity than
a graph, in which states are represented by compositions of logical expressions instead of atomic
symbols. These Al algorithms are less general than the reinforcement-learning methods, in that they
require a predefined model of state transitions, and with a few exceptions assume determinism. On
the other hand, reinforcement learning, at least in the kind of discrete cases for which theory has
been developed, assumes that the entire state space can be enumerated and stored in memory-—an
assumption to which conventional search algorithms are not tied.

1.2 Models of Optimal Behavior

Before we can start thinking about algorithms for learning to behave optimally, we have to decide
what our model of optimality will be. In particular, we have to specify how the agent should take
the future into account in the decisions it makes about how to behave now. There are three models
that have been the subject of the majority of work in this area.

The finite-horizon model is the easiest to think about; at a given moment in time, the agent
should optimize its expected reward for the next h steps:

h

B m)

t=0

1. This assumption may be disappointing; after all, operation in non-stationary environments is one of the moti-
vations for building learning systems. In fact, many of the algorithms described in later sections are effective in
slowly-varying non-stationary environments, but there is very little theoretical analysis in this area.
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it need not worry about what will happen after that. In this and subsequent expressions, 7; represents
the scalar reward received ¢ steps into the future. This model can be used in two ways. In the first,
the agent will have a non-stationary policy; that is, one that changes over time. On its first step it
will take what is termed a h-step optimal action. This is defined to be the best action available given
that it has h steps remaining in which to act and gain reinforcement. On the next step it will take a
(h — 1)-step optimal action, and so on, until it finally takes a 1-step optimal action and terminates. .
In the second, the agent does receding-horizon conirol, in which it always takes the h-step optimal
action. The agent always acts according to the same policy, but the value of h limits how far ahead
it looks in choosing its actions. The finite-horizon model is not always appropriate. In many cases
we may not know the precise length of the agent’s life in advance.

The infinite-horizon discounted model takes the long-run reward of the agent into account, but
rewards that are received in the future are geometrically discounted according to discount factor v,

(where 0 <y < 1):
[e0]
E() y'rs)
t=0

We can interpret v in several ways. It can be seen as an interest rate, a probability of living another
step, or as a mathematical trick to bound the infinite sum. The model is conceptually similar -
to receding-horizon control, but the discounted model is more mathematically tractable than. the
finite-horizon model. This is a dominant reason for the wide attention this model has received.

Another optimality criterion is the average-reward model, in which the agent is supposed to take
actions that optimize its long-run average reward:

R
hl—l_)nolo E(E Zrt) .
t=0
Such a policy is referred to as a gain optimal policy; it can be seen as the limiting case of the infinite-
horizon discounted model as the discount factor approaches 1 [14]. One problem with this criterion -
is that there is no way to distinguish between two policies, one of which gains a large amount of :
reward in the initial phases and the other of which does not. Reward gained on any initial prefix
of the agent’s life is overshadowed by the long-run average performance. It is possible to generalize
this model so that it takes into account both the long run average and the amount of initial reward
than can be gained. In the generalized, bias optimal model, a policy is preferred if it maximizes the
long-run average and ties are broken by the initial extra reward.

Figure 2 contrasts these models of optimality by providing an environment in which changing the
model of optimality changes the optimal policy. In this example, circles represent the states of the
environment and arrows are state transitions. There is only a single action choice from every state
except the start state, which is in the upper left and marked with an incoming arrow. All rewards are
zero except where marked. Under a finite-horizon model with h = 5, the three actions yield rewards
of +6.0, +0.0, and +0.0, so the first action should be chosen; under an infinite-horizon discounted
model with v = 0.9, the three choices yield +16.2, +59.0, and +58.5 so the second action should be
chosen; and under the average reward model, the third action should be chosen since it leads to an
average reward of +11. If we change h to 1000 and « to 0.2, then the second action is optimal for
the finite-horizon model and the first for the infinite-horizon discounted model; however, the average
reward model will always prefer the best long-term average. Since the choice of optimality model
and parameters matters so mmuch, it is important to choose it carefully in any application.

The finite-horizon model is appropriate when the agent’s lifetime is known; one important aspect
of this model is that as the length of the remaining lifetime decreases, the agent’s policy may change.
A system with a hard deadline would be appropriately modeled this way. The relative usefulness of
infinite-horizon discounted and bias-optimal models is still under debate. Bias-optimality has the
advantage of not requiring a discount parameter; however, algorithms for finding bias-optimal policies
are not yet as well-understood as those for finding optimal infinite-horizon discounted policies.
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+2

Finite horizon, h=4

Infinite horizon, y=0.9
+11
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Average reward

Figure 2: Comparing models of optimality. All unlabeled arrows produce a reward of zero.

1.3 Measuring Learning Performance

The criteria given in the previous section can be used to assess the policies learned by a given
algorithm. We would also like to be able to evaluate the quality of learning itself. There are several
incompatible measures in use.

¢ Eventual convergence to optimal. Many algorithms come with a provable guarantee of
asymptotic convergence to optimal behavior [129]. This is reassuring, but useless in practical
terms. An agent that quickly reaches a plateau at 99% of optimality may, in many applications,
be preferable to an agent that has a guarantee of eventual optimality but a sluggish early
learning rate.

e Speed of convergence to optimality. Optimality is usually an asymptotic result, and so
convergence speed is an ill-defined measure. More practical is the speed of convergence to near-
optimality. This measure begs the definition of how near to optimality is sufficient. A related
measure is level of performance after a given time, which similarly requires that someone define
the given time.

