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Inga hjälpmedel förutom skrivdon. Lösningarna skall åtföljas av förklaranda text. Endast svar
ger 0 p. Tentamen best̊ar av åtta uppgifter värda 5 poäng vardera, d.v.s. maximalt kan man f̊a
40 poäng p̊a tentamen. Ett resultat om minst 18, 25 och 32 poäng ger betyg 3,4 respektive 5.

1. Avgör om följande delmängder är delvektorrum eller ej. Motivera ditt svar.

(a) U =
{

(x, y, z) ∈ R3 |x2 + y2 = 0
}

,

(b) V =

{
A ∈M2(R) |ATA =

(
1 0
0 1

)}
,

(c) W =
{

(3t3, t3, 5t3) ∈ R3 | t ∈ R
}

.

Solution A subset of a vector space is a subspace if and only if it is not empty, it is closed under
addition, and under scalar multiplication.

(a) For (x, y, z) ∈ R3 it follows from x2 + y2 = 0 and x, y ∈ R that x = y = 0.
Therefore U = {(0, 0, z) ∈ R3}. We check the three conditions: U is not empty
since (0, 0, 0) ∈ U . It is closed under addition since for (0, 0, z1), (0, 0, z2) ∈ U also
(0, 0, z1) + (0, 0, z2) = (0, 0, z1 + z2) ∈ U and it is closed under scalar multiplication
since for (0, 0, z) ∈ U and λ ∈ R also λ(0, 0, z) = (0, 0, λz) ∈ U .

(b) A subspace of a vector space necessarily has to contain the zero vector of that space.

The zero vector of M2(R) is 0M2(R) =

(
0 0
0 0

)
. But this is not contained in V since

0TM2(R)0M2(R) = 0M2(R) 6=
(

1 0
0 1

)
(c) Note that for every s ∈ R there exists a unique t ∈ R such that t3 = s (i.e. the

map f : R → R, x 7→ x3 is bijective). It follows that W = {(3s, s, 5s) ∈ R3|s ∈
R}. We check the three conditions: W is not empty since (0, 0, 0) = (3 · 0, 1 · 0, 5 ·
0) ∈ W . It is closed under addition since for (3s1, s1, 5s1), (3s2, s2, 5s2) ∈ W also
(3s1, s1, 5s1) + (3s2, s2, 5s2) = (3(s1 + s2), (s1 + s2), 5(s1 + s2)) ∈W , and it is closed
under scalar multiplication since for (3s, s, 5s) ∈ W and λ ∈ R also λ(3s, s, 5s) =
(3(λs), λs, 5(λs)) ∈W .

2. L̊at A vara en 5× 7-matris med kolonnrum av dimension 3.

(a) Hur m̊anga parametrar behövs för att beskriva nollrummet?

(b) Vad är radrummets dimension?



(c) Hur m̊anga nollrader har matrisen efter fullständig Gausselimination?

Solution (a) The dimension of the column space equals the rank of the matrix, which is therefore
3. According to the rank-nullity theorem, the number of columns of a matrix A equals
the sum of the rank of the matrix and the dimension of the nullspace of the matrix.
The dimension of a space is equal to the number of parameters needed to describe
the space. It is therefore equal to 4 = 7− 3.

(b) The dimension of the row space is also equal to the rank of the matrix, it is therefore
equal to 3.

(c) The number of zero rows after complete Gaussian elimination is equal to the difference
of the number of rows of the matrix and the rank of the matrix (which is equal to
the number of leading 1’s). It is therefore equal to 5− 3 = 2.

3. L̊at F : M2(R)→M2(R) vara en linjär avbildning som ges av

F (A) = AT +A.

L̊at e1 =

(
1 −1
−1 0

)
, e2 =

(
1 1
1 0

)
, e3 =

(
0 2
2 1

)
och e4 =

(
0 −1
1 0

)
.

(a) Visa att (e1, ..., e4) är en bas för M22.

(b) Ange matrisen för F i denna bas.

Solution (a) We know that M2(R) has dimension 4. Since there are 4 vectors given it thus suffices
to prove that e1, e2, e3, e4 are linearly independent. To show this, we have to show
that whenever λ1e1 + λ2e2 + λ3e3 + λ4e4 = 0, then λ1 = λ2 = λ3 = λ4 = 0. We
compute that

λ1e1 + λ2e2 + λ3e3 + λ4e4 =

(
λ1 + λ2 −λ1 + λ2 + 2λ3 − λ4

−λ1 + λ2 + 2λ3 + λ4 λ3

)
In order for the latter matrix to be the zero matrix we conclude from comparing the
lower right entry that λ3 = 0. Subtracting the lower left entry from the upper right
entry we obtain that 2λ4 = 0 and therefore λ4 = 0. Now the comparison for the
upper left entry reads λ1 + λ2 = 0 while the comparison for the upper right entry
reads −λ1 + λ2 = 0. Adding these two equalities gives λ2 = 0 and thus also λ1 = 0.
Therefore e1, e2, e3, e4 are linearly independent and (since dimM2(R) = 4), they form
a basis of M2(R).

