
Transactional Memory
2nd edition

Copyright © 2010 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

Transactional Memory, 2nd edition

Tim Harris, James Larus, and Ravi Rajwar

www.morganclaypool.com

ISBN: 9781608452354 paperback
ISBN: 9781608452361 ebook

DOI 10.2200/S00272ED1V01Y201006CAC011

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE

Lecture #11
Series Editor: Mark D. Hill, University of Wisconsin

Series ISSN
Synthesis Lectures on Computer Architecture
Print 1935-3235 Electronic 1935-3243

www.morganclaypool.com

Synthesis Lectures on Computer
Architecture

Editor
Mark D. Hill, University of Wisconsin

Synthesis Lectures on Computer Architecture publishes 50- to 100-page publications on topics
pertaining to the science and art of designing, analyzing, selecting and interconnecting
hardwarecomponents to create computers that meet functional, performance and cost goals. The scope
will largely follow the purview of premier computer architecture conferences, such as ISCA, HPCA,
MICRO, and ASPLOS.

Transactional Memory, 2nd edition
Tim Harris, James Larus, and Ravi Rajwar
2010

Computer Architecture Performance Evaluation Models
Lieven Eeckhout
2010

Introduction to Reconfigured Supercomputing
Marco Lanzagorta, Stephen Bique, and Robert Rosenberg
2009

On-Chip Networks
Natalie Enright Jerger and Li-Shiuan Peh
2009

The Memory System: You Can’t Avoid It, You Can’t Ignore It, You Can’t Fake It
Bruce Jacob
2009

Fault Tolerant Computer Architecture
Daniel J. Sorin
2009

The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines
Luiz André Barroso and Urs Hölzle
2009

iv

Computer Architecture Techniques for Power-Efficiency
Stefanos Kaxiras and Margaret Martonosi
2008

Chip Multiprocessor Architecture: Techniques to Improve Throughput and Latency
Kunle Olukotun, Lance Hammond, and James Laudon
2007

Transactional Memory
James R. Larus and Ravi Rajwar
2006

Quantum Computing for Computer Architects
Tzvetan S. Metodi and Frederic T. Chong
2006

Transactional Memory
2nd edition

Tim Harris
Microsoft Research

James Larus
Microsoft Research

Ravi Rajwar
Intel Corporation

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #11

CM& cLaypoolMorgan publishers&

ABSTRACT
The advent of multicore processors has renewed interest in the idea of incorporating transactions
into the programming model used to write parallel programs.This approach, known as transactional
memory, offers an alternative, and hopefully better, way to coordinate concurrent threads. The ACI
(atomicity, consistency, isolation) properties of transactions provide a foundation to ensure that con-
current reads and writes of shared data do not produce inconsistent or incorrect results. At a higher
level, a computation wrapped in a transaction executes atomically - either it completes successfully
and commits its result in its entirety or it aborts. In addition, isolation ensures the transaction pro-
duces the same result as if no other transactions were executing concurrently. Although transactions
are not a parallel programming panacea, they shift much of the burden of synchronizing and co-
ordinating parallel computations from a programmer to a compiler, to a language runtime system,
or to hardware. The challenge for the system implementers is to build an efficient transactional
memory infrastructure. This book presents an overview of the state of the art in the design and
implementation of transactional memory systems, as of early spring 2010.

KEYWORDS
transactional memory, parallel programming, concurrent programming, compilers, pro-
gramming languages, computer architecture, computer hardware, nonblocking algo-
rithms, lock-free data structures, cache coherence, synchronization

vii

Contents

Preface . xiii

Acknowledgments . xv

1 Introduction . 1

1.1 Motivation .1

1.1.1 Difficulty of Parallel Programming . 1

1.1.2 Parallel Programming Abstractions .3

1.2 Database Systems and Transactions .4

1.2.1 What Is a Transaction? .5

1.3 Transactional Memory . 6

1.3.1 Basic Transactional Memory .7

1.3.2 Building on Basic Transactions . 8

1.3.3 Software Transactional Memory . 9

1.3.4 Hardware Transactional Memory . 11

1.3.5 What is Transactional Memory Good For? . 11

1.3.6 Differences Between Database Transactions and TM 12

1.3.7 Current Transactional Memory Systems and Simulators13

2 Basic Transactions . 17

2.1 TM Design Choices . 19

2.1.1 Concurrency Control . 20

2.1.2 Version Management . 21

2.1.3 Conflict Detection . 22

2.2 Semantics of Transactions . 23

2.2.1 Correctness Criteria for Database Transactions . 24

2.2.2 Consistency During Transactions . 28

viii

2.2.3 Problems with Mixed-Mode Accesses . 30

2.2.4 Handling Mixed-Mode Accesses: Lock-Based Models35

2.2.5 Handling Mixed-Mode Accesses: TSC . 38

2.2.6 Nesting . 41

2.3 Performance, Progress and Pathologies . 44

2.3.1 Progress Guarantees . 45

2.3.2 Conflict Detection and Performance . 48

2.3.3 Contention Management and Scheduling .51

2.3.4 Reducing Conflicts Between Transactions . 54

2.3.5 Higher-Level Conflict Detection . 57

2.4 Summary . 59

3 Building on Basic Transactions .61

3.1 Basic Atomic Blocks . 61

3.1.1 Semantics of Basic Atomic Blocks. 64

3.1.2 Building Basic Atomic Blocks Over TM. .68

3.1.3 Providing Strong Guarantees Over Weak TM Systems69

3.2 Extending Basic Atomic Blocks . 72

3.2.1 Condition Synchronization .72

3.2.2 Exceptions and Failure Atomicity . 78

3.2.3 Integrating Non-TM Resources . 80

3.2.4 Binary Libraries . 81

3.2.5 Storage Allocation and GC . 82

3.2.6 Existing Synchronization Primitives .84

3.2.7 System Calls, IO, and External Transactions . 87

3.3 Programming with TM . 89

3.3.1 Debugging and Profiling . 89

3.3.2 TM Workloads . 90

3.3.3 User Studies . 93

3.4 Alternative Models . 94

3.4.1 Transactions Everywhere . 94

ix

3.4.2 Lock-Based Models over TM . 96

3.4.3 Speculation over TM . 98

3.5 Summary . 99

4 Software Transactional Memory . 101

4.1 Managing STM Logs and Metadata . 103

4.1.1 Maintaining Metadata . 103

4.1.2 Undo-Logs and Redo-Logs . 106

4.1.3 Read-Sets and Write-Sets . 108

4.2 Lock-Based STM Systems with Local Version Numbers . 108

4.2.1 Two-Phase Locking with Versioned Locks . 109

4.2.2 Optimizing STM Usage . 113

4.2.3 Providing Opacity . 114

4.2.4 Discussion .116

4.3 Lock-Based STM Systems with a Global Clock . 116

4.3.1 Providing Opacity Using a Global Clock . 117

4.3.2 Timebase Extension . 121

4.3.3 Clock Contention vs False Conflict Tradeoffs . 121

4.3.4 Alternative Global Clock Algorithms . 123

4.4 Lock-Based STM Systems with Global Metadata . 123

4.4.1 Bloom Filter Conflict Detection . 124

4.4.2 Value-Based Validation . 126

4.5 Nonblocking STM Systems . 128

4.5.1 Per-object Indirection . 128

4.5.2 Nonblocking Object-Based STM Design Space .131

4.5.3 Nonblocking STM Systems Without Indirection .132

4.6 Additional Implementation Techniques .136

4.6.1 Supporting Privatization Safety and Publication Safety 136

4.6.2 Condition Synchronization . 140

4.6.3 Irrevocability . 141

4.7 Distributed STM Systems . 142

x

4.7.1 STM for Clusters . 142

4.7.2 STM-Based Middleware . 143

4.7.3 STM for PGAS Languages . 144

4.8 STM Testing and Correctness . 144

4.9 Summary . 145

5 Hardware-Supported Transactional Memory . 147

5.1 Basic Mechanisms for Conventional HTMs . 148

5.1.1 Identifying Transactional Locations . 148

5.1.2 Tracking Read-Sets and Managing Write-Sets . 149

5.1.3 Detecting Data Conflicts . 151

5.1.4 Resolving Data Conflicts . 152

5.1.5 Managing Architectural Register State . 152

5.1.6 Committing and Aborting HTM Transactions .153

5.2 Conventional HTM Proposals .154

5.2.1 Explicitly Transactional HTMs . 154

5.2.2 Implicitly Transactional HTM Systems . 159

5.2.3 Hybrid TMs: Integrating HTMs and STMs .164

5.2.4 Software and Design Considerations . 168

5.3 Alternative Mechanisms for HTMs . 170

5.3.1 Software-Resident Logs for Version Management . 170

5.3.2 Signatures for Access Tracking . 174

5.3.3 Conflict Detection via Update Broadcasts . 179

5.3.4 Deferring Conflict Detection . 182

5.4 Unbounded HTMs .184

5.4.1 Combining Signatures and Software-Resident Logs 185

5.4.2 Using Persistent Meta-Data . 187

5.4.3 Using Page Table Extensions . 194

5.5 Exposing Hardware Mechanisms to STMs . 197

5.5.1 Accelerating Short Transactions and Filtering Redundant Reads 197

5.5.2 Software Controlled Cache Coherence . 198

CONTENTS xi

5.5.3 Exposed Signatures to STMs .199

5.5.4 Exposing Metadata to STMs .200

5.6 Extending HTM: Nesting, IO, and Synchronization . 201

5.7 Summary . 203

6 Conclusions . 205

Bibliography . 209

Authors’ Biographies . 245

Preface
This book presents an overview of the state of the art in transactional memory, as of early 2010.
Substantial sections of this book have been revised since the first edition. There has been a vast
amount of research on TM in the last three years (quantitatively, 210 of the 351 papers referred to
in this book were written in 2007 or later). This work has expanded the range of implementation
techniques that have been explored, the maturity of many of the implementations, the experience
that researchers have writing programs using TM, and the insights from formal analysis of TM
algorithms and the programming abstractions built over them.

At a high level, readers familiar with the first edition will notice two broad changes:
First, we have expanded the discussion of programming with TM to form two chapters. This

reflects a separation between the lower level properties of transactions (Chapter 2) versus higher-level
language constructs (Chapter 3). In early work, these notions were often combined with research
papers introducing both a new TM algorithm and a new way of exposing it to the programmer.
There is now a clearer separation, with common TM algorithms being exposed to programmers
through many different interfaces, and with individual language features being implemented over
different TMs.

The second main difference is that we have re-structured the discussions of STM (Chapter 4)
and HTM (Chapter 5) so that they group work thematically rather than considering work chrono-
logically on a paper-by-paper basis. In each case, we focus on detailed case studies that we feel are
representative of major classes of algorithms or of the state-of-the-art. We try to be complete, so
please let us know if there is work that we have omitted.

This book does not contain the answers to many questions. At this point in the evolution
of the field, we do not have enough experience building and using transactional memory systems
to prefer one approach definitively over another. Instead, our goal in writing this book is to raise
the questions and provide an overview of the answers that others have proposed. We hope that this
background will help consolidate and advance research in this area and accelerate the search for
answers.

In addition, this book is written from a practical viewpoint, with an emphasis on the design
and implementation of TM systems, and their integration into programming languages. Some of
the techniques that we describe come from research that was originally presented in a more formal
style; we provide references to the original papers, but we do not attempt a formal presentation in
this book. A forthcoming book examines TM from a theoretical viewpoint [117].

There is a large body of research on techniques like thread-level speculation (TLS) and a
history of cross-fertilization between these areas. For instance, Ding et al.’s work on value-based
validation inspired techniques used in STM systems [88], whereas STM techniques using eager

xiv PREFACE

version management inspired Oancea et al.’s work on in-place speculation [234]. Inevitably, it is
difficult to delineate exactly what work should be considered “TM” and what should not. Broadly
speaking, we focus on work providing shared-memory synchronization between multiple explicit
threads; we try, briefly, to identify links with other relevant work where possible.

The bibliography that we use is available online at http://www.cs.wisc.edu/
trans-memory/biblio/index.html; we thank Jayaram Bobba and Mark Hill for their help
in maintaining it, and we welcome additions and corrections.

Tim Harris, James Larus, and Ravi Rajwar
June 2010

http://www.cs.wisc.edu/trans-memory/biblio/index.html
http://www.cs.wisc.edu/trans-memory/biblio/index.html
http://www.cs.wisc.edu/trans-memory/biblio/index.html

Acknowledgments
This book has benefited greatly from the assistance of a large number of people who discussed
transactional memory in its many forms with the authors and influenced this book—both the first
edition and this revised edition. Some people were even brave enough to read drafts and point out
shortcomings (of course, the remaining mistakes are the authors’ responsibility).