It should be noted that here we have another difference between reinforcement learning and
conventional supervised learning. In the latter, expected future predictive accuracy or statis-
tical efficiency are the prime concerns. For example, in the well-known PAC framework [127],
there is a learning period during which mistakes do not count, then a performance period
during which they do. The framework provides bounds on the necessary length of the learning
period in order to have a probabilistic guarantee on the subsequent performance. That is
usually an inappropriate view for an agent with a long existence in a complex environment.

In spite of the mismatch between embedded reinforcement learning and the train/test perspec-
tive, Fiechter [39] provides a PAC analysis for Q-learning (described in Section 4. 2) that sheds
some light on the connection between the two views.

Measures related to speed of learning have an additional weakness. An algorithm that merely
tries to achieve optimality as fast as possible may incur unnecessarily large penalties during
the learning period. A less aggressive strategy taking longer to achieve optimality, but gaining
greater total reinforcement during its learning might be preferable. ;

e Regret. A more appropriate measure, then, is the expected decrease in reward gained due to
executing the learning algorithm instead of behaving optimally from the very beginning. This
measure is known as regret [12]. It penalizes mistakes wherever they occur during the run.
Unfortunately, results concerning the regret of algorithms are quite hard to obtain.
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1.4 Reinforcement Learning and Adaptive Control

Adaptive control {19, 112] is also concerned with algorithms for improving a sequence of decisions
from experience. Adaptive control is a much more mature discipline that concerns itself with dynamic
systems in which states and actions are vectors and system dynamics are smooth: linear or locally
linearizable around a desired trajectory. A very common formulation of cost functions in adaptive
control are quadratic penalties on deviation from desired state and action vectors. Most importantly,
although the dynamic model of the system is not known in advance, and must be estimated from
data, the structure of the dynamic model is fixed, leaving model estimation as a parameter estimation
problem. These assumptions permit deep, elegant and powerful mathematical analysis, which in turn
lead to robust, practical, and widely deployed adaptive control algorithms.

2. Exploitation versus Exploration: The Single-State Case i

One major difference between reinforcement learning and supervised learning is that a reinforcement-
learner must explicitly explore its environment. In order to highlight the problems of exploration,
we treat a very simple case in this section. The fundamental issues and approaches described here
will, in many cases, transfer to the more complex instances of reinforcement learning discussed later
in the paper.

The simplest possible reinforcement-learning problem is known as the k-armed bandit problem,
which has been the subject of a great deal of study in the statistics and applied mathematics
literature [12]. The agent is in a room with a collection of k& gambling machines (each called a
“one-armed bandit” in colloquial English). The agent is permitted a fixed number of pulls, h. Any
arm may be pulled on each turn. The machines do not require a deposit to play; the only cost is
in wasting a pull playing a suboptimal machine. When arm 7 is pulled, machine i pays off 1 or 0,
according to some underlying probability parameter p;, where payoffs are independent events and
the p;s are unknown. What should the agent’s strategy be?

This problem illustrates the fundamental tradeoff between exploitation and exploration. The
agent might believe that a particular arm has a fairly high payoff probability; should it choose that
arm all the time, or should it choose another one that it has less information about, but seems to
be worse? Answers to these questions depend on how long the agent is expected to play the game;
the longer the game lasts, the worse the consequences of prematurely converging on a sub-optimal
arm, and the more the agent should explore.

There is a wide variety of solutions to this problem. We will consider a representative selection
of them, but for a deeper discussion and a number of important theoretical results, see the book
by Berry and Fristedt [12]. We use the term “action” to indicate the agent’s choice of arm to pull.
This eases the transition into delayed reinforcement models in Section 3. It is very important to
note that bandit problems fit our definition of a reinforcement-learning environment with a single
state with only self transitions.

Section 2.1 discusses three solutions to the basic one-state bandit problem that have formal
correctness results. Although they can be extended to problems with real-valued rewards, they do
not apply directly to the general multi-state delayed-reinforcement case. Section 2.2 presents three
techniques that are not formally justified, but that have had wide use in practice, and can be applied
(with similar lack of guarantee) to the general case.

2.1 Formally Justified Techniques

There is a fairly well-developed formal theory of exploration for very simple problems. Although it
is instructive, the methods it provides do not scale well to more complex problems.
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Figure 3: A Tsetlin automaton with 2V states. The top row shows the state transitions that are
" made when the previous actipn resulted in a reward of 1; the bottom row shows transitions

e When action a; fails, p; remains unchanged (for all j).

This Algorithm converges with probability 1 to a vector containing a single 1 and the rest 0’s
(choogsing a particular action with probability 1). Unfortunately, it does Dot always converge to the
correct action; but the probability that it converges to the wrong one can ba.made arbitrarily small
b{making a small [86]. There is no literature on the regret of this algorithm)

2.2 Ad-Hoc Techniques

In reinforcement-learning practice, some simple, ad hoc strategies have been popular. They are
rarely, if ever, the best choice for the models of optimality we have used, but they may be viewed
as reasonable, computationally tractable, heuristics. Thrun [124] has surveyed a variety of these
techniques.

2.2.1 GREEDY STRATEGIES

The first strategy that comes to mind is to always choose the action with the highest estimated
payoff. The flaw is that early unlucky sampling might indicate that the best action’s reward is less
than the reward obtained from a suboptimal action. The suboptimal action will always be picked,
leaving the true optimal action starved of data and its superiority never discovered. An agent must
explore to ameliorate this outcome.