(b) To compute the matrix of F with respect to this basis we first apply F to every basis



vector and write the result as a linear combination of the basis vectors:

F (e1) =

(
2 −2
−2 0

)
= 2e1 + 0e2 + 0e3 + 0e4

F (e2) =

(
2 2
2 0

)
= 0e1 + 2e2 + 0e3 + 0e4

F (e3) =

(
0 4
4 2

)
= 0e1 + 0e2 + 2e3 + 0e4

F (e4) =

(
0 0
0 0

)
= 0e1 + 0e2 + 0e3 + 0e4

Since the columns of the matrix of F are the coordinate vectors of the images of the
basis vectors of the domain with respect to the basis of the codomain it follows that

[F ]B←B =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0


where B = {e1, e2, e3, e4}.

4. Lös systemet av differentialekvationer:{
y′1 = 5y1 + 4y2
y′2 = 3y1 + 6y2

med begynnelsevillkoren y1(0) = 2 och y2(0) = 5.

Solution Writing the system of differential equations in matrix form we obtain that y′ = Ay where

A =

(
5 4
3 6

)
.The first step is to compute the eigenvalues for A. The characteristic poly-

nomial of A is equal to

χA(λ) = det(λI2 −A) = (λ− 5)(λ− 6)− (−4)(−3) = λ2 − 11λ+ 18 = (λ− 2)(λ− 9).

The eigenvalues of A are the zeroes of the characteristic polynomial of A, i.e. they are 2
and 9. The next step is to compute corresponding eigenvectors:

For λ = 2 we obtain that E(2) = ker(A − 2I2) = ker

(
3 4
3 4

)
. This is a one-dimensional

space with basis vector

(
−4
3

)
.

For λ = 9 we obtain that E(9) = ker(A − 9I2) = ker

(
−4 4
3 −3

)
. This is also a one-

dimensional space with basis vector

(
1
1

)
.



Setting S =

(
−4 1
3 1

)
and y = Sz we obtain the system of equations

z′ = S−1ASz =

(
2 0
0 9

)
z.

It follows that z1 = c1e
2t and z2 = c2e

9t and therefore(
y1
y2

)
=

(
−4 1
3 1

)(
c1e

2t

c2e
9t

)
=

(
−4c1e

2t + c2e
9t

3c1e
2t + c2e

9t

)
.

Using the intial value condition we obtain that 2 = −4c1+c2 and 5 = 3c1+c2, thus c1 =
3

7

and c2 =
26

7
and we obtain that

y1(t) = −12

7
e2t +

26

7
e9t

y2(t) =
9

7
e2t +

26

7
e9t

5. L̊at V = C[0, π] vara mängden av de kontinuerliga funktioner f(x) p̊a intervallet [0, π] som
är noll i ändpunkterna: f(0) = f(π) = 0.

(a) Visa att V är ett vektorrum.

(b) Bestäm vinkeln mellan funktionerna sinx och sin 2x med avseende p̊a den inre pro-

dukten 〈f |g〉 =

∫ π

0
f(x)g(x) dx, samt beräkna deras längder.

Ledtr̊ad: Minns att sin2 x =
1− cos 2x

2
, samt att sin(x+ y) = sinx cos y+ cosx sin y.

Solution (a) We know from the lectures that the space of continuous functions is a vector space.
For V to be a vector space we therefore only have to show that it is a subspace of the
space of continuous functions. Thus, we have to show the three conditions given in
1.. To show that V is non-empty observe that sin(x) ∈ V since sin(0) = sin(π) = 0.
To show that V is closed under addition assume that f, g ∈ V . We check that
also f + g ∈ V : We compute that (f + g)(0) = f(0) + g(0) = 0 + 0 = 0 and
(f + g)(π) = f(π) + g(π) = 0 + 0 = 0. Therefore f + g ∈ V . To show that V is closed
under scalar multiplication assume that f ∈ V and λ ∈ R. We check that also λf ∈ V :
We compute that (λf)(0) = λ(f(0)) = λ · 0 = 0 and (λf)(π) = λ(f(π)) = λ · 0 = 0
and thus λf ∈ V .

(b) The length of a vector f in an inner product space is defined as ‖f‖ =
√
〈f |f〉

while the angle α between two vectors f, g in an inner product space is defined via

cosα =
〈f |g〉
‖f‖ · ‖g‖

.

We first compute the length of the two given functions:



〈sin(x)| sin(x)〉 =

∫ π

0
sin2(x)dx =

∫ π

0

1− cos(2x)

2
dx =

[
1

2
x− 1

4
sin(2x)dx

]π
0

=
π

2

and therefore ‖ sin(x)‖ =

√
π

2
.