Many thanks to: Adam Welc, Al Aho, Ala Alameldeen, Amitabha Roy, Andy Glew, An-
nette Bieniusa, Arch Robison, Bryant Bigbee, Burton Smith, Chris Rossbach, Christos Kotse-
lidis, Christos Kozyrakis, Craig Zilles, Dan Grossman, Daniel Nussbaum, David Callahan, David
Christie,David Detlefs,David Wood,Ferad Zyulkyarov,Gil Neiger,Goetz Graefe,Haitham Akkary,
James Cownie, Jan Gray, Jesse Barnes, Jim Rose, João Cachopo, João Lourenço, Joe Duffy, Justin
Gottschlich, Kevin Moore, Konrad Lai, Kourosh Gharachorloo, Krste Asanovic, Mark Hill, Mark
Moir, Mark Tuttle, Martín Abadi, Maurice Herlihy, Michael Scott, Michael Spear, Milind Girkar,
Milo Martin, Nathan Bronson, Nir Shavit, Pascal Felber, Paul Petersen, Phil Bernstein, Richard
Greco, Rob Ennals, Robert Geva, Sanjeev Kumar, Satnam Singh, Scott Ananian, Shaz Qadeer,
Simon Peyton Jones, Steven Hand, Suresh Jagannathan, Suresh Srinivas, Tony Hosking, Torvald
Riegel, Vijay Menon, Vinod Grover, and Virendra Marathe.

Tim Harris, James Larus, and Ravi Rajwar
June 2010

1

C H A P T E R 1

Introduction

1.1 MOTIVATION

As Bruce Springsteen sings, “good times got a way of coming to an end”. Lost in the clamor of
the Y2K nonevent and the .com boom and bust, a less heralded but more significant milestone
occurred. Around 2004, 50 years of exponential improvement in the performance of sequential
computers ended [237]. Although the quantity of transistors on a chip continues to follow Moore’s
law (doubling roughly every two years), it has become increasingly difficult to continue to improve
the performance of sequential processors. Simply raising the clock frequency to increase performance
is difficult due to power and cooling concerns. In the terminology of Intel’s founder, Andrew Grove,
this is an inflection point—a “time in the life of a business when its fundamentals are about to
change” [116].

Industry’s response to stalled sequential performance was to introduce single-chip, parallel
computers, variously known as “chip multiprocessors”, “multicore”, or “manycore” systems. The ar-
chitecture of these computers puts two or more independent processors on a single chip and connects
them through a shared memory. The architecture is similar to shared-memory multiprocessors.

This parallel architecture offers a potential solution to the problem of stalled performance
growth. The number of processors that can be fabricated on a chip will continue to increase at the
Moore’s law rate, at least for the next few generations. As the number of processors on a chip doubles,
so does the peak number of instructions executed per second—without increasing clock speed. This
means that the performance of a well-formulated parallel program will also continue to improve at
roughly Moore’s law rate. Continued performance improvement permits a program’s developers to
increase its functionality by incorporating sophisticated, new features—the dynamic that has driven
the software industry for a long time.

1.1.1 DIFFICULTY OF PARALLEL PROGRAMMING
Unfortunately, despite more than 40 years’ experience with parallel computers, programming them
has proven to be far more difficult than sequential programming.Parallel algorithms are more difficult
to formulate and prove correct than sequential algorithms. A parallel program is far more difficult
to design, write, and debug than an equivalent sequential program. The non-deterministic bugs that
occur in parallel programs are notoriously difficult to find and remedy. Finally, to add insult to injury,
parallel programs often perform poorly. Part of these difficulties may be attributable to the exotic
nature of parallel programming, which was of interest to only a small community, was not widely
investigated or taught by academics, and was ignored by most software vendors.

2 1. INTRODUCTION

However, this explanation only addresses part of the problem with parallel programming; it is
fundamentally more difficult than sequential programming, and people have a great deal of difficulty
keeping track of multiple events occurring at the same time. Psychologists call this phenomena
“attention” and have been studying it for a century. A seminal experiment was Cherry’s dichotic
listening task, in which a person was asked to repeat a message heard in one ear, while ignoring
a different message played to the other ear [60]. People are very good at filtering the competing
message because they attend to a single channel at a time.

Parallelism and nondeterminacy greatly increase the number of items that a software developer
must keep in mind. Consequently, few people are able to systematically reason about a parallel
program’s behavior. Consider an example. Professor Herlihy of Brown University has observed
that implementing a queue data structure is a simple programming assignment in an introductory
programming course. However, the design of queues that allow concurrent operations on both ends
remains an active research topic, with designs tailored to different APIs (e.g., whether or not push
and pop need to be supported on both ends of the queue), or taking different approaches in boundary
conditions (e.g., whether or not items can appear duplicated or missed) [22; 223; 224].

The design of a parallel analogue, which allows concurrent threads to enqueue and dequeue
elements, is a publishable result because of the difficulty of coordinating concurrent access and
handling the boundary conditions [223]. In addition, program analysis tools, which compensate for
human failings by systematically identifying program defects, find parallel code to be provably more
difficult to analyze than sequential code [257].

Finally – and a primary motivation for the strong interest in transactional memory – the
programming models, languages, and tools available to a parallel programmer have lagged far behind
those for sequential programs.Consider two prevalent parallel programming models: data parallelism
and task parallelism.

Data parallelism is an effective programming model that applies an operation simultaneously
to an aggregate of individual items [153]. It is particularly appropriate for numeric computations,
which use matrices as their primary data structures. Programs often manipulate a matrix as an
aggregate, for example, by adding it to another matrix. Scientific programming languages, such as
High Performance Fortran (HPF) [201],directly support data parallel programming with a collection
of operators on matrices and ways to combine these operations. Parallelism is implicit and abundant
in data parallel programs. A compiler can exploit the inherent concurrency of applying an operation
to the elements of an aggregate by partitioning the work among the available processors. This
approach shifts the burden of synchronization and load balancing from a programmer to a compiler
and runtime system. Unfortunately, data parallelism is not a universal programming model. It is
natural and convenient in some settings [153] but difficult to apply to most data structures and
programming problems.

The other common programming model is task parallelism, which executes computations on
separate threads that are coordinated with explicit synchronization such as fork-join operations,
locks, semaphores, queues, etc. This unstructured programming model imposes no restrictions on

1.1. MOTIVATION 3

the code that each thread executes, when or how threads communicate, or how tasks are assigned
to threads. The model is a general one, capable of expressing all forms of parallel computation. It,
however, is very difficult to program correctly. In many ways, the model is at the same (low) level of
abstraction as the underlying computer’s hardware; in fact, processors directly implement many of
the constructs used to write this type of program.

1.1.2 PARALLEL PROGRAMMING ABSTRACTIONS
A key shortcoming of task parallelism is its lack of effective mechanisms for abstraction and
composition—computer science’s two fundamental tools for managing complexity. An abstraction
is a simplified view of an entity, which captures the features that are essential to understand and
manipulate it for a particular purpose. People use abstraction all the time. For example, consider an
observer “Jim” and a dog “Sally” barking from the backyard across the street. Sally is Jim’s abstraction
of the dog interrupting his writing of this book. In considering her barking, Jim need not remember
that Sally is actually a one-year-old Golden Retriever and, certainly, Jim does not think of her as a
quadruped mammal. The latter specifics are true, but not germane to Jim’s irritation at the barking.
Abstraction hides irrelevant detail and complexity, and it allows humans (and computers) to focus
on the aspects of a problem relevant to a specific task.

Composition is the ability to put together two entities to form a larger, more complex entity,
which, in turn, is abstracted into a single, composite entity. Composition and abstraction are closely
related since details of the underlying entities can be suppressed when manipulating the composite
product. Composition is also a common human activity. Consider an engineered artifact such as a car,
constructed from components such as an engine, brakes, body, etc. For most purposes, the abstraction
of a car subsumes these components and allows us to think about a car without considering the details
explored in automobile enthusiast magazines.

Modern programming languages support powerful abstraction mechanisms, as well as rich
libraries of abstractions for sequential programming. Procedures offer a way to encapsulate and
name a sequence of operations. Abstract datatypes and objects offer a way to encapsulate and name
data structures as well. Libraries, frameworks, and design patterns collect and organize reusable
abstractions that are the building blocks of software. Stepping up a level of abstraction, complex
software systems, such as operating systems,databases or middleware,provide the powerful, generally
useful abstractions, such as virtual memory,file systems,or relational databases used by most software.
These abstraction mechanisms and abstractions are fundamental to modern software development
which increasingly builds and reuses software components, rather than writing them from scratch.

Parallel programming lacks comparable abstraction mechanisms. Low-level parallel program-
ming models, such as threads and explicit synchronization, are unsuitable for constructing abstrac-
tions because explicit synchronization is not composable. A program that uses an abstraction con-
taining explicit synchronization must be aware of its details, to avoid causing races or deadlocks.

Here is an example. Consider a hashtable that supports thread-safe Insert and Remove
operations. In a sequential program, each of these operations can be an abstraction. One can fully

4 1. INTRODUCTION

specify their behavior without reference to the hashtable’s implementation. Now, suppose that in a
parallel program, we want to construct a new operation, call it Move, which deletes an item from one
hashtable and inserts it into another table.The intermediate state, in which neither table contains the
item, must not be visible to other threads. Unless this requirement influences the implementation,
there is no way to compose Insert and Remove operations to satisfy this requirement since they
lock the table only for the duration of the individual operations. Fixing this problem requires new
methods such as LockTable and UnlockTable, which break the hashtable abstraction by exposing
an implementation detail. Moreover, these methods are error prone. A client that locks more than
one table must be careful to lock them in a globally consistent order (and to unlock them!), to prevent
deadlock.

The same phenomenon holds for other forms of composition. Suppose that a procedure p1
waits for one of two input queues to produce data,making use of a library functionWaitAny that takes
a list of queues to wait for. A second procedure p2 might do the same thing on two different queues.
We cannot apply WaitAny to p1 and p2 to wait on any of the four queues: the inputs to WaitAny
must be queues, but p1 and p2 are procedures.This is a fundamental loss of compositionality. Instead,
programmers use awkward programming techniques, such as collecting queues used in lower-level
abstractions, performing a single top-level WaitAny, and then dispatching back to an appropriate
handler. Again, two individually correct abstractions, p1 and p2, cannot be composed into a larger
one; instead, they must be ripped apart and awkwardly merged, in direct conflict with the goals of
abstraction.

1.2 DATABASE SYSTEMS AND TRANSACTIONS

While parallelism has been a difficult problem for general-purpose programming, database systems
have successfully exploited parallel hardware for decades. Databases achieve good performance by
executing many queries simultaneously and by running queries on multiple processors when possible.
Moreover, the database programming model ensures that the author of an individual query need not
worry about this parallelism. Many have wondered if the programming model used by databases,
with its relative simplicity and widespread success, could also function as a more general, parallel
programming model.

At the heart of the programming model for databases is a transaction. A transaction specifies
a program semantics in which a computation executes as if it was the only computation accessing
the database. Other computations may execute simultaneously, but the model restricts the allowable
interactions among the transactions, so each produces results indistinguishable from the situation
in which the transactions run one after the other. This model is known as serializability. As a
consequence, a programmer who writes code for a transaction lives in the simpler, more familiar
sequential programming world and only needs to reason about computations that start with the final
results of other transactions. Transactions allow concurrent operations to access a common database
and still produce predictable, reproducible results.

1.2. DATABASE SYSTEMS AND TRANSACTIONS 5

Transactions are implemented by an underlying database system or transaction processing
monitor, both of which hide complex implementations behind a relatively simple interface [31; 113;
256]. These systems contain many sophisticated algorithms, but a programmer only sees a simple
programming model that subsumes most aspects of concurrency and failure. Moreover, the abstract
specification of a transaction’s behavior provides a great deal of implementation freedom and allows
the construction of efficient database systems.

Transactions offer a proven abstraction mechanism in database systems for constructing
reusable parallel computations. A computation executed in a transaction need not expose the data
it accesses or the order in which these accesses occur. Composing transactions can be as simple as
executing subtransactions in the scope of a surrounding transaction. Moreover, coordination mech-
anisms provide concise ways to constrain and order the execution of concurrent transactions.

The advent of multicore processors has renewed interest in an old idea, of incorporating trans-
actions into the programming model used to write parallel programs—building on ideas from lan-
guages such as Argus that have provided transactions to help structure distributed algorithms [196].
While programming-language transactions bear some similarity to these transactions, the imple-
mentation and execution environments differ greatly, as operations in distributed systems typically
involves network communication, and operations to a transactional databases typically involve disk
accesses. In contrast, programs typically store data in memory. This difference has given this new
abstraction its name, transactional memory (TM).

1.2.1 WHAT IS A TRANSACTION?
A transaction is a sequence of actions that appears indivisible and instantaneous to an outside
observer. A database transaction has four specific attributes: failure atomicity, consistency, isolation,
and durability—collectively known as the ACID properties.

Atomicity requires that all constituent actions in a transaction complete successfully, or that
none of these actions appear to start executing. It is not acceptable for a constituent action to fail
and for the transaction to finish successfully. Nor is it acceptable for a failed action to leave behind
evidence that it executed. A transaction that completes successfully commits and one that fails aborts.
In this book, we will call this property failure atomicity, to distinguish it from a more expansive notion
of atomic execution, which encompasses elements of other ACID properties.