A useful heuristic is optimism in the face of uncertainty in which actions are selected greedily, but
strongly optimistic prior beliefs are put on their payoffs so that strong negative evidence is needed
to eliminate an action from consideration. This still has a measurable danger of starving an optimal
but unlucky action, but the risk of this can be made arbitrarily small. Techniques like this have
been used in several reinforcement learning algorithms including the interval exploration method [52]
(described shortly), the ezploration bonus in Dyna [116], curiosity-driven exploration [102], and the
exploration mechanism in prioritized sweeping [83].
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2.2.2 RANDOMIZED STRATEGIES

Another simple exploration strategy is to take the action with the best estimated expected reward
by default, but with probability p, choose an action at random. Some versions of this strategy start
with a large value of p to encourage initial exploration, which is slowly decreased.

An objection to the simple strategy is that when it experiments with a non-greedy action it is
no more likely to try a promising alternative than a clearly hopeless alternative. A slightly more
sophisticated strategy is Boltzmann exploration. In this case, the expected reward for taking action
a, ER(a) is used to choose an action probabilistically according to the distribution

¢ER(a)/T

P(a) = S ven eBR(a")/T
a

The temperature parameter T can be decreased over time to decrease exploration. This method
works well if the best action is well separated from the others, but suffers somewhat when the values
of the actions are close. It may also converge unnecessarily slowly unless the temperature schedule
is manually tuned with great care. :

2.2.3 INTERVAL-BASED TECHNIQUES

Exploration is often more efficient when it is based on second-order information about the certainty
or variance of the estimated values of actions. Kaelbling’s interval estimation algorithm [52] stores
statistics for each action a;: w; is the number of successes and n; the number of trials.. An action
is chosen by computing the upper bound of a 100 - (1 — «)% confidence interval on the success
probability of each action and choosing the action with the highest upper bound. Smaller values of
the o parameter encourage greater exploration. When payoffs are boolean, the normal approximation
to the binomial distribution can be used to construct the confidence interval (though the binomial
should be used for small n). Other payoff distributions can be handled using their associated
statistics or with nonparametric methods. The method works very well in empirical trials. It is also
related to a certain class of statistical techniques known as ezperiment design methods [17], which
are used for comparing multiple treatments (for example, fertilizers or drugs) to determine which
treatment (if any) is best in as small a set of experiments as possible.

2.3 More General Problems

When there are multiple states, but reinforcement is still immediate, then any of the above solutions
can be replicated, once for each state. However, when generalization is required, these solutions must
be integrated with generalization methods (see section 6); this is straightforward for the simple ad-
hoc methods, but it is not understood how to maintain theoretical guarantees,

Many of these techniques focus on converging to some regime in which exploratory actions are
taken rarely or never; this is appropriate when the environment is stationary. However, when the
environment is non-stationary, exploration must continue to take place, in order to notice changes
in the world. Again, the more ad-hoc techniques can be modified to deal with this in a plausible
manner (keep temperature parameters from going to 0; decay the statistics in interval estimation),
but none of the theoretically guaranteed methods can be applied.

3. Delayed Reward

In the general case of the reinforcement learning problem, the agent’s actions determine not only
its immediate reward, but also (at least probabilistically) the next state of the environment. Such
environments can be thought of as networks of bandit problems, but the agent must take into account
the next state as well as the immediate reward when it decides which action to take. The model of
long-run optimality the agent is using determines exactly how it should take the value of the future
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into account. The agent will have to be able to learn from delayed reinforcement: it may take a long
sequence of actions, receiving insignificant reinforcement, then finally arrive at a state with high
reinforcement. The agent must be able to learn which of its actions are desirable based on reward
that can take place arbitrarily far in the future.

3.1 Markov Decision Processes

Problems with delayed reinforcement are well modeled as Markov decision processes (MDPs). An
MDP consists of

e a set of states S,
e a set of actions A,
e a reward function R: S x A — R, and

e a state transition function T' : § x A — II(S), where a member of II(S) is a probability
distribution over the set S (l.e. it maps states to probabilities). We write T'(s,a,s’) for the
probability of making a transition from state s to state s’ using action a.

The state transition function probabilistically specifies the next state of the environment as a function
of its current state and the agent’s action. The reward function specifies expected instantaneous
reward as a function of the current state and action. The model is Markov if the state transitions are
independent of any previous environment states or agent actions. There are many good. references
to MDP models [10, 13, 48, 90].

Although general MDPs may have infinite (even uncountable) state and action spaces, we will
only discuss methods for solving finite-state and finite-action problems. In section 6, we discuss
methods for solving problems with continuous input and output spaces.

3.2 Finding a Policy Given a Model

Before we consider algorithms for learning to behave in MDP environments, we will explore tech-
niques for determining the optimal policy given a correct model. These dynamic programming
techniques will serve as the foundation and inspiration for the learning algorithms to follow. We re-
strict our attention mainly to finding optimal policies for the infinite-horizon discounted model, but
most of these algorithms have analogs for the finite-horizon and average-case models as well. We rely
on the result that, for the infinite-horizon discounted model, there exists an optimal deterministic
stationary policy [10].