〈sin(2x)| sin(2x)〉 =

∫ π

0
sin2(2x)dx =

∫ 2π

0

1

2
sin2(u)du =

π

2

and therefore ‖ sin(2x)‖ =

√
π

2
.

To compute the angle we compute

〈sin(x)| sin(2x)〉 =

∫ π

0
sin(x) sin(2x)dx =

∫ π

0
sin(x)(2 sin(x) cos(x))dx =

∫ 0

0
2u2du = 0

Therefore sin(x) and sin(2x) are orthogonal and the angle between them is therefore

equal to
π

2
= 90◦.

6. L̊at F vara den linjära avbildning som ges av spegling i planet x + 2y = 0 (koordinater i
standardbas S).

(a) Finn en ON -bas B som best̊ar av egenvektorer till F .

(b) Bestäm F :s matris [F ]S .

(c) Bestäm F (1, 0, 1).

Solution (a) For a reflection at a plane in R3, the eigenspaces are the plane of reflection, which
is the eigenspace with respect to the eigenvalue 1 as well as the line through the
normal vector, which is an eigenspace with respect to the eigenvalue −1. The nor-

mal vector of the plane is

1
2
0

 while a basis of the plane of reflection is given by
−2

1
0

 ,

0
0
1

. The vectors are already orthogonal, thus to compute an orthonor-

mal basis of eigenvectors we just have to normalise them. A basis of R3 consisting of

eigenvectors of F is therefore given by




1√
5

2√
5

0

 ,


− 2√

5
1√
5

0

 ,

0
0
1




(b) The matrix [F ]B of F with respect to the orthonormal basis B given in (a) is given

by

−1 0 0
0 1 0
0 0 1

. Using the base change formula [F ]S = [id]S←B[F ]B[id]B←S , the



fact that [id]S←B =


1√
5
− 2√

5
0

2√
5

1√
5

0

0 0 1

 and [id]B←S = [id]−1S←B = [id]TS←B (since B is

an orthonormal basis) we obtain

[F ]B =


1√
5
− 2√

5
0

2√
5

1√
5

0

0 0 1


−1 0 0

0 1 0
0 0 1




1√
5

2√
5

0

− 2√
5

1√
5

0

0 0 1

 =


3

5
−4

5
0

−4

5
−3

5
0

1


7. För vilka a är matrisen

A =

 2 a 0
a 4 a
0 a 2


positivt definit?

Solution A matrix is positive definite if and only if all its eigenvalues are positive.

We compute that the characteristic polynomial of A:

χA(λ) = det(λI3 −A) = det

λ− 2 −a 0
−a λ− 4 −a
0 −a λ− 2


= (λ− 2) det

(
λ− 4 −a
−a λ− 2

)
+ adet

(
−a 0
−a λ− 2

)
= (λ− 2)((λ− 4)(λ− 2)− a2) + a((−a)(λ− 2))

= (λ− 2)(λ2 − 6λ+ 8− 2a2)

The zeroes of the characteristic polynomial of A are therefore 2 and 3 ±
√

2a2 + 1. The

only one of these which is not necessarily positive is 3 −
√

2a2 + 1. It is positive if and

only if 3 >
√

2a2 + 1 which is if and only if a2 < 4, i.e. −2 < a < 2.

8. L̊at F(R,R) vara vektorrummet best̊aende av funktioner och l̊at V vara det delrum som
spänns upp av g(x) = (sin(x))2 and h(x) = (cos(x))2. L̊at P≤1 vara vektorrummet av
polynom av grad ≤ 1.

(a) Visa att V inneh̊aller värderummet av den linjära avbildning ϕ : P≤1 → F(R,R) som

ges av ϕ(p) =
d

dx
p.

(b) Betrakta den linjära avbildningen ϕ : P≤1 → V . Bestäm avbildningsmatrisen [ϕ]B′←B
of ϕ med avseende p̊a basen B = {1, x} i P≤1 och basen B′ = {g, h} i V .



Solution (a) An element of P≤1 is of the form a+ bx for a, b ∈ R. It follows that ϕ(a+ bx) = b =
b sin2(x) + b cos2(x). Therefore V contains the codomain of the linear map ϕ.

(b) To compute the matrix [ϕ]B′←B of ϕ we compute the images of the basis vectors of
B and write them as linear combinations of the basis vectors in B′.

ϕ(1) = 0 = 0 · sin2(x) + 0 · cos2(x)

ϕ(x) = 1 = 1 · sin2(x) + 1 · cos2(x)

As the columns of the matrix [ϕ]B′←B are the coordinate vectors of the images of the
basis vectors of B with respect to the basis B′ we obtain that

[ϕ]B′←B =

(
0 1
0 1

)