The next property of a transaction is consistency. The meaning of consistency is entirely ap-
plication dependent, and it typically consists of a collection of invariants on data structures. For
example, an invariant might require that a numCustomers value contains the number of items in
the Customer table, or that the Customer table does not contain duplicate entries.

If a transaction modifies the state of the world, then its changes should start from one consistent
state and leave the database in another consistent state. Later transactions may have no knowledge
of which transactions executed earlier, so it is unrealistic to expect them to execute properly if
the invariants that they expect are not satisfied. Maintaining consistency is trivially satisfied if a
transaction aborts, since it then does not perturb the consistent state that it started in.

6 1. INTRODUCTION

The next property, called isolation, requires that transactions do not interfere with each other
while they are running—regardless of whether or not they are executing in parallel. We will explore
the semantics of transactions in the next chapter. This property obviously makes transactions an
attractive programming model for parallel computers.

The final property is durability, which requires that once a transaction commits, its result be
permanent (i.e., stored on a durable media such as disk) and available to all subsequent transactions.

1.3 TRANSACTIONAL MEMORY

In 1977, Lomet observed that an abstraction similar to a database transaction might make a good
programming language mechanism to ensure the consistency of data shared among several pro-
cesses [199]. The paper did not describe a practical implementation competitive with explicit syn-
chronization, and so the idea lay fallow until 1993 when Herlihy and Moss [148] proposed hardware-
supported transactional memory, and Stone et al. [309] proposed an atomic multi-word operation
known as “Oklahoma Update” (a reference to the song “All er Nothin’ ” from the Rodgers and Ham-
merstein musical Oklahoma!). In recent years, there has been a huge ground swell of interest in both
hardware and software systems for implementing transactional memory.

The basic idea is very simple. The properties of transactions provide a convenient abstraction
for coordinating concurrent reads and writes of shared data in a concurrent or parallel system.Today,
this coordination is the responsibility of a programmer, who has only low-level mechanisms, such as
locks, semaphores, mutexes, etc., to prevent two concurrent threads from interfering. Even modern
languages such as Java and C# provide only a slightly higher level construct, a monitor, to prevent
concurrent access to an object’s internal data. As discussed previously, these low-level mechanisms
are difficult to use correctly and are not composable.

Transactions provide an alternative approach to coordinating concurrent threads. A program
can wrap a computation in a transaction. Failure atomicity ensures the computation completes
successfully and commits its result in its entirety or aborts. In addition, isolation ensures that the
transaction produces the same result as it would if no other transactions were executing concurrently.

Although isolation appears to be the primary guarantee of transactional memory, the other
properties, failure atomicity and consistency, are important. If a programmer’s goal is a correct
program, then consistency is important since transactions may execute in unpredictable orders. It
would be difficult to write correct code without the assumption that a transaction starts executing
in a consistent state. Failure atomicity is a key part of ensuring consistency. If a transaction fails, it
could leave data in an unpredictable and inconsistent state that would cause subsequent transactions
to fail. Moreover, a mechanism used to implement failure atomicity, reverting data to an earlier state,
turns out to be very important for implementing certain types of concurrency control.

In this section, we provide a brief overview of the main topics that we study in the remainder of
the book; we sketch a basic low-level programming interface for TM (Section 1.3.1) and the way in
which it can be exposed to programmers in the more palatable form of atomic blocks (Section 1.3.2).
We sketch a software implementation (Section 1.3.3) and discuss current performance results. We

1.3. TRANSACTIONAL MEMORY 7

Double-ended queue

Left

sentinel
10 20

Right

sentinel
90...

Figure 1.1: A double-ended queue, implemented as a doubly-linked list of elements strung between two
sentinel nodes.

then discuss how TM can be supported by hardware (Section 1.3.4). We return to each of these
topics as complete chapters.

Finally, we discuss some overall questions about exactly what kinds of workload are suited
to TM (Section 1.3.5), how TM relates to database transactions (Section 1.3.6), and we provide
pointers to the current TM systems that are available (Section 1.3.7).

1.3.1 BASIC TRANSACTIONAL MEMORY
Chapter 2 introduces TM, sketches its use, and presents a broad taxonomy of design choices for soft-
ware and hardware TM systems. We refer to this taxonomy throughout the book when introducing
different TM implementations.

As an running example, we return to the challenge from Professor Herlihy of building a
scalable double-ended queue using a doubly-linked list (Figure 1.1). Concrete TM interfaces differ
between implementations, but as an initial illustration, let us consider how the PushLeft operation
could be implemented using a stylized TM system:

void PushLeft(DQueue *q, int val) {
QNode *qn = malloc(sizeof(QNode));
qn->val = val;
do {
StartTx();
QNode *leftSentinel = ReadTx(&(q->left));
QNode *oldLeftNode = ReadTx(&(leftSentinel->right));
WriteTx(&(qn->left), leftSentinel);
WriteTx(&(qn->right), oldLeftNode);
WriteTx(&(leftSentinel->right), qn);
WriteTx(&(oldLeftNode->left), qn);

} while (!CommitTx());
}

This code fragment attempts to allocate a new QNode object and to splice it in to a doubly-linked-list
representing the queue itself. The structure of the code broadly follows the equivalent sequential

8 1. INTRODUCTION

program: it allocates the QNode and then makes updates to the various fields of the new object and
to the links from the existing queue. The memory accesses themselves are performed by ReadTx
and WriteTx operations that are provided by the TM implementation, and this complete series of
accesses is bracketed by a StartTx()...CommitTx() pair that delimits the scope of the transaction.
We return to the details of this TM interface in Chapter 2.

This is a fundamentally different level of abstraction from trying to write the same operation
using manual locking: the programmer has not needed to indicate where to acquire or release locks,
or to identify which operations PushLeft may be allowed to execute concurrently with. Both of
these are the responsibility of the TM implementation.

There are two main mechanisms that the TM implementation needs to provide. First, it needs
to manage the tentative work that a transaction does while it executes. For instance, in this case, the
TM needs to track the updates that are being made to the left and right fields of the qn object
and to the existing fields of the nodes in the queue. Typically, this is done by the TM system either
(i) writing directly to memory while maintaining information about the values that it overwrites
(“eager versioning” because the TM makes its writes as soon as possible) or (ii) building up a private
buffer holding the updates that a transaction wishes to make before writing them out to memory
if the transaction commits successfully (“lazy versioning”, because the updates are only made at the
end, and only if the commit is successful).

The second mechanism that the TM must provide is a way to ensure isolation between
transactions; the TM needs to detect conflicts that occur and to resolve these conflicts so that
concurrent transactions appear to execute one-after-the-other rather than leaving a jumbled mess in
memory. A TM system using “eager conflict detection” identifies possible conflicts while transactions
are running. For instance, if two threads attempt to call PushLeft on the same queue at the same
time, then a conflict occurs when they both try to update the leftSentinel object to refer to their
new nodes: one of the transactions needs to be aborted, and the other can be allowed to continue. An
alternative approach is “lazy conflict detection” in which transactions continue to run speculatively,
and conflicts are detected only when they try to commit: in this case one of the CommitTx operations
would return false because the other transaction has successfully committed.

The trade offs between these different approaches are a recurring topic throughout the book
and, indeed, throughout research on TM implementations.

1.3.2 BUILDING ON BASIC TRANSACTIONS
Chapter 3 discusses how TM can be integrated into a high-level programming language. A frequent
approach is to provide atomic blocks. For instance, the example PushLeft operation might be
written:

1.3. TRANSACTIONAL MEMORY 9

void PushLeft(DQueue *q, int val) {
QNode *qn = malloc(sizeof(QNode));
qn->val = val;
atomic {
QNode *leftSentinel = q->left;
QNode *oldLeftNode = leftSentinel->right;
qn->left = leftSentinel;
qn->right = oldLeftNode;
leftSentinel->right = qn;
oldLeftNode->left = qn;

}
}

This approach eliminates a lot of the boilerplate associated with using TM directly: the programmer
identifies the sections of code that should execute atomically, and the language implementation
introduces operations such as ReadTx and WriteTx where necessary.

Furthermore, although they are not a focus of this current book, implementations of atomic
blocks have been developed that rely solely on static analyses to infer sets of locks that the program
should acquire [59; 74; 129; 151; 214]: atomic blocks provide a high-level abstraction that can
implemented in different ways on different systems.

Chapter 3 also discusses some of the key challenges in integrating TM into existing software
tool-chains and, in particular, it looks at the question of howTM can coexist with other programming
abstractions.For example,what happens if a program attempts to write a message to the screen within
the middle of an atomic block? One might expect that the message should just be printed once, but
a naïve transactional implementation might write the output multiple times if the atomic block’s
implementation needs to be attempted more than once before it commits. We discuss different
options for defining what the correct behavior should be in cases like this.

1.3.3 SOFTWARE TRANSACTIONAL MEMORY
Chapter 4 describes software transactional memory (STM) implementation techniques, focusing on
approaches that can be implemented on current mainstream processors. This has been a rich vein of
research over the last decade, and numerous alternatives have been explored.

Returning to the example PushLeft function, one class of STM systems combines automatic
locking of locations that are updated (to avoid conflicting updates by concurrent writing transactions)
along with the use of per-object version numbers (to detect conflicts between a reader and any
concurrent writers).

For example, if one thread executes the PushLeft operation in isolation then its transaction
would start by recording the version number in the q object and then recording the version number in
the leftSentinel object. These version numbers would be stored in a read-log that the transaction
maintains in thread-private storage. The transaction then attempts to write to the qn object, and
so it would acquire an exclusive lock on this object and add it to its write-log. As the transaction
makes updates, it would use eager version management (writing the updates directly to the objects

10 1. INTRODUCTION

themselves and recording the values that it overwrites into a third thread-private undo-log). Finally,
when the transaction tries to commit, it would check the version numbers for each entry in its
read-log to make sure that there have not been any conflicting updates. Since there have been none,
it would increment the version numbers on the objects in its write-log, before releasing the locks on
these objects.

The logs provide the STM system with all of the information necessary to detect conflicts and
to resolve them. The version numbers in the read-log allow a thread to detect whether a concurrent
thread has updated an object that it has read from (because an update will have incremented the
object’s version number). The values recorded in the undo log allow a thread to undo a transaction
if this kind of conflict occurs.

As we discuss in Chapter 4, there is a very large space of different possible STM designs, and
this simple version-number-based approach is by no means the state of the art.

When comparing alternative STM systems, it is useful to distinguish different properties that
they might have. Some STM systems aim for low sequential overhead (in which code running inside
a transaction is as fast as possible), others aim for good scalability (in which a parallel workload using
transactions can improve in performance as processors are added) or for strong progress guarantees (e.g.,
to provide nonblocking behavior).STM systems also differ substantially in terms of the programming
semantics that they offer—e.g., the extent to which memory locations may be accessed transactionally
at some times and non-transactionally at other times.

In addition, when evaluating TM systems, we must consider that software implementations
on today’s multiprocessor systems execute with much higher interprocessor communication laten-
cies, which may favor computationally expensive approaches that incur less synchronization or cache
traffic. Future systems may favor other trade offs. For instance, in the context of reader-writer locks,
Dice and Shavit have shown how CMPs favor quite different design choices from traditional multi-
processors [86]. Differences in the underlying computer hardware can greatly affect the performance
of an STM system—e.g., the memory consistency model that the hardware provides and the cost
of synchronization operations when compared with ordinary memory accesses.

The extent to which STM systems can be fast enough for use in practice remains a contentious
research question in itself—after all, in the simple system we described above, the STM system
introduces additional work maintaining logs and performing synchronization operations on objects.
The empirical results from Cascaval et al. [52] and Dragojević et al. [92] provide two recent sets of
observations that draw different conclusions.

For these reasons, in this survey book,we generally omit detailed discussion of the performance
of specific TM algorithms. However, to provide some initial quantitative examples, we briefly review
the results from Dragojević et al.’s study.Their study examines the number of threads that are required
for an application using STM to out-perform a sequential version of the same program; this defines a
break-even point beyond which the parallel program has the potential to be faster than the sequential
program [92]. Dragojević et al. report that, on a SPARC processor, 8/17 workloads reached their

1.3. TRANSACTIONAL MEMORY 11

break-even point with 2 threads, 14/17 workloads had reached their break-even point by 4 threads,
and 16/17 by 8 threads.

1.3.4 HARDWARE TRANSACTIONAL MEMORY
Whether or not STM is fast enough in itself, there is clearly scope for significant performance
improvements through hardware support. Chapter 5 describes Hardware Transactional Memory
(HTM) implementation techniques—including systems that provide complete implementations of
TM in hardware, systems that allow HW transactions to coexist with SW transactions, and systems
that provide hardware extensions to speed up parts of an STM implementation.

Early HTM systems kept a transaction’s modified state in a cache and used the cache coherence
protocol to detect conflicts with other transactions. Recent HTM systems have explored using a
processor’s write buffer to hold transactional updates, or spilling transactional data into lower levels
of the memory hierarchy or into software-managed memory.