We will speak of the optimal value of a state—it is the expected infinite discounted sum of
reward that the agent will gain if it starts in that state and executes the optimal policy. Using 7 as
a complete decision policy, it is written

o0
* — t,,
V*(s) = max B (Z'y 7t>

t=0
This optimal value function is unique and can be defined as the solution to the simultaneous equations
V*(s) = max (R(s, a) + 7 Z T(s,a,s)V* (5/)> ,Vs€ S, (1)

a
s'eS

which assert that the value of a state s is the expected instantaneous reward plus the expected
discounted value of the next state, using the best available action. Given the optimal value function,
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we can specify the optimal policy as

7 (s) = arg max (R(s, a)+ 7y Z T(s,a, s’)V*(s’))

s'eS

3.2.1 VALUE ITERATION

One way, then, to find an optimal policy is to find the optimal value function. It can be determined
by a simple iterative algorithm called value iteration that can be shown to converge to the correct
V= values [10, 13].

initialize V(s) arbitrarily
loop until policy good enough
loop for s€ S
loop for a € A
Q(sya):= R(s,a) + 7Y es T(sya,8 )V (s)
V(s) := max, Q(s, a)
end loop
end loop

It is not obvious when to stop the value iteration algorithm. Omne important result bounds the
performance of the current greedy policy as a function of the Bellman residual of the current value
function [134]. It says that if the maximum difference between two successive value functions is
less than e, then the value of the greedy policy, (the policy obtained by choosing, in every state,
the action that maximizes the estimated discounted reward, using the current estimate of the value
function) differs from the value function of the optimal policy by no more than 2ey/(1 — v) at
any state. This provides an effective stopping criterion for the algorithm. Puterman [90] discusses
another stopping criterion, based on the span semi-norm, which may result in earlier termination.
Another important result is that the greedy policy is guaranteed to be optimal in some finite number
of steps even though the value function may not have converged [13]. And in practice, the greedy
policy is often optimal long before the value function has converged.

Value iteration is very flexible, The assignments to V' need not be done in strict order as shown
above, but instead can occur asynchronously in parallel provided that the value of every state gets
updated infinitely often on an infinite run. These issues are treated extensively by Bertsekas [16],
who also proves convergence results.

Updates based on Equation 1 are known as full backups since they make use of information from
all possible successor states, It can be shown that updates of the form

Q(s,a) 1= Q(s,a) + a(r + ’711}15,3.‘XQ(8/, a') - Q(s,a))

can also be used as long as each pairing of @ and s is updated infinitely often, s’ is sampled from the
distribution T'(s, a, '), r is sampled with mean R(s,a) and bounded variance, and the learning rate
« is decreased slowly. This type of sample backup [111] is critical to the operation of the model-free
methods discussed in the next section.

The computational complexity of the value-iteration algorithm with full backups, per iteration,
is quadratic in the number of states and linear in the number of actions. Commonly, the transition
probabilities T'(s, a, s’) are sparse. If there are on average a constant number of next states with
non-zero probability then the cost per iteration is linear in the number of states and linear in
the number of actions, The number of iterations required to reach the optimal value function is
polynomial in the number of states and the magnitude of the largest reward if the discount factor is
held constant. However, in the worst case the number of iterations grows polynomially in 1/(1 — ),
so the convergence rate slows considerably as the discount factor approaches 1 [66].
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3.2.2 PoLicy ITERATION

The policy iteration algorithm manipulates the policy directly, rather than finding it indirectly via
the optimal value function. It operates as follows:

choose an arbitrary policy =’
loop
mi=7
compute the value function of policy
solve the linear equatiomns
Va(s) = R(s,7(5)) +7 Dyres Tls, n(s), ) V(')
improve the policy at each state:
' (s) := argmax, (R(s,a) + v ,ies T(s, @, 8 )V (s"))

until 7= 7'

The value function of a policy is just the expected infinite discounted reward that will be gained,
at each state, by executing that policy. It can be determined by solving a set of linear equations.
Once we know the value of each state under the current policy, we consider whether the value could
be improved by changing the first action taken. If it can, we change the policy to take the new
action whenever it is in that situation. This step is guaranteed to strictly improve the performance
of the policy. When no improvements are possible, then the policy is guaranteed to be optimal.

Since there are at most |.A|]SI distinct policies, and the sequence of policies improves at each
step, this algorithm terminates in at most an exponential number of iterations [90]. However, it
is an important open question how many iterations policy iteration takes in the worst case. It is
known that the running time is pseudopolynomial and that for any fixed discount factor, there is a
polynomial bound in the total size of the MDP [66].
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emely general/p;porb e dand MDPs can be solved by-general-

been shown to be efficientIn practice.

4. Learning an Optimal Policy: Model-free Methods

In the previous section we reviewed methods for obtaining an optimal policy for an MDP assuming
that we already had a model. The model consists of knowledge of the state transition probability
function T'(s,a,s’) and the reinforcement function R(s,a). Reinforcement learning is primarily
concerned with how to obtain the optimal policy when such a model is not known in advance.
The agent must interact with its environment directly to obtain information which, by means of an
appropriate algorithm, can be processed to produce an optimal policy.

At this point, there are two ways to proceed.

¢ Model-free: Learn a controller without learning a model.

e Model-based: Learn a model, and use it to derive a controller.

Which approach is better? This is a matter of some debate in the reinforcement-learning community.
A number of algorithms have been proposed on both sides. This question also appears in other fields,
such as adaptive control, where the dichotomy is between direct and indirect adaptive control.

This section examines model-free learning, and Section 5 examines model-based methods.

The biggest problem facing a reinforcement-learning agent is temporal credit assignment. How
do we know whether the action just taken is a good one, when it might have far-reaching effects?
One strategy is to wait until the “end” and reward the actions taken if the result was good and
punish them if the result was bad. In ongoing tasks, it is difficult to know what the “end” is, and
this might require a great deal of memory. Instead, we will use insights from value iteration to adjust
the estimated value of a state based on the immediate reward and the estimated value of the next
state. This class of algorithms is known as temporal difference methods [115]. We will consider two
different temporal-difference learning strategies for the discounted infinite-horizon model.

