
TENTAMEN - LINEAR ALGEBRA II 2018/01/09

JULIAN KÜLSHAMMER

1. (i) For which values of a ∈ R do the following polynomials form a basis B = {p1(x), p2(x), p3(x)}
of P2(R):

p1(x) = 2 + x2

p2(x) = (7 + a)x − 3x2

p3(x) = 4x + ax2

Justify your answer.
(ii) Let B′ = {1, x, x2}. In case that B is a basis provide the transition matrix PB′←B from B

to B′.

Possible solution 1a: (i) Since dim P2(R) = 3, it suffices to determine when p1(x), p2(x), p3(x)
are linearly independent.
For this we have to check when

λ1 p1(x) + λ2 p2(x) + λ3 p3(x) = 0

has only the trivial solution λ1 = λ2 = λ3 = 0. Plugging in p1, p2, and p3, we
obtain

λ1(2 + x2) + λ2((7 + a)x − 3x2) + λ3(4x + ax2) = 0.

Comparing coefficients we see that this is the case if and only if

2λ1 = 0
(7 + a)λ2 + 4λ3 = 0
λ1 − 3λ2 + aλ3 = 0

We solve this system using Gaussian elimination.

2 0 0
0 7 + a 4
1 −3 a

 III− 1
2 I
{

2 0 0
0 7 + a 4
0 −3 a

 II↔II
{

2 0 0
0 −3 a
0 7 + a 4

 III+ 7+a
3 II
{

2 0 0
0 −3 a
0 0 4 + 7+a

3 a


We see that this has only the trivial solution if and only if 4 + 7+a

3 a , 0, i.e. if and
only if a2 + 7a+ 12 , 0. With the help of the pq-formula it follows that the zeroes

of this equation are given by a1/2 = −
7
2
±

√
49
4
−

48
4
=

−4
−3.

It follows that p1(x), p2(x), p3(x) form a basis if and only if a , −4 and a , −3.
1



2 JULIAN KÜLSHAMMER

(ii) Since

2 + x2 = 2 · 1 + 0 · x + 1 · x2

(7 + a)x − 3x2 = 0 · 1 + (7 + a) · x + (−3) · x2

4x + ax2 = 0 · 1 + 4 · x + a · x2

we obtain that

PB′←B =

2 0 0
0 7 + a 4
1 −3 a

 .
Possible solution 1b:

only for part (i) We know that B′ = {1, x, x2} is a basis of P2(R). Therefore cB′ is an isomorphism
and hence B is a basis of P2(R) if and only if {cB′(p1), cB′(p2), cB′(p3)} is a basis of
R3. We have that

cB′(p1) =

20
1

 , cB′(p2) =

 0
7 + a
−3

 , cB′(p3) =

04
a


We know that these vectors in R3 form a basis if and only if the matrix with these
vectors as columns is invertible if and only if its determinant is non-zero.

det

2 0 0
0 7 + a 4
1 −3 a

 = 2 det
(
7 + a 4
−3 a

)
= 2((7 + a)a + 12) = 2a2 + 14a + 12

Using the pq-formula as in Solution 1a we obtain that this determinant is non-zero
if and only if a , −4 and a , −3.
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2. (i) Which of the following functions are linear? Justify your answer.

f : R2 → R2, f
((

x
y

))
=

(
x2

y

)

g : R3 → R2, g


x
y
z


 =

(
3x + z

x + y + z

)
h : P2(R)→ P2(R), h(a0 + a1x + a2x2) = a0x2

(ii) Choose one of the functions in (i) which is linear and determine a basis of its kernel,
and a basis of its image.

Possible solution 2a: (i) The function f is not linear: We saw in the lecture that the func-
tion f̃ : R→ R, x 7→ x2 is linear. Furthermore since they are given by multiplication
with matrices it follows that the following functions are linear: f̂ : R → R2, x 7→(
x
0

)
=

(
1
0

)
x and f : R2 → R,

(
x
y

)
7→ x =

(
1 0

) (x
y

)
. Therefore if f were linear, then

also f̃ = f ◦ f ◦ f̂ would be linear, which we know it is not.