We examine HTM systems at two different levels. First, there is the software programming
model that they support: Do they require specific new instructions to be used when making a
transactional memory access (akin to ReadTx and WriteTx) or, if a transaction is active, are all
memory accesses implicitly transactional? Does the HTM require transaction boundaries to be
identified explicitly, or does it infer them (e.g., based on ordinary lock-acquire operations)? Does
the HTM automatically re-execute a transaction that experiences contention, or does it branch to a
software handler that can perform an alternative operation? Importantly, does the HTM ensure that
certain kinds of transactions are guaranteed to be able to commit in the absence of contention (say,
those that access at most 4 memory locations?) All of these questions have important consequences
for the programming abstractions that are built over HTM.

The second level we consider comprises the microarchitecture mechanisms that are used to
support transactions—e.g., extensions to the cache coherence protocols for conflict detection or the
development of entirely new memory systems that are based around transactional execution.

HTM systems typically provide primitive mechanisms that underlie the user-visible languages,
compilers, and runtime systems. Software bridges the gap between programmers and hardware,
which makes much of the discussion of STM systems, languages, and compilers relevant to HTM
systems as well.

1.3.5 WHAT IS TRANSACTIONAL MEMORY GOOD FOR?
Much of the literature on TM systems focuses on implementation mechanisms and semantics, but
leaves implicit the question of exactly where TM is an appropriate programming abstraction.

One recurring use for TM is in managing shared-memory data structures in which scalability
is difficult to achieve via lock-based synchronization. The PushLeft operation we sketched for a
double-ended queue is one example of this kind of use. It seems clear that even a modest form of
TM is useful here—even a SW implementation with an explicit interface (like the ReadTx call in
our PushLeft example), or a HW implementation that might limit transactions to only 2, 3, or 4

12 1. INTRODUCTION

words. In this kind of example, the data structure implementation would be expected to be written
by an expert programmer and most likely encapsulated in a standard library. Performance is key, and
the ease of writing the library might be less important.

Another example where TM seems effective are graph algorithms in which the set of nodes
that a thread accesses depends on the values that it encounters: with locks, a thread may need to be
overly conservative (say, locking the complete graph before accessing a small portion of it), or a graph
traversal may need to be structured with great care to avoid deadlocks if two threads might traverse
the graph and need to lock nodes already in use by one another. With TM, a thread can access nodes
freely, and the TM system is responsible for isolating separate transactions and avoiding deadlock.

Zyulkyarov et al. provide an illustration of a larger example from a TM-based implementation
of the Quake game server [350]. When modeling the effect of a player’s move in the game, the lock-
based implementation needs to simulate the effect of the operation in order to determine which
game objects it needs to lock. Having done that simulation, the game would lock the objects, check
that the player’s move is still valid, and then perform its effects. With TM, the structure of that code
is simplified because the simulation step can be avoided.

In this example, transactions may need to be larger in size (say, dozens of memory accesses),
and an interface like ReadTx may become cumbersome. For this kind of usage, there would be
more importance placed on language support (e.g., atomic blocks) and more importance placed on
portability of the program from one language implementation to another.

Transactions are not a panacea. In parallel software, the programmer must still divide work
into pieces that can be executed on different processors. It is still (all too) easy to write an incorrect
parallel program, even with transactional memory. For example, a programmer might write trans-
actions that are too short—e.g., in the Move example, they might place Insert and Remove in two
separate transactions, rather than in one combined transaction. Conversely, a programmer might
write transactions that are too long—e.g., they might place two operations inside a transaction in
one thread, when the intermediate state between the operations needs to be visible to another thread.
A programmer might also simply use transactions incorrectly—e.g., starting a transaction but for-
getting to commit it. Finally, and particularly with early software implementations, the performance
of code executing within a transaction can be markedly slower than the performance of normal code.
Since the purpose of using parallelism is typically to get a performance increase, the programmer
must be sure that the performance gains of parallelism outweigh the penalties of synchronization.

1.3.6 DIFFERENCES BETWEEN DATABASE TRANSACTIONS AND TM
Transactions in memory differ from transactions in databases, and, consequently, they require new
implementation techniques, a central topic of this book. The following differences are among the
most important:

• Data in a traditional database resides on a disk, rather than in memory. Disk accesses take
5–10ms or, literally, time enough to execute millions of instructions. Databases can freely trade
computation against disk access. Transactional memory accesses main memory, which incurs

1.3. TRANSACTIONAL MEMORY 13

a cost of at most a few hundred instructions (and typically, in the case of a cache hit, only
a handful of cycles). A transaction cannot perform much computation at a memory access.
Hardware support is more attractive for TM than for database systems.

• Transactional memory is typically not durable in the sense that data in memory does not survive
program termination.This simplifies the implementation of TM since the need to record data
permanently on disk before a transaction commits considerably complicates a database system.

• A database provides the sole route of access to the data that it contains; consequently, the
database implementer is free to choose how to represent the data,how to associate concurrency-
control metadata with it, and so on. With TM, the programmer is typically able to perform
normal memory accesses in addition to transactional ones—e.g., to access a piece of data
directly from within one thread before starting to share it with other threads via transac-
tions. Exactly which forms of such mixed-mode accesses are permitted is a recurring theme
throughout this book.

• Transactional memory is a retrofit into a rich, complex world full of existing programming
languages, paradigms, libraries, software, and operating systems.To be successful, transactional
memory must coexist with existing infrastructure, even if a long-term goal may be to supplant
portions of this world with transactions.Programmers will find it difficult to adopt transactional
memory if it requires pervasive changes to programming languages, libraries, or operating
systems—or if it compels a closed world, like databases, where the only way to access data is
through a transaction.

1.3.7 CURRENT TRANSACTIONAL MEMORY SYSTEMS AND SIMULATORS
Numerous TM systems are now available. These are the ones that we are aware of (listed alphabet-
ically):

• A simulator is available for ASF, a proposed AMD64 architecture extension for bounded-size
transactions [61]. This is based on PTLSim, providing a detailed, cycle-accurate full-system
simulation of a multi-core system. The simulator models the proposed hardware instructions.
These are made available via C/C++ wrapper functions and macros. http://www.amd64.
org/research/multi-and-manycore-systems.html

• CTL is a library-based STM implementation derived from an early version of the TL2 [83]
algorithm. http://www-asc.di.fct.unl.pt/˜jml/Research/Software

• Deuce STM[173] provides support for atomic methods in an unmodified implementation
of the Java Virtual Machine. Methods are marked by an @Atomic attribute, and bytecode-
to-bytecode rewriting is used to instrument them with STM operations. http://www.
deucestm.org/

http://www.amd64.org/research/multi-and-manycore-systems.html
http://www.amd64.org/research/multi-and-manycore-systems.html
http://www-asc.di.fct.unl.pt/~jml/Research/Software
http://www.deucestm.org/
http://www.deucestm.org/

14 1. INTRODUCTION

• DTMC, the Dresden TM Compiler, supports transactions in C/C++ based on a modified
version of llvm-gcc and an additional LLVM compiler pass [61]. The system uses a C++
version of TinySTM, extended to include a range of different STM implementations. DTMC
and TinySTM can also target the AMD ASF simulator. http://tm.inf.tu-dresden.de

• The IBM XL C/C++ for Transactional Memory compiler provides support for pragma-based
atomic sections in C/C++ programs. It operates on the AIX operating system. http://www.
alphaworks.ibm.com/tech/xlcstm. In addition, the source code of an STM implemen-
tation compatible with the compiler was released through the Amino Concurrency Building
Blocks open source package. http://amino-cbbs.sourceforge.net/

• The Intel C++ STM compiler extends C++ with support for STM language extensions, in-
cluding inheritance, virtual functions, templates, exception handling, failure atomicity, TM
memory allocation, and irrevocable actions for legacy code & IO. A published ABI defines the
interface between the compiler and the core TM implementation itself. http://software.
intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition-20/

• JVSTM is a Java library that implements a multi-versioned approach to STM that includes
mechanisms for partial re-execution of failed transactions [45]. http://web.ist.utl.pt/
˜joao.cachopo/jvstm/

• Simulators are available for many variants of the LogTM [227] and LogTM-SE [40; 337]
systems.These are released as part of the Wisconsin Multifacet GEMS simulation framework
built on top of Virtutech Simics. They support different conflict detection and version man-
agement mechanisms, along with partial rollback, closed and open nesting. http://www.cs.
wisc.edu/gems/. GEMS also supports the Adaptive Transactional Memory Test Platform
(ATMTP) which models the Rock HTM instructions [82]. http://www.cs.wisc.edu/
gems/doc/gems-wiki/moin.cgi/ATMTP

• MetaTM is a hardware transactional memory simulator. It operates as a module for the Vir-
tutech Simics platform. The simulator can host TxLinux [271], which is a variant of the i386
Linux kernel designed to use MetaTM’s hardware transactional memory model for its internal
synchronization. http://www.metatm.net

• OSTM and WSTM are early nonblocking STM systems, released as part of the
lock-free-lib package of lock-free data structures. OSTM and WSTM provide a library-
based programming model, primarily aimed at data structure implementations.http://www.
cl.cam.ac.uk/research/srg/netos/lock-free/

• RSTM is a comprehensive set of STM systems available from the Rochester Synchronization
Group. The system is available as source code, and comprises a C++ package with 13 different
STM library implementations, and a smart-pointer based API for relatively transparent ac-
cess to STM without requiring compiler changes. The STM algorithms include the original

http://tm.inf.tu-dresden.de
http://www.alphaworks.ibm.com/tech/xlcstm
http://www.alphaworks.ibm.com/tech/xlcstm
http://amino-cbbs.sourceforge.net/
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition-20/
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition-20/
http://web.ist.utl.pt/~joao.cachopo/jvstm/
http://web.ist.utl.pt/~joao.cachopo/jvstm/
http://www.cs.wisc.edu/gems/
http://www.cs.wisc.edu/gems/
http://www.cs.wisc.edu/gems/doc/gems-wiki/moin.cgi/ATMTP
http://www.cs.wisc.edu/gems/doc/gems-wiki/moin.cgi/ATMTP
http://www.metatm.net
http://www.cl.cam.ac.uk/research/srg/netos/lock-free/
http://www.cl.cam.ac.uk/research/srg/netos/lock-free/
http://www.cl.cam.ac.uk/research/srg/netos/lock-free/

1.3. TRANSACTIONAL MEMORY 15

RSTM design [211], along with many recent designs such as variants of RingSTM [305], and
NOrec [77]. RSTM supports numerous architectures (x86, SPARC, POWER, Itanium) and
operating systems (Linux, Solaris, AIX, Win32, Mac). http://code.google.com/p/rstm

• STM.NET is an experimental extension of the .NET Framework to provide support for C#
programmers to use atomic blocks. It is available from Microsoft in binary format, along with
a set of example C# programs, and support for integration with Visual Studio 2008. http://
msdn.microsoft.com/en-us/devlabs/ee334183.aspx

• The Sun C++ compiler with Transactional Memory supports a range of STM back-ends,
including TL2 [83], SkySTM [188], HyTM [78] and PhTM [193].The compiler is available
in binary format, but the runtime system and additional TM implementations are available as
source code by request from the Sun Labs Scalable Synchronization Research Group.http://
research.sun.com/scalable/

• SwissTM [93] is a library-based STM system for C/C++ designed to support large transactions
in addition to shorter-running ones used in some workloads. http://lpd.epfl.ch/site/
research/tmeval

• TinySTM is a word-based STM implementation available from the University of Neuchatel.
It is based on the LSA algorithm [262]. A Java LSA implementation is also available.http://
tmware.org

• Implementations of TL2 [83] and subsequent algorithms are available for use with Tanger (an
earlier version of DTMC). http://mcg.cs.tau.ac.il/projects

• Twilight STM extends library-based STMs for C and for Java with a notion of “twilight”
execution during which transactions can attempt to detect and repair potential read inconsis-
tencies and turn a failing transaction into a successful one.http://proglang.informatik.
uni-freiburg.de/projects/syncstm/

• TxOS is a prototype version of Linux that extends the OS to allow composition of system calls
into atomic, isolated operations [243]. TxOS supports transactional semantics for a range of
resources, including the file system, pipes, signals, and process control. It runs on commodity
hardware. http://txos.code.csres.utexas.edu

We aim for this list to be complete, and so we welcome suggestions for additions or amendments.

http://code.google.com/p/rstm
http://msdn.microsoft.com/en-us/devlabs/ee334183.aspx
http://msdn.microsoft.com/en-us/devlabs/ee334183.aspx
http://msdn.microsoft.com/en-us/devlabs/ee334183.aspx
http://research.sun.com/scalable/
http://research.sun.com/scalable/
http://lpd.epfl.ch/site/research/tmeval
http://lpd.epfl.ch/site/research/tmeval
http://tmware.org
http://tmware.org
http://mcg.cs.tau.ac.il/projects
http://proglang.informatik.uni-freiburg.de/projects/syncstm/
http://proglang.informatik.uni-freiburg.de/projects/syncstm/
http://txos.code.csres.utexas.edu

17

C H A P T E R 2

Basic Transactions
This chapter presents transactional memory from the perspective of a low-level programmer or,
equivalently, from the perspective of a compiler using TM to implement features in a high-level
programming language. Most research on TM has focused on using it as a parallel programming
construct, so this discussion will focus on that aspect as well, rather than using transactions for error
recovery, real-time programming, or multitasking.