4.1 Adaptive Heuristic Critic and TD())

The adaptive heuristic critic algorithm is an adaptive version of policy iteration [9] in which the
value-function computation is no longer implemented by solving a set of linear equations, but is
instead computed by an algorithm called TD(0). A block diagram for this approach is given in
Figure 4. It consists of two components: a critic (labeled AHC), and a reinforcement-learning
component (labeled RL). The reinforcement-learning component can be an instance of any of the
k-armed bandit algorithms, modified to deal with multiple states and non-stationary rewards. But
instead of acting to maximize instantaneous reward, it will be acting to maximize the heuristic
value, v, that is computed by the critic. The critic uses the real external reinforcement signal to
learn to map states to their expected discounted values given that the policy being executed is the
one currently instantiated in the RL component.

We can see the analogy with modified policy iteration if we imagine these components working in
alternation. The policy m implemented by RL is fixed and the critic learns the value function V; for
that policy. Now we fix the critic and let the RL component learn a new policy 7’ that maximizes
the new value function, and so on. In most implementations, however, both components operate
simultaneously. Only the alternating implementation can be guaranteed to converge to the optimal

policy, under appropriate conditions. Williams and Baird explored the convergence properties of a-

class of AHC-related algorithms they call “incremental variants of policy iteration” [133].
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Figure 4: Architecture for the adaptive heuristic critic.

It remains to explain how the critic can learn the value of a policy. We define (s, a,r, s’') to be
an egperience tuple summarizing a single transition in the environment. Here s is the agent’s state
before the transition, a is its choice of action, » the instantaneous reward it receives, and s’ its
resulting state. The value of a policy is learned using Sutton’s T'D(0) algorithm [115] which.uses
the update rule ‘ ‘

V(s):=V(s)+alr+V(s)—V(s) .

Whenever a state s is visited, its estimated value is updated to be closer to r + yV (s), since r is
the instantaneous reward received and V(s') is the estimated value of the actually occurring next
state. This is analogous to the sample-backup rule from value iteration—the only difference is that
the sample is drawn from the real world rather than by simulating a known model. The key idea
is that r + vV (s') is a sample of the value of V(s), and it is more likely to be correct because it
incorporates the real r. If the learning rate « is adjusted properly (it must be slowly decreased) and
the policy is held fixed, T'D(0) is guaranteed to converge to the optimal value function.

The TD(0) rule as presented above is really an instance of a more general class of algorithms
called TD()), with A = 0. T'D(0) looks only one step ahead when adjusting value estimates; although
it will eventually arrive at the correct answer, it can take quite a while to do so. The general T'D(})
rule is similar to the T'D(0) rule given above,

V(w) =V () +alr+yV(s') - V(s))e(u) ,

but it is applied to every state according to its eligibility e(u), rather than just to the immediately
previous state, s. One version of the eligibility trace is defined to be

¢
_ ke i _J 1lifs=s
e(s) = Z()‘7) Os,si » Where &y, = { 0 otherwise

k=1
The eligibility of a state s is the degree to which it has been visited in the recent past; when a
reinforcement is received, it is used to update all the states that have been recently visited, according
to their eligibility. When A = 0 this is equivalent to 7'D(0). When X = 1, it is roughly equivalent
to updating all the states according to the number of times they were visited by the end of a run.
Note that we can update the eligibility online as follows:

(s) = yAe(s) 4+ 1 if s = current state
sy = yAe(s) otherwise

It is computationally more expensive to execute the general T'D(A), though it often converges
considerably faster for large A [30, 32]. There has been some recent work on making the updates
more efficient [24] and on changing the definition to make T D(\) more consistent with the certainty-
equivalent method [108], which is discussed in Section 5.1.

4.2 Q-learning

The work of the two components of AHC can be accomplished in a unified manner by Watkins’
Q-learning algorithm [128, 129]. Q-learning is typically easier to implement. In order to understand
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Q-learning, we have to develop some additional notation. Let Q*(s,a) be the expected discounted
reinforcement of taking action a in state s, then continuing by choosing actions optimally. Note that
V*(s) is the value of s assuming the best action is taken initially, and so V*(s) = max, Q*(s,a).
@Q* (s, a) can hence be written recursively as

Q*‘(s, a) = R(s,a) 4+~ Z T(s,a,s")maxQ*(s',a’) .
s'eSs ¢

Note also that, since V*(s) = max, @*(s, a), we have 7* (s) = argmax, Q* (s, a) as an optimal policy.
Because the @ function makes the action explicit, we can estimate the @ values on-line using a
method essentially the same as T'D(0), but also use them to define the policy, because an action can
be chosen just by taking the one with the maximum @) value for the current state.
The Q-learning rule is

Q(s, a) = Q(s,a) +a(r + yzrtng(s', a') — Q(s,a)) ,

where (s,a,7,s') is an experience tuple as described earlier. If each action is executed in each state
an infinite number of times on an infinite run and « is decayed appropriately, the ¢ values will
converge with probability 1 to Q* [128, 125, 49]. Q-learning can also be extended to update states
that occurred more than one step previously, as in T'D(X) [88].

When the ¢} values are nearly converged to their optimal values, it is appropriate for the agent
to act greedily, taking, in each situation, the action with the highest @ value. During learning,
however, there is a difficult exploitation versus exploration trade-off to be made. There are no good,
formally justified approaches to this problem in the general case; standard practice is to adopt one
of the ad hoc methods discussed in section 2.2.

AHQ architectures seem to be more difficult to work with than Q-learning on a practical level.
It can be hard to get the relative learning rates right in AHC so that the two components converge
together. In addition, Q-learning is exploration insensitive: that is, that the Q values will converge
to the optimal values, independent of how the agent behaves while the data is being collected (as
long as all state-action pairs are tried often enough). This means that, although the exploration-
exploitation issue must be addressed in Q-learning, the details of the exploration strategy will not
affect the convergence of the learning algorithm. For these reasons, Q-learning is the most popular
and seems to be the most effective model-free algorithm for learning from delayed reinforcement. It
does not, however, address any of the issues involved in generalizing over large state and/or action
spaces. In addition, it may converge quite slowly to a good policy.