The function g is linear: It is given by multiplication with the matrix
(
3 0 1
1 1 1

)
and

therefore we know from the lecture that it is linear.
The function h is linear: We know that the function h̃ : R3 → R3 given by multi-

plication with the matrix

0 0 0
0 0 0
1 0 0

 is linear. We also know that B = {1, x, x2} is a

basis of P2(R). Therefore the function h = c−1
B ◦ h̃ ◦ cB is linear.

(ii) We choose the function h. It is easy to see that Im(h) = span(x2) and since x2 , 0
a basis of Im(h) is given by {x2}. By the rank-nullity theorem we therefore know
that dim ker( f ) = 2 (since dim P2(R) = 3). It is easy to see that h(x) = h(x2) = 0
and therefore {x, x2} gives a basis of ker(h).

Possible solution 2b: (i) The function f is not linear. We can compute that

f
((

2
0

)
+

(
2
0

))
= f

((
4
0

))
=

(
16
0

)
,

(
8
0

)
= f

((
2
0

))
+ f

((
2
0

))
The function g is linear. We compute that

g


x
y
z

 +
x′

y′

z′


 = g


x + x′

y + y′

z + z′


 =

(
3(x + x′) + z + z′

(x + x′) + (y + y′) + (z + z′)

)

=

(
3x + z

x + y + z

)
+

(
3x′ + z′

x′ + y′ + z′

)
= g


x
y
z


 + g


x′

y′

z′



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and

g

λ
x
y
z


 = g


λx
λy
λz


 =

(
3(λx) + (λz)
λx + λy + λz

)
= λ

(
3x + z

x + y + z

)
= λg


x
y
z




Therefore, g is linear.
The function h is linear:

h((a0 + a1x + a2x2) + (b0 + b1x + b2x2)) = h((a0 + b0) + (a1 + b1)x + (a2 + b2)x2) = (a0 + b0)x2

= a0x2 + b0x2 = h(a0 + a1x + a2x2) + h(b0 + b1x + b2x2)

and

h(λ(a0 + a1x + a2x2)) = h((λa0) + (λa1)x + (λa2)x2) = (λa0)x2 = λ(a0x2) = λh(a0 + a1x + a2x2)

(ii) We choose the function g. Since g is given by multiplication with the matrix

A =
(
3 0 1
1 1 1

)
, the kernel of g is given by the null space of A. We perform

Gaussian elimination to A to obtain a basis(
3 0 1
1 1 1

)
I−3II
{

(
0 −3 −2
1 1 1

)

We see that a basis of the null space of g is given by


−1
−2
3


. Furthermore, the

image of g is equal to the column space of A. The leading 1’s are in the first and

second column, therefore
{(

3
1

)
,

(
0
1

)}
is a basis of Im(g).
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3. Let

A =


−3 −6 0 4
−1 −4 0 2
0 0 −1 0
−3 −9 0 5

 .
(i) Show that the eigenvalues of A are 0 and −1.
(ii) For each eigenvalue, determine a basis of the corresponding eigenspace.
(iii) Is A diagonalisable? Justify your answer.

Possible solution 3a: (i) We know that λ is an eigenvalue of A if and only if χA(λ) =
det(A − λI4) = 0. We compute

χA(λ) = det


−3 − λ −6 0 4
−1 −4 − λ 0 2
0 0 −1 − λ 0
−3 −9 0 5 − λ


= (−1 − λ) det

−3 − λ −6 4
−1 −4 − λ 2
−3 −9 5 − λ


= (−1 − λ)

(
(−3 − λ) det

(
−4 − λ 2
−9 5 − λ

)
− (−1) det

(
−6 4
−9 5 − λ

)
− 3 det

(
−6 4
−4 − λ 2

))
= (−1 − λ) ((−3 − λ)((−4 − λ)(5 − λ) + 18) + (−6(5 − λ) + 36) − 3(−12 + 4(4 + λ)))

= (−1 − λ)(−λ3 − 2λ2 − λ)

= (−1 − λ)λ(−λ2 − 2λ − 1)

= (λ + 1)3λ

It follows that the eigenvalues of A are 0 and −1.
(ii) We compute bases of the corresponding eigenspaces. For λ = 0 we obtain E(0, A) =

N(A) which we compute using Gaussian elimination:


−3 −6 0 4
−1 −4 0 2
0 0 −1 0
−3 −9 0 5

 I↔II
{


−1 −4 0 2
−3 −6 0 4
0 0 −1 0
−3 −9 0 5

 II−3I,IV−3I
{


−1 −4 0 2
0 6 0 −2
0 0 −1 0
0 −3 0 1



From this it is easy to see that a basis for the eigenspace is given by



2
1
0
3


.
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For λ = −1 we obtain that E(−1, A) = N(A+ I4) which we compute using Gaussian
elimination:
−2 −6 0 4
−1 −3 0 2
0 0 0 0
−3 −9 0 6

 I↔II
{


−1 −3 0 2
−2 −6 0 4
0 0 0 0
−3 −9 0 6

 II−2I,IV−3I
{


−1 −3 0 2
0 0 0 0
0 0 0 0
0 0 0 0

 .