We focus on a simple TM interface, comprising operations for managing transactions and
for performing memory accesses. Many extensions to this are important—for instance, to integrate
transactions with existing programming libraries, or to allow transactions to express operations that
need to block. We defer these extensions until Chapter 3. The terminology in this simplistic setting
will provide a reference point when discussing particular implementations in detail in the case studies
later in this book.

We use a stylized TM interface in which all transactional operations are explicit. This kind of
interface can be supported both by HTM and STM—concretely, it is broadly similar to the original
hardware design of Herlihy and Moss [148], or to the word-based STM of Fraser and Harris [106].

The stylized TM interface provides a set of operations for managing transactions:
// Transaction management
void StartTx();
bool CommitTx();
void AbortTx();

StartTx begins a new transaction in the current thread. CommitTx attempts to commit the current
transaction; we say that it either succeeds and returns true or that it fails, aborting the transaction
and returning false. In addition, many systems provide an AbortTx operation that explicitly aborts
the current transaction, whether or not it has experienced a conflict.

The second set of operations is concerned with data access:
// Data access
T ReadTx(T *addr);
void WriteTx(T *addr, T v);

ReadTx takes the address addr of a value of type T and returns the transaction’s view of the data at
that address. WriteTx takes an address addr and a new value v, writing the value to the transaction’s
view of that address. In practice, different functions would be provided for different types T. Type
parameters could be used in a language supporting templates or generic classes. We refer to the set
of locations that a transaction has read from as its read-set and the set of locations that it has written
to as its write-set.

18 2. BASIC TRANSACTIONS

Returning to the running example from Chapter 1, suppose that a program maintains a
double-ended queue, represented by a doubly-linked list (Figure 1.1). The queue supports four
operations:

void PushLeft(DQueue *q, int val);
int PopLeft(DQueue *q);
void PushRight(DQueue *q, int val);
int PopRight(DQueue *q);

Let us suppose that the queue can grow without bound, and that a pop operation can return a
special value (say, -1) if it finds that the queue is empty. With TM, the implementation of the
queue’s operations can remain very close to a simple, sequential version of the queue. For instance,
the sequential version of PushLeft might be:

void PushLeft(DQueue *q, int val) {
QNode *qn = malloc(sizeof(QNode));
qn->val = val;
QNode *leftSentinel = q->left;
QNode *oldLeftNode = leftSentinel->right;
qn->left = leftSentinel;
qn->right = oldLeftNode;
leftSentinel->right = qn;
oldLeftNode->left = qn;

}

In this example, the code creates a new QNode to hold the value, then it finds the queue’s left-sentinel
(leftSentinel), and the original left-most node in the queue (oldLeftNode). The transaction
then initializes the fields of the QNode, and splices it between leftSentinel and oldLeftNode.
As we showed in Chapter 1, the corresponding transactional code would be:

void PushLeft(DQueue *q, int val) {
QNode *qn = malloc(sizeof(QNode));
qn->val = val;
do {
StartTx();
QNode *leftSentinel = ReadTx(&(q->left));
QNode *oldLeftNode = ReadTx(&(leftSentinel->right));
WriteTx(&(qn->left), leftSentinel);
WriteTx(&(qn->right), oldLeftNode);
WriteTx(&(leftSentinel->right), qn);
WriteTx(&(oldLeftNode->left), qn);

} while (!CommitTx());
}

The body of the operation has been wrapped in a StartTx...CommitTx pair, and the memory accesses
themselves have been expanded to use ReadTx and WriteTx. This structure is typical with TM: the
StartTx...CommitTx operations bracket a series of steps which update a data structure from one
consistent state to another, and this is repeated until CommitTx succeeds.

2.1. TM DESIGN CHOICES 19

Unlike a lock-based implementation of PushLeft, when using TM, it is not necessary to
explicitly acquire and release locks; this is all handled by the TM implementation. In fact, a lock-
based implementation of the algorithm would be extremely difficult to write in a way that is correct
and scalable. Using a single lock to protect the entire queue would prevent operations proceeding
concurrently on the two ends. To provide some degree of scalability, we might try to use separate
locks for the left and right ends of the queue, so that operations on the two ends can proceed in
parallel. However, care is needed when the queue is almost empty because we would have to avoid
removing the final element from the queue from both ends at the same time—and we would need
to avoid the possibility of deadlock if the two locks are needed together.

Using TM, the syntax of PushLeft is clearly verbose, and much can be done to improve it. As
we show in the next chapter, better language constructs can remove the need to write out operations
like ReadTx and WriteTx. However, language support also blurs the question of exactly which
sequence of operations is invoked on the TM—particularly, when the implementation is coupled
with an optimizing compiler that might re-order memory accesses. Therefore, initially, we focus on
an explicit TM interface to avoid any ambiguity.

In the remainder of the current chapter, we examine three aspects of TM. First, in Section 2.1,
we look at the broad characteristics of different TM systems—for instance, how the tentative updates
made by transactions are managed and how conflicts between transactions are detected.

In Section 2.2, we look at the semantics of TM operations; how they relate to database
transactions and how notions from database transactions be extended to cope with problems that
are unique to TM.

Finally, in Section 2.3, we look at progress guarantees for TM or, more typically, a lack of
progress that can occur in workloads that provoke frequent conflicts between transactions. Without
care, a basic implementation of TM can fail to make any progress at all, even on short examples
like PushLeft—in the worst case, implementations can discover that two transactions conflict,
force both of them to abort, and then re-execute both of them. This cycle can repeat, resulting in
livelock. Some TM systems guarantee that this kind of livelock cannot occur; others leave it to the
programmer to avoid livelock.

Somewhat sloppily, throughout this book, we use the word transaction to refer to a complete
series of StartTx...CommitTx attempts, as well as to each of these individual attempts until a commit
succeeds. Many TM systems automatically detect conflicts and re-execute failed transactions (even
before a transaction invokes CommitTx). Consequently, this distinction is not always present in
implementations.

2.1 TM DESIGN CHOICES

Even for the simple TM interface above, many alternative implementations are possible. We intro-
duce the main design choices in this section, looking at optimistic versus pessimistic concurrency
control (Section 2.1.1), eager versus lazy version management (Section 2.1.2), and eager versus lazy
conflict detection (Section 2.1.3).

20 2. BASIC TRANSACTIONS

R(q)Thread 1

Thread 2

W(leftSentinel) W(oldLeftNode) Unlock all

R(q) W(leftSentinel) W(oldLeftNode) Unlock all

Conflict occurs, is detected, and is resolved

by delaying Thread 2's transaction

(a) Pessimistic concurrency control.

R(q)Thread 1

Thread 2

W(leftSentinel) W(oldLeftNode)

R(q) W(leftSentinel) W(oldLeftNode)

Conflict

detected and

resolved by

aborting the

transactions and

reexecuting one

or both of them R(q)

R(q)

Conflict occurs

(b) Optimistic concurrency control.

Figure 2.1: Two approaches to concurrency control. R(x) indicates an attempt to read from x, and W(x)

indicates an attempt to write to x.

2.1.1 CONCURRENCY CONTROL
A TM system requires synchronization to mediate concurrent accesses to data. We say that:

• A conflict occurs when two transactions perform conflicting operations on the same piece of
data—either two concurrent writes, or a write from one transaction and a read from another.

• The conflict is detected when the underlying TM system determines that the conflict has
occurred.

• The conflict is resolved when the underlying system or code in a transaction takes some action
to avoid the conflict—e.g., by delaying or aborting one of the conflicting transactions.

These three events (conflict, detection, resolution) can occur at different times, but not in a dif-
ferent order—at least until systems predict or otherwise anticipate conflicts. Broadly, there are two
approaches to concurrency control:

With pessimistic concurrency control, all three events occur at the same point in execution: when
a transaction is about to access a location, the system detects a conflict, and resolves it. This type of
concurrency control allows a transaction to claim exclusive ownership of data prior to proceeding,
preventing other transactions from accessing it. For instance, with PushLeft, pessimistic concur-
rency control could be implemented by the TM locking the queue, locking the left sentinel, and
locking the original left-most node before attempting to insert the new node (Figure 2.1(a)).

With optimistic concurrency control (Figure 2.1(b)), conflict detection and resolution can happen
after a conflict occurs. This type of concurrency control allows multiple transactions to access data
concurrently and to continue running even if they conflict, so long as the TM detects and resolves

2.1. TM DESIGN CHOICES 21

these conflicts before a transaction commits. This provides considerable implementation leeway—
for instance, conflicts can be resolved by aborting a transaction or by delaying one of the conflicting
transactions.

Both forms of concurrency control require care in their implementation to ensure that transac-
tions make progress. Implementations of pessimistic concurrency control must avoid deadlock—e.g.,
if transaction TA holds a lock L1 and requests lock L2, while transaction TB holds L2 and re-
quests L1. Deadlocks can be avoided by acquiring access in a fixed, predetermined order, or by using
timeouts or other dynamic deadlock detection techniques to recover from them [176]. Conversely,
some forms of optimistic concurrency control can lead to livelock—e.g., if transaction TA writes to
location x then it may conflict with transaction TB and force TB to be aborted, whereupon TB may
restart, write to x, forcing TA to be aborted.To avoid this problem,TM systems may need to use con-
tention management to cause transactions to delay reexecution in the face of conflicts (Section 2.3.3),
or they may need to ensure that a transaction is only aborted because of a conflict with a transaction
that has actually committed.

If conflicts are frequent, then pessimistic concurrency control can be worthwhile: once a
transaction has its locks, it is going to be able to run to completion. However, if conflicts are rare,
optimistic concurrency control is often faster because it avoids the cost of locking and can increase
concurrency between transactions. (In contrast, note that database systems often use pessimistic
concurrency control even when conflicts are rare.)

Most of the TM systems we study in this book use optimistic concurrency control. However,
hybrid approaches are also common, using pessimistic concurrency control between writes and
optimistic concurrency control with reads (Section 4.2). Another common hybrid is to combine
pessimistic synchronization of irrevocable transactions with an optimistic TM system [37; 300; 303;
308; 333]. An irrevocable transaction is one which the TM system guarantees will be able to run
to completion without conflicts (Section 3.2). Irrevocability can be used to guarantee that a given
transaction can finish—e.g., if it has experienced frequent contention in the past or performed an
IO operation.

2.1.2 VERSION MANAGEMENT
TM systems require mechanisms to manage the tentative writes that concurrent transactions are
doing (“version management”).The first general approach is eager version management [227].This is
also known as direct update because it means that the transaction directly modifies the data in memory.
The transaction maintains an undo-log holding values that it has overwritten.This log allows the old
values to be written back if the transaction subsequently aborts. Eager version management requires
that pessimistic concurrency control be used for the transaction’s writes; this is necessary because the
transaction requires exclusive access to the locations if it is going to write to them directly.

The second general approach is lazy version management. This approach is also known as
deferred update because the updates are delayed until a transaction commits.The transaction maintains
its tentative writes in a transaction-private redo-log. A transaction’s updates are buffered in this log,

22 2. BASIC TRANSACTIONS

and a transaction’s reads must consult the log so that earlier writes are seen. When a transaction
commits, it updates the actual locations from these private copies. If a transaction aborts, it simply
discards its redo-log.

2.1.3 CONFLICT DETECTION
The final main design choice in TM systems is how to detect conflicts. With pessimistic concurrency
control, conflict detection is straightforward because a lock used in the implementation can only be
acquired when it is not already held in a conflicting mode by another thread.

However, in TM systems using optimistic concurrency control, a very wide spectrum of
techniques have been studied. In these systems, there is, typically, a validation operation with which
the current transaction checks whether or not it has experienced conflicts; if validation succeeds,
then the transaction’s execution thus far could have occurred legitimately in some serial execution.

We can classify most approaches to conflict detection on three orthogonal dimensions:
The first dimension is the granularity of conflict detection: e.g., in HTM systems, conflicts

may be detected at the level of complete cache lines, or, in STM system, conflicts may be detected
at the level of complete objects. Most TM systems, therefore, involve some notion of false conflicts
in which the implementation treats two transactions as conflicting even though they have accessed
distinct locations—techniques using value-based validation provide one way to avoid false conflicts
or to recover from false conflicts (Section 4.4.2).

The second dimension is the time at which conflict detection occurs:

• A conflict can be detected when a transaction declares its intent to access data (by “opening”
or “acquiring” a location in many STMs) or at the transaction’s first reference to the data. The
term eager conflict detection is sometimes used to describe this approach [227].

• Conflicts can be detected on validation, at which point a transaction examines the collection
of locations it previously read or updated, to see if another transaction has modified them.
Validation can occur any time, or even multiple times, during a transaction’s execution.

• A conflict can be detected on commit. When a transaction attempts to commit, it may (often
must) validate the complete set of locations one final time to detect conflicts with other
transactions.The term lazy conflict detection is sometimes used to describe this approach [227].