4.3 Model-free Learning With Average Reward

As described, Q-learning can be applied to discounted infinite-horizon MDPs. It can also be applied
to undiscounted problems as long as the optimal policy is guaranteed to reach a reward-free absorbing
state and the state is periodically reset.

Schwartz [106] examined the problem of adapting Q-learning to an average-reward frameworl.
Although his R-learning algorithm seems to exhibit convergence problems for some MDPs, several
researchers have found the average-reward criterion closer to the true problem they wish to solve
than a discounted criterion and therefore prefer R-learning to Q-learning [69].

With that in mind, researchers have studied the problem of learning optimal average-reward
policies. Mahadevan [70] surveyed model-based average-reward algorithms from a reinforcement-
learning perspective and found several difficulties with existing algorithms. In particular, he showed
that existing reinforcement-learning algorithms for average reward (and some dynamic programming
algorithms) do not always produce bias-optimal policies. Jaakkola, Jordan and Singh [50] described
an average-reward learning algorithm with guaranteed convergence properties. It uses a Monte-Carlo
component to estimate the expected future reward for each state as the agent moves through the

environment. In addition, Bertsekas presents a Q-learning-like algorithm for average-case reward in
his new textbook [14]. Although this recent work provides a much needed theoretical foundation to
this area of reinforcement learning, many important problems remain unsolved.
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6. Generalization

All of the previous discussion has tacitly assumed that it is possible to enumerate the state and
action spaces and store tables of values over them. Except in very small environments, this means
impractical memory requirements. It also makes inefficient use of experience. In a large, smooth
state space we generally expect similar states to have similar values and similar optimal actions.
Surely, therefore, there should be some more compact representation than a table, Most problems
will have continuous or large discrete state spaces; some will have large or continuous action spaces.
The problem of learning in large spaces is addressed through generalization techniques, which allow
compact storage of learned information and transfer of knowledge between “similar” states and
actions.

The large literature of generalization techniques from inductive concept learning can be applied
to reinforcement learning. However, techniques often need to be tailored to specific details of the
problem. In the following sections, we explore the application of standard function-approximation
techniques, adaptive resolution models, and hierarchical methods to the problem of reinforcement
learning.

The reinforcement-learning architectures and algorithms discussed above have included the stor-
age of a variety of mappings, including & — A (policies), § — R (value functions), S x A -
(@ functions and rewards), S x A = & (deterministic transitions), and & x A x § — [0,1] (tran-
sition probabilities). Some of these mappings, such as transitions and immediate rewards, can be

learned using straightforward supervised learning, and can be handled using any of the wide variety
of function-approximation techniques for supervised learning that support noisy training examples.
Popular techniques include various neural-network methods [94], fuzzy logic [11, 58]. CMAC (3],

and local memory-based methods [84], such as generalizations of nearest neighbor methods. Other,

mappings, especially the policy mapping, typically need specialized algorithms because training sets
of input-output pairs are not available.
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further approximations [20765].

8. Reinforcement Learning Applications

One reason that reinforcement learning is popular is that is serves as a theoretical tool for studying
the principles of agents learning to act. But it is unsurprising that it has also been used by a
number of researchers as a practical computational tool for constructing autonomous systems that
improve themselves with experience. These applications have ranged from robotics, to industrial
manufacturing, to combinatorial search problems such as computer game playing.

Practical applications provide a test of the efficacy and usefulness of learning algorithms. They
are also an inspiration for deciding which components of the reinforcement learning framework are
of practical importance. For example, a researcher with a real robotic task can provide a data point
to questions such as:

e How important is optimal exploration? Can we break the learning period into exploration
phases and exploitation phases?

e What is the most useful model of long-term reward: Finite horizon? Discounted? Infinite
horizon?

e How much computation is available between agent decisions and how should it be used?

e What prior knowledge can we build into the system, and which algorithms are capable of using
that knowledge?

Let us examine a set of practical applications of reinforcement learning, while bearing these questions
in mind.

8.1 Game Playing

Game playing has dominated the Artificial Intelligence world as a problem domain ever since the
field was born. Two-player games do not fit into the established reinforcement-learning framework
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since the optimality criterion for games is not one of maximizing reward in the face of a fixed
environment, but one of maximizing reward against an optimal adversary (minimax). Nonetheless,
reinforcement-learning algorithms can be adapted to work for a very general class of games [63]
and many researchers have used reinforcement learning in these environments. One application,
spectacularly far ahead of its time, was Samuel’s checkers playing system [99]. This learned a value
function represented by a linear function approximator, and employed a training scheme similar to
the updates used in value iteration, temporal differences and Q-learning.

More recently, Tesauro [118, 119, 120] applied the temporal difference algorithm to backgammon,
Backgammon has approximately 10%° states, making table-based reinforcement learning impossible.
Instead, Tesauro used a backpropagation-based three-layer neural network as a function approxima-
tor for the value function

Board Position — Probability of victory for current player.

Two versions of the learning algorithm were used. The first, which we will call Basic TD-Gammon,
used very little predefined knowledge of the game, and the representation of a board position was
virtually a raw encoding, sufficiently powerful only to permit the neural network to distinguish
between conceptually different positions. The second, TD-Gammon, was provided with the same
raw state information supplemented by a number of hand-crafted features of backgammon board
positions. Providing hand-crafted features in this manner is a good example of how inductive biases
from human knowledge of the task can be supplied to a learning algorithm.