We see that a basis for this eigenspace is given by



0
0
1
0

 ,

2
0
0
1

 ,

−3
1
0
0


.

(iii) Yes, A is diagonalisable since for both eigenvalues the algebraic multiplicity co-
incides with the geometric multiplicity. For λ = 0 both are equal to 1 while for
λ = −1 both are equal to 3.

Possible solution 3b: Note that in this solution we changed the order in which we solve the
three parts of the exercise.
(ii) We compute the eigenspaces of the eigenvalues 0 and −1 as in Solution 3a.
(iii) Since by (ii) the geometric multiplicities of 0 and −1 are 1 and 3, respectively, we

see that 1+ 3 = 4, thus the sum of the geometric multiplicities is equal to the size
of the matrix. Therefore the matrix is diagonalisable.

(i) We know that eigenvectors corresponding to different eigenvalues are linearly in-
dependent. But according to (iii), R4 has a basis consisting of eigenvectors for A.
Therefore, an eigenvector to a different eigenvalue cannot exist and therefore 0
and −1 are the only eigenvalues (we already checked in (ii) that they are indeed
eigenvalues).
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4. Let B =
{(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
be a basis of M2×2(R).

(i) Determine the coordinate vector of
(
1 2
3 4

)
with respect to the basis B.

(ii) Let f : M2×2(R)→ M2×2(R) be the linear function given by f (A) =
(
8 3
5 6

)
A. Determine

the matrix [ f ]B←B with respect to the basis B of M2×2(R).

Possible solution 4a: (i) Since
(
1 2
3 4

)
= 1

(
1 0
0 0

)
+ 2

(
0 1
0 0

)
+ 3

(
0 0
1 0

)
+ 4

(
0 0
0 1

)
, it follows

that the coordinate vector of
(
1 2
3 4

)
with respect to the basis B is


1
2
3
4

.
(ii) We compute the image f (bi) of each of the basis vectors bi in B and express them

in the basis B:

f (
(
1 0
0 0

)
) =

(
8 0
5 0

)
= 8

(
1 0
0 0

)
+ 0

(
0 1
0 0

)
+ 5

(
0 0
1 0

)
+ 0

(
0 0
0 1

)
f (
(
0 1
0 0

)
) =

(
0 8
0 5

)
= 0

(
1 0
0 0

)
+ 8

(
0 1
0 0

)
+ 0

(
0 0
1 0

)
+ 5

(
0 0
0 1

)
f (
(
0 0
1 0

)
) =

(
3 0
6 0

)
= 3

(
1 0
0 0

)
+ 0

(
0 1
0 0

)
+ 6

(
0 0
1 0

)
+ 0

(
0 0
0 1

)
f (
(
0 0
0 1

)
) =

(
0 3
0 6

)
= 0

(
1 0
0 0

)
+ 3

(
0 1
0 0

)
+ 0

(
0 0
1 0

)
+ 6

(
0 0
0 1

)
Therefore,

[ f ]B′←B =


8 0 3 0
0 8 0 3
5 0 6 0
0 5 0 6

 .
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5. Let V be a vector space. Let {b1, b2, b3} be a basis of V.

(i) Let f : V → R2 be a function such that f (λ1b1 + λ2b2 + λ3b3) =
(
λ1

λ2

)
. Prove that f is

linear.
(ii) Determine the matrix [ f ]E←B of f with respect to the basis B of V and the standard

basis E of R2.

Possible solution 5a: (i) We know from the lecture that the function cB : V → R3, λ1b1 +

λ2b2 + λ3b3 7→

λ1

λ2

λ3

 is well-defined and linear. Furthermore we know that the

function g : R3 → R2 given by multiplication with
(
1 0 0
0 1 0

)
is linear. Therefore

the function f = g ◦ cB is linear.
(ii) We have that

f (b1) =
(
1
0

)
f (b2) =

(
0
1

)
f (b3) =

(
0
0

)
Therefore [ f ]E←B =

(
1 0 0
0 1 0

)
.