The final dimension is exactly which kinds of access are treated as conflicts:

• A system using tentative conflict detection identifies conflicts between concurrent
transactions—e.g., if transaction TA has read from a location and transaction TB writes to the
location, then this constitutes a conflict, even before either transaction commits.

• A system using committed conflict detection only considers conflicts between active transactions
and those that have already committed—in this case, TA and TB can proceed in parallel, and
a conflict only occurs when one or other of the transactions commits.

2.2. SEMANTICS OF TRANSACTIONS 23

In practice, eager mechanisms are usually coupled with the detection of tentative conflicts between
running transactions,while lazy mechanisms are typically coupled with detection of conflicts between
a transaction that is trying to commit and any concurrent transactions that have already committed.

As with concurrency control, hybrid approaches are often used in a given TM system, and
write–write and read–write conflicts may be treated differently. In addition, some TM systems
provide abstractions for higher-level notions of conflict detection; we return to these high-level
notions, and to the performance impact of different forms of conflict detection in Section 2.3.

2.2 SEMANTICS OF TRANSACTIONS

A programming abstraction with a simple, clean semantics helps programmers understand the
programming construct, increases their chances of writing correct code, and facilitates detecting
errors with programming tools. However, there is no agreed semantics of transactions although
some attempts have been made [3; 4; 6; 89; 115; 119; 125; 126; 226; 282].

In this section, we describe the core approaches taken in the literature, concentrating initially
on simple transactions and the link with databases (Section 2.2.1), then the form of consistency
seen by a series of accesses within a single transaction (Section 2.2.2), the interactions between
transactional and non-transactional memory accesses (Section 2.2.3–2.2.5) and different forms of
nested transaction (Section 2.2.6).

Before discussing the semantics in detail, it is worthwhile distinguishing between two dif-
ferent levels of concurrency that are present in a system using TM. First, there can be concurrency
between transactions: two transactions are concurrent unless one of them finishes before the other
starts. Second, there can be concurrency between the individual TM operations that are used by
the transactions: e.g., two different threads might execute ReadTx at the same time. Figure 2.2(a)
illustrates this. In the figure, Thread 1’s transaction is concurrent with Thread 2’s transaction. In
addition, the two StartTx operations run concurrently, and Thread 1’s read from x is concurrent
with Thread 2’s read from u.

It is useful to decompose the problem of defining TM semantics by handling these two
kinds of concurrency differently. In particular, we can focus on the core problem of defining the
TM operations by requiring that they satisfy a property known as linearizability [150]. In order
to be linearizable, the individual operations like StartTx and ReadTx must appear to take place
atomically at some point between when the operation begins and when it finishes. Figure 2.2(b)
illustrates this, mapping each of the TM operations onto a point on a time line at which they appear
to run atomically.

Requiring linearizability lets us abstract over the low-level details of the TM system’s inter-
nal concurrency control. However, we still need to consider what different sequential orderings of
TM operations mean—e.g., exactly which values might be returned by Thread 2’s read from u in
Figure 2.2(b). This is known as a sequential semantics of TM [282].

24 2. BASIC TRANSACTIONS

StartTx()Thread 1

Thread 2

ReadTx(&x) WriteTx(&y)

StartTx() ReadTx(&u) WriteTx(&v)

CommitTx()

CommitTx()

(a) Two levels of concurrency: the transactions being executed by the threads are concurrent, and
some of the individual TM operations are also concurrent (e.g., the two calls to StartTx).

StartTx()Thread 1

Thread 2

ReadTx(&x) WriteTx(&y)

StartTx() ReadTx(&u) WriteTx(&v)

CommitTx()

CommitTx()

(b) Linearizability of TM operations: each operation appears to execute atomically (as shown by
the solid arrows), at some point between its start and its completion.

Figure 2.2: Concurrency between transactions.

2.2.1 CORRECTNESS CRITERIA FOR DATABASE TRANSACTIONS
Transactions for computing have their roots in database systems, and so it is natural to examine
the extent to which the correctness criteria used for database transactions can be used to develop a
sequential semantics for TM. To understand this better, let us revisit the three database properties
of atomicity, consistency, and isolation:

Atomicity (specifically, failure atomicity) requires that a transaction execute to completion or,
in case of failure, to appear not to have executed at all. An aborted transaction should have no side
effects.

Consistency requires that a transaction transform the database from one consistent state to
another consistent state.Consistency is a property of a specific data structure, application,or database.
It cannot be specified independently of the semantics of a particular system. Enforcing consistency
requires a programmer to specify data invariants, typically in the form of predicates. These are
typically not specified with TM systems, although some exploration has been made [137].

Isolation requires that execution of a transaction not affect the result of concurrently executing
transactions.

What about the “D” durability from the full ACID model? One could argue that durability
does not apply to TM because volatile memory is inherently not a durable resource, unlike storage on
a disk. Conversely, one could argue that the effects of a TM transaction must remain durable so long
as the process’s memory state is retained; that is, a correct TM should not allow a transaction’s effects
to be discarded until the process terminates. This is a semantic question of exactly what one takes

2.2. SEMANTICS OF TRANSACTIONS 25

StartTx()Thread 1

Thread 2

WriteTx(&v)

StartTx() ReadTx(&v)

CommitTx()

CommitTx()

Figure 2.3: Serializability does not have to respect real-time ordering: Thread 1’s transaction can appear
to run after Thread 2’s transaction, even if its execution comes completely before Thread 2’s.

“durability” to mean. It indicates once again how care is required in mapping ideas from database
transactions onto TM.

2.2.1.1 Serializability
In database systems, the basic correctness condition for concurrent transactions is serializability.
It states that the result of executing concurrent transactions on a database must be identical to a
result in which these transactions executed serially. Serializability allows a programmer to write
a transaction in isolation, as if no other transactions were executing in the database system. The
system’s implementation is free to reorder or interleave transactions, but it must ensure the result of
their execution remains serializable.

Although serializability requires that the transactions appear to run in a sequential order,
it does not require that this reflects the real-time order in which they run. Figure 2.3 gives an
example:Thread 1’s transaction can appear to run afterThread 2’s transaction, even thoughThread 1’s
transaction executes first.This could be counter-intuitive in a shared-memory programming model—
for instance,Thread 1 may complete its transaction,perform some non-transactional synchronization
with Thread 2 to announce that it has finished, and then Thread 2’s transaction may miss memory
updates that were committed by Thread 1.

2.2.1.2 Strict Serializability
Strict serializability is a stronger correctness criteria than ordinary serializability: it requires that
if transaction TA completes before transaction TB starts, then TA must occur before TB in the
equivalent serial execution. Consequently, for the example in Figure 2.3, strict serializability would
require that Thread 1’s transaction appears to run before Thread 2’s.

This seems a better fit than ordinary serializability, but even strict serializability does not
capture all of the requirements we might have for the semantics of TM. In particular, although it
specifies legal interactions between transactions, it says nothing about the interaction of transactions
with non-transactional code.

26 2. BASIC TRANSACTIONS

StartTx()Thread 1

Thread 2

WriteTx(&x)

StartTx() ReadTx(&x)

WriteTx(&y)

CommitTx()

CommitTx()

Read(&y)

Figure 2.4: Strict serializability does not consider non-transactional accesses, such as the read of y from
Thread 2.

Figure 2.4 gives an example:Thread 1’s transaction writes to x and to y and is serialized before
Thread 2’s transaction, which reads from x. Having seen the value in x, Thread 2 might decide to
read from y non-transactionally, and expect that it will see the (apparently-previous) write from
Thread 1’s transaction.

Strict serializability does not require this because it does not consider the role of non-
transactional accesses. Indeed, databases do not face this difficulty since they control access to
shared data and require all accesses to be mediated by the database. By contrast, programs using
TM can execute code outside of any transaction, and they can potentially access data directly as well
as transactionally. If transactional and non-transactional code access shared data, their interaction
needs to be specified to describe the semantics of transactional memory fully. We return to this kind
of interaction in detail in Sections 2.2.3–2.2.5.

2.2.1.3 Linearizability
We introduced the notion of linearizability when considering the behavior of individual operations
such as StartTx, ReadTx, CommitTx, etc.: linearizability requires that each of these operations
appears to execute atomically at some point between when it is invoked and when it completes.

Linearizability can be used in a similar way to define the semantics of complete transactions.
In this case, a transaction would be considered as a single operation, extending from the beginning
of its StartTx call until the completion of its final CommitTx. Linearizability would then require
that each transaction appears to take place atomically at some point during this interval. This model
can readily accommodate non-transactional read and write operations: as before, these must occur
atomically at some point during the read or write’s individual execution.

Under linearizability, the example of Figure 2.4 would be guaranteed that if Thread 1’s trans-
action appears to execute beforeThread 2’s transaction, thenThread 2’s non-transactional read would
be guaranteed to see Thread 1’s transactional write.

This form of linearizability, therefore, looks like an attractive property for a TM system to
satisfy. However, it is unclear how this model should accommodate transactions that abort due to
conflicts—after all, if each transaction appears to execute atomically at a single instant, then conflicts
between transactions will not occur.

2.2. SEMANTICS OF TRANSACTIONS 27

2.2.1.4 Snapshot Isolation
Many databases support forms of isolation that are weaker than serializability. In databases, these can
allow greater concurrency between transactions, by allowing non-serializable executions to commit.
They can also simplify the database’s implementation by reducing the kinds of conflicts that need to
be detected. Researchers have explored whether or not similar correctness criteria can be exploited
by TM [263].

Snapshot isolation (SI) is a weaker criteria that allows the reads that a transaction performs
to be serialized before the transaction’s writes. The reads must collectively see a valid snapshot of
memory,but SI allows concurrent transactions to see that same snapshot and then to commit separate
sets of updates that conflict with the snapshot but not with one another. For instance, consider this
contrived example1:

// Thread 1 // Thread 2
do { do {
StartTx(); StartTx();
int tmp_x = ReadTx(&x); int tmp_x = ReadTx(&x);
int tmp_y = ReadTx(&y); int tmp_y = ReadTx(&y);
WriteTx(&x, tmp_x+tmp_y+1); WriteTx(&y, tmp_x+tmp_y+1);

} while (!CommitTx()); } while (!CommitTx());

In this example, the two threads are doing identical work, except that Thread 1 writes the total of
x+y+1 to x while Thread 2 writes the total to y. If x==0 and y==0 initially, then under serializability
the possible results are x==1 and y==2, or x==2 and y==1, depending on how the transactions
occur in the serial order. Snapshot isolation admits a third result of x==1 and y==1, in which both
transactions see the same initial snapshot and then commit their separate updates.

It is not currently clear if weaker models such as SI are as useful with TM as they are with
databases. First, the semantics of SI may seem unexpected to programmers when compared with
simpler models based on serial ordering of complete transactions. Second, implementations of SI for
TM do not often seem to offer performance advantages when compared with models such as strict
serializability; consequently, performance benefits must come from increased concurrency between
transactions, rather than from simplifications within the TM itself. Of course, this may change as
research continues; for instance, faster implementations may be developed, or it may be that SI
is attractive in distributed settings (Section 4.7) where conflict detection can be more costly than
between threads on a chip multiprocessor.

Riegel et al. defined an additional correctness criteria, z-linearizability. As with classical lin-
earizability, this operates at a whole-transaction basis. However, z-linearizability aims to permit
greater concurrency in workloads that mix long-running and short-running transactions [260]. It
requires that the set of all transactions is serializable, but that specified sub-sets of transactions are
linearizable—long-running transactions might form one such set, and short-running transactions
might form another.

1Throughout this book, unless stated otherwise, variables are assumed to be ordinary non-volatile 0-initialized integers.

28 2. BASIC TRANSACTIONS

2.2.2 CONSISTENCY DURING TRANSACTIONS
As we illustrated in the previous section, correctness criteria from databases provide some intuition
for the semantics of TM systems, but they do not consider all of the complexities. There are two
main areas where they fall short:

First, they specify how committed transactions behave, but they do not define what happens
while a transaction runs: for instance, is it permitted for a transaction’s ReadTx operations to return
arbitrary values, so long as the transaction ultimately aborts?

Second, criteria such as serializability assume that the database mediates on all access to data,
and so they do not consider cases where data is sometimes accessed via transactions and sometimes
accessed directly.

A definition for TM’s semantics needs to consider both of these areas. Several different
approaches have been explored in the literature, and so our aim, in this book, is to survey the options
and to examine their similarities and differences.There is not a consensus in the research community
on a single “correct” choice; indeed, initial work suggests that perhaps different approaches are
appropriate for different kinds of use of TM.

In this initial section, we focus on a transaction-only workload and use this to examine the
behavior of the ReadTx operation while a transaction is running. Then, in Sections 2.2.3–2.2.5, we
expand the scope to include non-transactional memory accesses as well as transactional ones. This
introduces additional complexity, so we try to separate those issues from the simpler problems that
occur when only transactions are involved.