The training of both learning algorithms required several months of computer time, and was
achieved by constant self-play. No exploration strategy was used—the system always greedily chose
the move with the largest expected probability of victory. This naive exploration strategy proved
entirely adequate for this environment, which is perhaps surprising given the considerable work
in the reinforcement-learning literature which has produced numerous counter-examples to show
that greedy exploration can lead to poor learning performance. Backgammon, however, has two
important properties. Firstly, whatever policy is followed, every game is guaranteed to end in finite
time, meaning that useful reward information is obtained fairly frequently. Secondly, the state
transitions are sufficiently stochastic that independent of the policy, all states will occasionally be
visited—a wrong initial value function has little danger of starving us from visiting a critical part of
state space from which important information could be obtained.

The results (Table 2) of TD-Gammon are impressive. It has competed at the very top level of
international human play. Basic T'D-Gammon played respectably, but not at a professional standard.

Although experiments with other games have in some cases produced interesting learning be-
havior, no success close to that of TD-Gammon has been repeated. Other games that have been
studied include Go [104] and Chess [122]. It is still an open question as to if and how the success of
TD-Gammon can be repeated in other domains.

8.2 Robotics and Control

In recent years there have been many robotics and control applications that have used reinforcement
learning. Here we will concentrate on the following four examples, although many other interesting
ongoing robotics investigations are underway.,

1. Schaal and Atkeson [100] constructed a two-armed robot, shown in Figure 11, that learns to
juggle a device known as a devil-stick. This is a complex non-linear control task involving a
six-dimensional state space and less than 200 msecs per control decision. After about 40 initial
attempts the robot learns to keep juggling for hundreds of hits. A typical human learning the
task requires an order of magnitude more practice to achieve proficiency at mere tens of hits.

The juggling robot learned a world model from experience, which was generalized to unvisited
states by a function approximation scheme known as locally weighted regression [25, 82].
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Training Hidden Results
Games Units
Basic Poor
TD 1.0 300,000 80 Lost by 13 points in 51
games
TD 2.0 800,000 40 Lost by 7 points in 38
games
TD 2.1 1,500,000 80 Lost by 1 point in 40 ‘
games

Table 2: TD-Gammon’s performance in games against the top human professional players. A
backgammon tournament involves playing a series of games for points until one player
reaches a set target. TD-Gammon won none of these tournaments but came sufficiently
close that it is now considered one of the best few players in the world.

P
2%

Figure 11: Schaal and Atkeson’s devil-sticking robot. The tapered stick is hit alternately by each of
the two hand sticlks. The task is to keep the devil stick from falling for as many hits as
possible. The robot has three motors indicated by torque vectors 7y, 72, 73.

Between each trial, a form of dynamic programming specific to linear control policies and
locally linear transitions was used to improve the policy. The form of dynamic programming
is known as linear-quadratic-regulator design [97].

2. Mahadevan and Connell [71] discuss a task in which a mobile robot pushes large boxes for
extended periods of time. Box-pushing is a well-known difficult rebotics problem, character-
ized by immense uncertainty in the results of actions. Q-learning was used in conjunction
with some novel clustering techniques designed to enable a higher-dimensional input than a
tabular approach would have permitted. The robot learned to perform competitively with the
performance of a human-programmed solution. Another aspect of this work, mentioned in
Section 6.3, was a pre-programmed breakdown of the monolithic task description into a set of
lower level tasks to be learned.
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3. Mataric [73] describes a robotics experiment with, from the viewpoint of theoretical rein-
forcement learning, an unthinkably high dimensional state space, containing many dogzens of
degrees of freedom. Four mobile robots traveled within an enclosure collecting small disks
and transporting them to a destination region. There were three enhancements to the basic
Q-learning algorithm. Firstly, pre-programmed signals called progress estimators were used to
break the monolithic task into subtasks. This was achieved in a robust manner in which the
robots were not forced to use the estimators, but had the freedom to profit from the inductive
bias they provided. Secondly, control was decentralized. Each robot learned its own policy
independently without explicit communication with the others. Thirdly, state space was bru-
tally quantized into a small number of discrete states according to values of a small number of
pre-programmed boolean features of the underlying sensors. The performance of the Q-learned
policies were almost as good as a simple hand-crafted controller for the job.

4, Q-learning has been used in an elevator dispatching task [29]. The problem, which has been
implemented in simulation only at this stage, involved four elevators servicing ten floors. The
objective was to minimize the average squared wait time for passengers, discounted into future
time. The problem can be posed as a discrete Markov system, but there are 10%? states
even in the most simplified version of the problem. Crites and Barto used neural networks
for function approximation and provided an excellent comparison study of their Q-learning
approach against the most popular and the most sophisticated elevator dispatching algorithms.
The squared wait time of their controller was approximately 7% less than the best alternative
algorithm (“Empty the System” heuristic with a receding horizon controller) and less than
half the squared wait time of the controller most frequently used in real elevator systems.

5. The final example concerns an application of reinforcement learning by one of the authors of
this survey to a packaging task from a food processing industry. The problem involves filling
containers with variable numbers of non-identical products. The product characteristics also
vary with time, but can be sensed. Depending on the task, various constraints are placed on
the container-filling procedure. Here are three examples:

o The mean weight of all containers produced by a shift must not be below the manufac-
turer’s declared weight W.

e The number of containers below the declared weight must be less than P%.

¢ No containers may be produced below weight W~’.