Possible solution 5b:
only for part (i) Since {b1, b2, b3} is a basis of V we know that every vector v ∈ V has a unique

expression as v = λ1b1 + λ2b2 + λ3b3. Let v, v′ ∈ V. Write

v = λ1b1 + λ2b2 + λ3b3

v′ = µ1b1 + µ2b2 + µ3b3

Then

f (v + v′) = f ((λ1 + µ1)b1 + (λ2 + µ2)b2 + (λ3 + µ3)b3) =
(
λ1 + µ1

λ2 + µ2

)
=

(
λ1

λ2

)
+

(
µ1

µ2

)
= f (v) + f (v′)

and

f (λv) = f ((λλ1)b1 + (λλ2)b2 + (λλ3)b3) =
(
λλ1

λλ2

)
= λ

(
λ1

λ2

)
= λ f (λ1b1 + λ2b2 + λ3b3) = λ f (v)

Therefore, f is linear.
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6. Let U = span




1
1
−1
−1

 ,


1
−2
1
0

 ,


1
0
1
−2


.

(i) Give the definition of when a basis of an inner product space V is called orthonormal.
(ii) Find an orthonormal basis of U.

Possible solution 6a: (i) Let V be an inner product space with inner product 〈−,−〉. Then

a basis {b1, . . . , bn} of V is called orthonormal if 〈bi, b j〉 =

1 if i = j
0 if i , j

.

(ii) We compute an orthonormal basis of U using the Gram–Schmidt process starting

from the given basis of U. Call the given vectors v1 =


1
1
−1
−1

 , v2 =


1
−2
1
0

 , v3 =


1
0
1
−2

.
Then,

b′1 = v1, ‖b′1‖ =
√

1 + 1 + 1 + 1 = 2, b1 =
1
‖b′1‖

b′1 =
1
2


1
1
−1
−1


b′2 = v2 −

〈v2, b′1〉
〈b′1, b

′
1〉

b′1 = v2 −
−2
4

b′1 =


3
2
−3

2
1
2
−1

2

 , ‖b′2‖ =

√
9
4
+

9
4
+

1
4
+

1
4
=
√

5

b2 =
1
‖b′2‖

b′2 =
1

2
√

5


3
−3
1
−1


b′3 = v3 −

〈v3, b′1〉
〈b′1, b

′
1〉

b′1 −
〈v3, b′2〉
〈b′2, b

′
2〉

b′2 = v3 −
2
4

b′1 −
3
5

b′2 =


−2

5
2
5
6
5
−6

5


‖b′3‖ =

√
4

25
+

4
25
+

36
25
+

36
25
=

√
80
25
=

4
√

5
5

b3 =
1
‖b′3‖

b′3 =


− 1

2
√

5
1

2
√

5
3

2
√

5
−3

2
√

5


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7. Solve the following system of differential equations

y′1(t) = 4y1(t) + 2y2(t)
y′2(t) = −y1(t) + y2(t)

with the initial condition y1(0) = 2, y2(0) = 3.

Possible solution 7a: We write the system in matrix form:(
y′1(t)
y′2(t)

)
=

(
4 2
−1 1

) (
y1(t)
y2(t)

)
As a next step we compute the eigenvalues for

(
4 2
−1 1

)
as the zeroes of its charac-

teristic polynomial:

We obtain χA(λ) = det
(
4 − λ 2
−1 1 − λ

)
= (4 − λ)(1 − λ) + 2 = λ2 − 5λ + 6. Using the

pq-formula we see that λ1/2 =
5
2 ±

√
25
4 −

24
4 =

3
2

The next step is to compute basis of the corresponding eigenspaces (which we know to
be 1-dimensional as the geometric multiplicity is between 1 and the algebraic multiplicity
which is also 1).

We have A − 3I2 =

(
1 2
−1 −2

)
and therefore a basis of E(3, A) is given by

{(
2
−1

)}
.

We have that A−2I2 =

(
2 2
−1 −1

)
and therefore a basis of E(2, A) is given by

{(
1
−1

)}
.