2.2.2.1 Inconsistent Reads and Incremental Validation
As we discussed previously, strict serializability provides an intuitive model for the execution of
committed transactions. However, it does not provide a definition of how transactions should behave
when they fail to commit—either because they abort or because they do not get as far as trying to
call CommitTx. For instance, consider the following two threads (as usual, x==y==0 initially):

// Thread 1 // Thread 2
do {
StartTx();
int tmp_1 = ReadTx(&x);

do {
StartTx();
WriteTx(&x, 10);
WriteTx(&y, 10);

} while (!CommitTx());
int tmp_2 = ReadTx(&y);
while (tmp_1 != tmp_2) { }

} while (!CommitTx());

Suppose Thread 1 reads from x, and then Thread 2 runs in its entirety. With eager version man-
agement and lazy conflict detection, when Thread 1 resumes, it will read Thread 2’s update to y
and consequently see tmp_1==0, and tmp_2==10. This will cause it to loop forever. This example

2.2. SEMANTICS OF TRANSACTIONS 29

illustrates that (at least with this kind of TM) doing commit-time validation is insufficient to prevent
Thread 1 from looping: the thread will never try to commit its transaction.

A transaction such as Thread 1’s, which has become inconsistent but not yet detected, the
conflict is said to be a zombie transaction [83] (also known as a doomed transaction [278]). Zombie
transactions can cause particular problems in unsafe languages, such as C or C++, because incon-
sistency can cause incorrect behavior without raising an exception. For instance, the values of tmp_1
and tmp_2 could be used as inputs to pointer arithmetic to compute an address to access. If the
values are inconsistent then the transaction may try to read from an invalid memory location (caus-
ing an access violation); even worse, a write based on a computed address might access a location
which is not intended to be used transactionally. Inconsistency can be a problem even in a type-safe
language—for instance, Spear et al. identified that a zombie transaction may attempt to access a
(type-correct) location that is not meant to be used transactionally. How should these problems be
handled?

One option is to make the programmer responsible, requiring that they anticipate the anoma-
lies that might be caused by inconsistent reads.For instance, the programmer may need to add explicit
validation to loops to guarantee that invalidity is detected and to perform additional validation after
reads to detect that a set of addresses that will be used in address arithmetic is consistent.

This “incremental validation” approach is not always satisfactory. The additional validation
work can impose a cost; in some STM systems, validating n locations requires n memory accesses,
and so ensuring that a series of accesses is valid after each access requires O(n2) work. Furthermore,
this approach couples the program to the particular TM that it is using—e.g., a TM using eager
updates allows a zombie transaction’s effects to become visible to other transactions, while a TM
using lazy updates only allows the effects of committed transactions to become visible. Different
anomalies will occur on different TM implementations, making it hard to write portable programs.

2.2.2.2 Opacity
An alternative is for the TM to provide stronger guarantees about the consistency of the values read
by a transaction. Guerraoui and Kapałka formalized this as the notion of opacity [125], by defining a
form of strict serializability in which running and aborted transactions must also appear in the serial
order (albeit without their effects being exposed to other threads). A TM supporting opacity must
ensure that a transaction’s read-set remains consistent during its execution; otherwise, the tentative
work could not be part of the serial order because some of the work would have to appear before a
conflicting update from another transaction, and some of the work would have to appear after.

Knowing that the TM supports opacity would guarantee that our example will not loop:
Thread 1’s reads from x and y must form a consistent view of memory, and so the two values must
be equal.

Several TM implementations provide opacity (including some from before the definition was
crisply formalized). For instance, the TL2 STM (Section 4.3) uses a global clock to identify when
data has been updated and requires that all of the data read by a given transaction is consistent at

30 2. BASIC TRANSACTIONS

a given timestamp. HTMs typically either provide opacity or guarantee that the effects of zombie
transactions will be completely sandboxed (say, in a local cache) and that a transaction cannot loop
endlessly while invalid.

Imbs et al. [163] introduced a spectrum of consistency conditions in which opacity and se-
rializability are two extreme positions, along with a virtual world consistency condition which is
intermediate between them.

2.2.3 PROBLEMS WITH MIXED-MODE ACCESSES
The second main difference between database correctness criteria and those for TM is that a seman-
tics for TM must consider the interaction between transactional and non-transactional access to the
same data. So far, we have assumed that the memory used via transactions is completely separate
from the memory used via non-transactional accesses, and so these concerns have not occurred in
our initial examples.

The main problem is that many TMs do not provide any conflict detection between trans-
actional and non-transactional accesses, and so programs that involve such conflicts can behave
unexpectedly—particularly when zombie transactions are present. These problems occur primarily
with STM systems because conflict detection in software relies on support from both of the threads
involved: unless non-transactional accesses are modified to play their part, then conflicts involving
them will go undetected.

2.2.3.1 Weak and Strong Isolation
Blundell et al. [35; 36] introduced the terms weak atomicity and strong atomicity. Weak atomic-
ity guarantees transactional semantics only among transactions. Strong atomicity also guarantees
transactional semantics between transactions and non-transactional code.

The terms “weak/strong atomicity” and “weak/strong isolation” are both used in the litera-
ture. They are synonymous, and arguments can be made for either of them to be appropriate. The
“isolation” variants can be explained by reference to database terminology where the problem that
occurs is that the effects of a transaction are not being isolated correctly from the effects outside
the transaction. The “atomicity” variants can be explained with reference to programming language
terminology, viewing the work inside the transaction as a single atomic transition—e.g., in an oper-
ational semantics for a language. In that context, interleaving of non-transactional work would be a
loss of atomicity.

In this book, we use the “isolation” terms because we discuss the links with database transac-
tions at several points through the text.

2.2.3.2 Problems with Weak Isolation
We now examine a series of problems that occur when using a TM with weak isolation. The first set
of problems involve unambiguous data races between transactional and non-transactional code. The
second set involve granularity problems that occur when the data managed by the TM implementa-

2.2. SEMANTICS OF TRANSACTIONS 31

tion is coarser than the program variables being accessed. The third set of problems involve accesses
by zombie transactions in TMs that do not provide opacity. Finally, the last set involve privatization
and publication idioms where the programmer attempts to use transactional accesses to one piece
of data to control whether or not another piece of data is shared. As we illustrates, this last set is
problematic whether or not opacity is provided.

Many more examples have been identified and studied in the literature, and we do not attempt
to reproduce all of them here. Our examples are based on work by Blundell et al. [35; 36], Shpeisman
et al. [288], Grossman et al. [115], and Menon et al. [219; 220]. In addition, Abadi et al. [3] and
Moore and Grossman [226] examine how these kinds of examples relate to formal operational
semantics for TM.

Examples like these have helped researchers develop an informal understanding of the prob-
lems of mixing transactional and non-transactional accesses, but they do not in themselves provide
a precise definition of how a TM should behave for all inputs; it is possible that there are insidious
cases that examples do not highlight. Therefore, in Section 2.2.5, we discuss methodical approaches
to handling these examples, rather than considering them each on a case-by-case basis.

2.2.3.3 Anomalies Common with Lock-Based Synchronization
The first set of problems are reminiscent of those that occur when a lock-based program is not
race-free and an asymmetric data race occurs [258]. Shpeisman et al. introduced a taxonomy for
these problems, identifying a number of common patterns [288]:

• A non-repeatable read (NR) can occur if a transaction reads the same variable multiple times,
and a non-transaction write is made to it in between. Unless the TM buffers the value seen
by the first read, then the transaction will see the update.

• An intermediate lost update (ILU) can occur if a non-transactional write interposes in a read-
modify-write series executed by a transaction; the non-transactional write can be lost, without
being seen by the transactional read.

• An intermediate dirty read (IDR) can occur with a TM using eager version management in
which a non-transactional read sees an intermediate value written by a transaction, rather than
the final, committed value.

2.2.3.4 Anomalies Due to Coarse Write Granularity
Suppose that x and y are two byte-size variables that are located on the same machine word. One
might write the following:

32 2. BASIC TRANSACTIONS

// Thread 1 // Thread 2
do { y = 20;
StartTx();
tmp_1 = ReadTx(&x);
WriteTx(&x, 10);

} while (!CommitTx());

In this example, a transaction is used to write to x, while y is written directly. This can expose
granularity problems if the TM manages data on a per-word or per-cache-line basis, rather than
handling these two bytes separately. For instance, if a TM uses lazy version management, the ReadTx
operation may fetch the complete word (executing before Thread 2’s write and seeing y==0), and
the subsequent commit may write back the complete word (executing after Thread 2’s write, and
storing y==0.

A similar problem can occur with eager version management if Thread 1’s transaction records
x==0, y==0 in its undo log (before Thread 2’s write), and, subsequently, Thread 1 needs to roll back
its transaction because of a conflict with another thread.

Shpeisman et al. coined the term granular lost update (GLU) for this kind of problem. With
weak isolation, GLU problems can be avoided by ensuring that the writes made by the TM precisely
match the writes made by the program, in this case, by maintaining bitmaps of which sub-word
values are actually written or by requiring that transactional and non-transactional data is placed on
different words.

2.2.3.5 Anomalies Due to Zombie Transactions
The third kind of problem with weak isolation can be blamed on zombie transactions. Consider the
following example, a slight variant of the earlier one in which a zombie transaction looped forever:

// Thread 1 // Thread 2
do {
StartTx();
int tmp_1 = ReadTx(&x);

do {
StartTx();
WriteTx(&x, 10);
WriteTx(&y, 10);

} while (!CommitTx());
int tmp_2 = ReadTx(&y);
if (tmp_1 != tmp_2) {
WriteTx(&z, 10);

}
} while (!CommitTx());

In this variant of the example, Thread 1 only tries to write to z if it sees different values in x and y.
A programmer may hope to reason that this write will never occur—either Thread 1’s transaction
executes first, and sees both variables 0, or Thread 2’s transaction executes first and so Thread 1 sees

2.2. SEMANTICS OF TRANSACTIONS 33

both values 10. However, if Thread 1’s transaction can see an inconsistent view of the two variables,
then it may attempt to write to z.

This is a serious problem when using eager version management; a concurrent, non-
transactional read from z would see the value 10 be written by Thread 1. Shpeisman et al. introduced
the term speculative dirty read (SDR) for this problem. A related speculative lost update (SLU) problem
occurs if the transactional write to z conflicts with a non-transactional write: the non-transactional
write can be lost when the transaction is rolled back.

2.2.3.6 Anomalies Due to Privatization and Publication
There are other, more complex, programming idioms that involve transactions going awry. Variants
of these can occur even with TM systems that provide opacity. Consider the following “privatization”
example:

// Thread 1 // Thread 2
do { do {
StartTx(); StartTx();
WriteTx(&x_priv, 1); if (ReadTx(&x_priv) == 0)

} while (!CommitTx()); WriteTx(&x, 200);
x = 100; } while (!CommitTx());

In this example, there are two variables x_priv and x, and the code is written so that if x_priv is 1
then x is meant to be private to Thread 1. Otherwise, x is meant to be shared between the threads.
The problem here is more complex than our previous example with a zombie transaction writing to
z because, in this case, the question of whether or not x should be used transactionally depends on
the value in another variable.

A programmer might hope to reason either that Thread 1’s transaction commits first, in
which case, Thread 2 will not write to x, or that Thread 2’s transaction commits first, in which case,
Thread 1’s write of 100 will come after Thread 2’s write of 200. In either case, the result should be
x==100. In addition, a programmer might think that this privatization idiom is reasonable because
the code would be correct if the StartTx/CommitTx operations were replaced by acquiring and
releasing a lock.

In practice, however, this reasoning is incorrect on many simple TM systems. For instance,
consider an implementation using weak isolation, commit-time conflict detection, and eager version
management:

• Thread 2 starts its transaction, reads that x_priv is 0, records x==0 in its undo log, and writes
200 to x.

• Thread 1’s transaction executes successfully, committing its update to x_priv. At this point,
Thread 1’s code believes it has private access to x.

• Thread 1 writes 100 into x.

34 2. BASIC TRANSACTIONS

• Thread 2’s transaction fails validation, and so the undo log is used for roll-back, restoring x to
0.

Variants of this problem can occur with many TM implementations, and they are not specific to
the use of eager version management. The analogous problem with lazy version management is that
Thread 2’s transaction may be serialized before Thread 1’s transaction, but the implementation of
Thread 2’s CommitTx operation may still be writing values back to memory even though Thread 1’s
CommitTx has finished. This lets the writes of 200 and 100 race, without any guarantee that the
“correct” answer of 100 will prevail.

More broadly, this is known as a delayed cleanup problem in which transactional writes interfere
with non-transactional accesses to locations that are believed to be private. This interference can
happen either because a committed transaction has yet to finish writing its updates to memory, or
because an aborted transaction has yet to undo its own updates. Shpeisman et al. introduced the
term memory inconsistency for problems in which a transaction commits values to different locations
in an arbitrary order.