Such tasks are controlled by machinery which operates according to various setpoints. Con-
ventional practice is that setpoints are chosen by human operators, but this choice is not easy
as it is dependent on the current product characteristics and the current task constraints. The
dependency is often difficult to model and highly non-linear. The task was posed as a finite-
horizon Markov decision task in which the state of the system is a function of the product
characteristics, the amount of time remaining in the production shift and the mean wastage
and percent below declared in the shift so far. The system was discretized into 200,000 discrete
states and local weighted regression was used to learn and generalize a transition model. Prior-
itized sweeping was used to maintain an optimal value function as each new piece of transition
information was obtained. In simulated experiments the savings were considerable, typically
with wastage reduced by a factor of ten. Since then the system has been deployed successfully
in several factories within the United States.

Some interesting aspects of practical reinforcement learning come to light from these examples.
The most striking is that in all cases, to make a real system work it proved necessary to supple-
ment the fundamental algorithm with extra pre-programmed knowledge. Supplying extra knowledge
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comes at a price: more human effort and insight is required and the system is subsequently less au-
tonomous. But it is also clear that for tasks such as these, a knowledge-free approach would not
have achieved worthwhile performance within the finite lifetime of the robots.

What forms did this pre-programmed knowledge take? It included an assumption of linearity for
the juggling robot’s policy, a manual breaking up of the task into subtasks for the two mobile-robot
examples, while the box-pusher also used a clustering technique for the @ values which assumed
locally consistent ) values. The four disk-collecting robots additionally used a manually discretized
state space. The packaging example had far fewer dimensions and so required correspondingly
weaker assumptions, but there, too, the assumption of local piecewise continuity in the transition
model enabled massive reductions in the amount of learning data required.

The ‘exploration strategies are interesting too. The juggler used careful statistical analysis to
judge where to profitably experiment. However, both mobile robot applications were able to learn
well with greedy exploration—always exploiting without deliberate exploration. The packaging task
used optimism in the face of uncertainty. None of these strategies mirrors theoretically optimal (but
computationally intractable) exploration, and yet all proved adequate.

Finally, it is also worth considering the computational regimes of these experiments. They were
all very different, which indicates that the differing computational demands of various reinforcement
learning algorithms do indeed have an array of differing applications. The juggler needed to make
very fast decisions with low latency between each hit, but had long periods (30 seconds and more)
between each trial to consolidate the experiences collected on the previous trial and to perform the
more aggressive computation necessary to produce a new reactive controller on the next trial. The
box-pushing robot was meant to operate autonomously for hours and so had to make decisions with
a uniform length control cycle. The cycle was sufficiently long for quite substantial computations
beyond simple Q-learning backups. The four disk-collecting robots were particularly interesting.
Each robot had a short life of less than 20 minutes (due to battery constraints) meaning that
substantial number crunching was impractical, and any significant combinatorial search would have
used a significant fraction of the robot’s learning lifetime. The packaging task had easy constraints.
One decision was needed every few minutes. This provided opportunities for fully computing the
optimal value function for the 200,000-state system between every control cycle, in addition to
performing massive cross-validation-based optimization of the transition model being learned.

A great deal of further work is currently in progress on practical implementations of reinforcement
learning. The insights and task constraints that they produce will have an important effect on
shaping the kind of algorithms that are developed in future.

9. Conclusions

There are a variety of reinforcement-learning techniques that work effectively on a variety of small
problems. But very few of these techniques scale well to larger problems. This is not because
researchers have done a bad job of inventing learning techniques, but because it is very difficult to
solve arbitrary problems in the general case. In order to solve highly complex problems, we must
give up tabula rasa learning techniques and begin to incorporate bias that will give leverage to the
learning process.

~ The necessary bias can come in a variety of forms, including the following:

shaping: The technique of shaping is used in training animals [45]; a teacher presents very sim-
ple problems to solve first, then gradually exposes the learner to more complex problems.
Shaping has been used in supervised-learning systems, and can be used to train hierarchical
reinforcement-learning systems from the bottom up [59], and to alleviate problems of delayed
reinforcement by decreasing the delay until the problem is well understood [37, 38].

local reinforcement signals: Whenever possible, agents should be given reinforcement signals
that are local. In applications in which it is possible to compute a gradient, rewarding the

268

cet Sy




REINFORCEMENT LEARNING: A SURVEY

agent for taking steps up the gradient, rather than just for achieving the final goal, can speed
learning significantly [73].

imitation: An agent can learn by “watching” another agent perform the task [59]. For real robots,
this requires perceptual abilities that are not yet available. But another strategy is to have a
human supply appropriate motor commands to a robot through a joystick or steering wheel [89].

problem decomposition: Decomposing a huge learning problem into a collection of smaller ones,

‘ and providing useful reinforcement signals for the subproblems is a very powerful technique
for biasing learning. Most interesting examples of robotic reinforcement learning employ this
technique to some extent [28].

reflexes: One thing that keeps agents that know nothing from learning anything is that they have
a hard time even finding the interesting parts of the space; they wander around at random
never getting near the goal, or they are always “killed” immediately. These problems can be
ameliorated by programming a set of “reflexes” that cause the agent to act initially in some
way that is reasonable [73, 107]. These reflexes can eventually be overridden by more detailed
and accurate learned knowledge, but they at least keep the agent alive and pointed in the right
direction while it is trying to learn. Recent work by Millan [78] explores the use of reflexes to
make robot learning safer and more efficient.

With appropriate biases, supplied by human programmers or teachers, complex reinforcement-
learning problems will eventually be solvable. There is still much work to be done and many interest-
ing questions remaining for learning techniques and especially regarding methods for approximating,
decomposing, and incorporating bias into problems.
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