With the substitution
(
y1(t)
y2(t)

)
=

(
2 1
−1 −1

) (
u1(t)
u2(t)

)
we obtain the system u′1(t) = 3u1(t), u′2(t) =

2u2(t) which has the solution u1 = c1e3t, u2 = c2e2t. Substituting back we obtain(
y1(t)
y2(t)

)
=

(
2c1e3t + c2e2t

−c1e3t − c2e2t

)
Taking into account the initial condition y1(0) = 2, y2(0) = 3 we obtain the additional

condition that
(
2
3

)
=

(
2c1 + c2

−c1 − c2

)
which one sees to have the solution c1 = 5, c2 = −8.

Therefore a solution to the above system of differential equations with the above
initial condition is given by

y1(t) = 10e3t − 8e2t

y2(t) = −5e3t + 8e2t



TENTAMEN - LINEAR ALGEBRA II 2018/01/09 11

8. (i) On V =
{(

x
y

) ∣∣∣∣∣ x, y ∈ R, x + y = 2
}
define an addition � and a scalar multiplication

� via (
x
y

)
�

(
x′

y′

)
=

(
x + x′ − 1
y + y′ − 1

)
λ �

(
x
y

)
=

(
λx − λ + 1
λy − λ + 1

)
(We checked in the lecture that this defines a vector space.)

Let W be the subspace of R2 given by W =
{(

x
y

)
∈ R2

∣∣∣∣∣ x + y = 0
}
.

Let g : V → W be the function defined by g
((

x
y

))
=

(
x − 1
y − 1

)
. Show that g is an

isomorphism.
(ii) What is dim V? Justify your answer.

Possible solution 8a: (i) To show that g is an isomorphism we have to show that it is linear,
injective, and surjective.

To show that it is linear we show that g
((

x
y

)
�

(
x′

y′

))
= g

((
x
y

))
+ g

((
x′

y′

))
and

g
(
λ �

(
x
y

))
= λg

((
x
y

))
.

We have that

g
((

x
y

)
�

(
x′

y′

))
= g

((
x + x′ − 1
y + y′ − 1

))
=

(
x + x′ − 2
y + y′ − 2

)
=

(
x − 1
y − 1

)
+

(
x′ − 1
y′ − 1

)
= g

((
x
y

))
+ g

((
x′

y′

))
g
(
λ �

(
x
y

))
= g

((
λx − λ + 1
λy − λ + 1

))
=

(
λx − λ
λy − λ

)
= λ

(
x − 1
y − 1

)
= λg

((
x
y

))
Therefore g is linear.

To show that it is injective we show that ker( f ) = {0V}. Assume that g
((

x
y

))
=

(
0
0

)
.

It follows from the definition of g that
(
x
y

)
=

(
1
1

)
. We have shown in the lecture

that this is the zero vector of V. Therefore f is injective.

To show that g is surjective let
(
x
y

)
∈ W. It is easy to see that g

((
x + 1
y + 1

))
=

(
x
y

)
.

Therefore g is surjective.
(ii) We know that W is one-dimensional since it is given as the null space of a rank 1

matrix with 2 columns. By a result in the lecture we know that isomorphic spaces
have the same dimension. Therefore dim V = 1.

Possible solution 8b: (ii) The dimension of a vector space V is defined to be the number

of basis vectors in a basis for V. We claim that
{(

0
2

)}
is a basis for V. Note that
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the zero vector in V is
(
1
1

)
, therefore

(
0
2

)
is not the zero vector, and this set is

linearly independent. We show that it is also spanning. Let
(
x
y

)
∈ V. We know

that y = 2 − x. Therefore
(
x
y

)
=

(
x

2 − x

)
= (1 − x) �

(
0
2

)
. Therefore the set is also

spanning and hence a basis. It follows that dim V = 1.
(i) We show that g is linear in the same way as in Solution 8a. Since we know that

dim W = 1 = dim V (see Solution 8a and part (ii) of Solution 8b) it suffices to prove

that g is injective to show that g is an isomorphism. Assume that g
((

x
y

))
= g

((
x′

y′

))
.

Then
(
x − 1
y − 1

)
=

(
x′ − 1
y′ − 1

)
and therefore x = x′ and y = y′. Thus,

(
x
y

)
=

(
x′

y′

)
and it

follows that g is injective (and therefore an isomorphism).