By analogy with the privatization example, a similar problem can occur with a “racy publica-
tion” idiom where one variable’s value is intended to indicate whether or not another variable has
been initialized. Consider the following example, in which Thread 1 tries to publish a value in x,
but Thread 2’s transaction reads from x before it checks the publication flag:

// Thread 1 // Thread 2
do {
StartTx();
int tmp = ReadTx(&x);

x = 42;
do {
StartTx();
WriteTx(&x_published, 1);

} while (!CommitTx());
if (ReadTx(&x_published)) {
// Use tmp

} } while (!CommitTx());

The example is called “racy” because Thread 1’s write to x is not synchronized with Thread 2’s read
from x. Nevertheless, a programmer familiar with mutual exclusion locks might hope that if Thread 2
sees x_published set to 1 then Thread 2 will also see x==42. This would be guaranteed by the Java
memory model [207]. However, when using TM, if Thread 2’s read from x executes before Thread
1’s non-transactional write, then Thread 2 may miss the value being published.

Shpeisman et al. identified a related granular inconsistent read (GIR) problem that can occur
if a TM implementation performs internal buffering: suppose that Thread 2’s transaction also reads
from a location y, which shares a memory word with x. If the read from y fetches both variables
into a per-transaction buffer, then this may lead to the read from x appearing to occur early.

2.2. SEMANTICS OF TRANSACTIONS 35

2.2.3.7 Discussion
The examples in this section have illustrated a wide range of anomalies between TMs that provide
strong isolation and TMs with weak isolation. One might argue that, given that there are so many
problematic examples, we should simply dispense with weak isolation and instead provide strong.
This is clearly very attractive from the point of view of defining TM semantics. Many HTM
implementations provide strong isolation, and there has been substantial progress in developing
STM implementations [5; 155; 281; 288].

However, simply providing strong isolation does not avoid all of the problems that emerge
when programming with TM—even if transactions are individually atomic, the programmer must
still grapple with the language’s broader memory model. For example, consider this idiom which a
programmer might attempt to use for thread-safe initialization:

// Thread 1 // Thread 2
do { int tmp_1 = ready;
StartTx(); int tmp_2 = data;
WriteTx(&data, 42); if (tmp_1 == 1) {
WriteTx(&ready, 1); // Use tmp_2

} while (!CommitTx()); }

A programmer cannot assume that strong isolation guarantees that if Thread 2 sees ready==1 then
it must also see data==42. This line of reasoning is only correct if Thread 2’s implementation is
guaranteed to read from ready before it reads from data. This ordering is not enforced by many
programming languages (e.g., that of Java [207]) or by many processors’ weak memory models (e.g.,
that of the Alpha [70]). In this case, we may need to mark both ready and data as volatile
variables, in addition to accessing them transactionally in Thread 1.

Problems like this can be subtle, suggesting that precise definitions are necessary—both for
the guarantees made by a TM system, and for the guarantees provided by the language in which
transactions are being used.

2.2.4 HANDLING MIXED-MODE ACCESSES: LOCK-BASED MODELS
In the previous section, we used examples to illustrate the kinds of problem that can emerge when
a program mixes transactional and non-transactional accesses. Examples can highlight some of the
potential problems, but they do not provide a complete approach to defining the semantics for TM,
and they do not provide confidence that we have considered the problem from all possible angles.
Even if a TM handles specific privatization and publication idioms, then it is possible that there are
further examples – even more complicated – which have not yet been identified.

In this section, and the next, we consider two methodical approaches to these problems. First,
we focus on lock-based models for semantics for TM. These models are defined by relating the
behavior of a program using transactions to the behavior of a program using locks. In effect, the
behavior of the lock-based implementation forms a reference model for the behavior of the program
using TM. The second approach, in Section 2.2.5, is to define the semantics of transactions directly,
rather than by relation to existing constructs.

36 2. BASIC TRANSACTIONS

2.2.4.1 Single-Lock Atomicity for Transactions
A basic, pragmatic model for defining transactions is single-lock atomicity (SLA), in which a program
executes as if all transactions acquire a single, program-wide mutual exclusion lock. Intuitively, SLA
is attractive because a similarity to basic locking provides evidence that programming with TM is
easier than programming using locks. (The term single global lock atomicity is sometimes used in the
literature; we use single-lock atomicity because the name is shorter).

Unlike correctness criteria from database systems, SLA readily accommodates mixed-mode
accesses to data. Going back to the example of strict serializability from Figure 2.4, SLA would
require that if Thread 2 sees Thread 1’s write to x, then Thread 2 must also see Thread 1’s write to
y: both transactions must appear to acquire the single lock, and so one must appear to run entirely
before the other, or vice-versa. Similarly, under SLA, the privatization idiom from Section 2.2.3.6
is guaranteed to work correctly.

SLA also leads to a definition of what it means for a program using transactions to have a
data-race: the transactional program has a data-race if and only if the lock-based program has a data-
race. For instance, this contrived example involves a race on x because there is no synchronization
between Thread 1’s access and Thread 2’s access:

// Thread 1 // Thread 2
StartTx(); int tmp = x;
WriteTx(&x, 42);
CommitTx();

To define the behavior of “racy” examples, one might either have a “catch-fire” semantics (permit-
ting absolutely any catastrophic behavior in the presence of a race), or one might require that the
behavior remains consistent with the equivalent lock-based program’s behavior (which may itself be
“catch-fire”).The emerging C/C++ memory model has catch-fire semantics for races in lock-based
programs [43], and so it might be reasonable to follow this approach in programs using transac-
tions. Conversely, the Java memory model gives guarantees about exactly how a racy program can
behave [207], and so similar kinds of guarantee may be needed when adding transactions to Java.

Although SLA is attractive, it can be problematic from several points of view. First, it is hard to
extend beyond the most basic transactions; TM may provide additional features that are not present
with locks—e.g., failure atomicity, condition synchronization, or forms of nesting. It is not clear how
to map these features onto a lock-based reference implementation.

Second, the use of SLA as a reference model does not fit with many peoples’ intuitive expecta-
tions for transactions. Consider the following example, based on one described by Luchangco [202]:

// Thread 1 // Thread 2
StartTx(); StartTx();
while (true) { } int tmp = ReadTx(&x);
CommitTx(); CommitTx();

Under SLA, it would be permitted for Thread 1’s transaction to start, acquire a global lock, and then
enter an endless loop. Thread 2’s transaction would then block forever waiting for the global lock.

2.2. SEMANTICS OF TRANSACTIONS 37

Programmers might expect that Thread 2’s transaction should be able to run immediately, given that
it does not conflict with Thread 1’s transaction. (A broader question is exactly what kind of progress
property should be provided for transactions. We return to this in detail in Section 2.3.1, but the
immediate problem with SLA is that the intuition provided by locks may not coincide with the
intuition expected for transactions).

Third, SLA may be too strong a correctness criterion. For instance, consider this variant of an
“empty publication” example from Menon et al. [219]:

// Thread 1 // Thread 2
StartTx();
int tmp = data;

data = 1;
do { StartTx();
} while (!CommitTx())
ready = 1;

if (ready) {
// Use tmp

}
CommitTx();

This program has a race on data but under SLA in Java or C#, the programmer may nevertheless
reason that Thread 1’s empty transaction synchronizes on the global lock with Thread 2’s transac-
tion, and so if Thread 2 sees ready==1, then it must also see data==1. Supporting this form of
programming introduces synchronization between these two transactions—even though there is no
overlap in the data that they access.

2.2.4.2 Disjoint Lock Atomicity (DLA)
To remedy some of these shortcomings, Menon et al. introduced a series of lock-based models
for TM [219]. These are weaker than SLA, in the sense that they do not support programming
idioms that can be used under SLA. Conversely, they can allow for a wider range of implementation
techniques which are faster or more scalable than those known for SLA.

The first of these weaker models is disjoint lock atomicity (DLA). Under DLA, before each
transaction runs, it must acquire a minimal set of locks such that two transactions share a common
lock if and only if they conflict.This means that there is no synchronization between transactions that
access disjoint data. Consequently, DLA does not support the empty publication idiom. However,
it does support programming idioms which involve synchronization on actual data—e.g., the racy
publication idiom may be used.

Unlike SLA, it is not generally possible to directly translate a program using DLA transactions
into an equivalent lock-based one: DLA is prescient, in the sense that the locks can only be acquired
given knowledge of the transaction’s future data accesses. Nevertheless, DLA relates transactional
behavior to the familiar behavior of locking.

38 2. BASIC TRANSACTIONS

2.2.4.3 Asymmetric Lock Atomicity (ALA)
A further weakening of DLA is asymmetric lock atomicity (ALA) [219]. Under DLA, a transaction
must appear to acquire all of its locks before it starts. ALA relaxes this and allows the acquisition of
write locks to be delayed up until the point of the transaction’s first write access to a given location.
ALA guarantees that a transaction has exclusive access to all of the data that it will read, and so the
racy publication idiom is supported.

2.2.4.4 Encounter-time Lock Atomicity (ELA)
Menon et al.’s final lock-based model is encounter-time lock atomicity (ELA) [219].This relaxes ALA
still further: all lock acquisitions may be delayed until the point of first access. This supports the
publication idiom only if the compiler avoids traditional optimizations that may hoist a read above
a conditional branch.

2.2.5 HANDLING MIXED-MODE ACCESSES: TSC
Lock-based models, such as SLA, DLA, ALA, and ELA, provide a series of alternative semantics for
transactions.They provide a methodical way of considering examples such as privatization and publi-
cation: rather than looking at the examples on a case-by-case basis, one must ask which locks would
be acquired in a given example, and then consider how the resulting lock-based synchronization
would behave.

An alternative approach is to define the semantics for TM directly, without this intermedi-
ate step of using locks. Direct definitions can accommodate TM-specific extensions for condition
synchronization, failure atomicity, nesting, and so on, more readily than a lock-based model.

One way to define TM is to build on the idea of how sequential consistency (SC) provides
an ideal semantics for ordinary shared memory [187]. Under SC, threads make reads and writes to
shared memory, and these accesses appear to take place instantaneously—without being buffered in
caches, or reordered during compilation or by a processor’s relaxed memory model. This provides a
kind of “gold standard” that one might like an implementation to satisfy.

Dalessandro et al. extend SC to a notion of transactional sequential consistency (TSC) [76],
building on their work on ordering-based semantics for STM [299], and the work of Grossman
et al. [115]. TSC requires that the effects of a transaction being attempted by one thread are not
interleaved with any operations being executed by other threads. In particular, note that TSC is a
stronger property than simply strong isolation. Strong isolation requires that the isolation of transac-
tions is complete but does not in itself define how operations may be re-ordered during compilation.
Under TSC, no re-ordering may occur. Abadi et al. [3] and Moore et al. [226] concurrently defined
similar notions at the level of programming languages that provide atomic constructs.

Figure 2.5 illustrates TSC: all of the operations from the two threads appear to be interleaved
on a common time-line, but the operations from a given transaction must remain together.

In practice, neither SC nor TSC can be supported on all programs by practical implementa-
tions. Instead, it is usual to combine either model with a notion of race-freedom, and to require that if

2.2. SEMANTICS OF TRANSACTIONS 39

StartTx()Thread 1

Thread 2

WriteTx(&x)

StartTx() ReadTx(&x)

WriteTx(&y)

CommitTx()

CommitTx()

Read(&y)

Figure 2.5: Transactional sequential consistency (TSC): the threads’ operations are interleaved, with
nothing intervening between operations from a given transaction.

a program is race-free then it should be implemented with SC or TSC. As with the handling of data
races under SLA, if a program is not race-free, then it may be supported with weaker guarantees, or
none at all.

Adve and Hill pioneered this approach with SC, and proposed that the criteria for whether
or not a program is “race-free” should be defined in terms of its hypothetical execution on SC [10].
This kind of model is called programmer centric; it uses the notion of SC that the programmer is
familiar with, rather than the details of a particular processor’s memory system. In effect, this forms
a contract between the implementation and the programmer: so long as the programmer writes a
program that would be race-free under SC, then a real processor must implement it with SC.

Consequently, when designing a transactional programming model using TSC, the question
is exactly what set of programs should be considered to be race-free. We shall look at three different
definitions that have been studied in the literature: static separation, dynamic separation, and forms
of data-race freedom.

2.2.5.1 Static Separation
A static separation programming discipline requires that each mutable, shared location is either always
accessed transactionally or always accessed non-transactionally. A programmer can achieve this by
ensuring that, if a transaction accesses a given location, then either (i) the location is immutable,
(ii) the location is thread-local and the correct thread is accessing it, or (iii) the location is never
accessed non-transactionally. It is easy to see that any of these conditions suffices to prevent any
interference between a transaction and a non-transaction.

Static separation prohibits programming idioms where a mutable shared location changes
between being accessed transactionally and being accessed directly: e.g., it prohibits initializing a
data structure non-transactionally before it is shared by transactions, or from privatizing a shared
data structure and accessing it directly. This means that the privatization and publication idioms
from Section 2.2.3.6 do not follow static separation.

For programs that do obey static separation, a TM using weak isolation and a TM with strong
isolation are indistinguishable. This provides a lot of flexibility to the TM system’s implementer. In

40 2. BASIC TRANSACTIONS

addition, the use of a statically-checked type system can provide compile-time checking of whether or
not a program is race-free. Abadi et al. and Moore and Grossman have investigated this relationship
from a formal viewpoint [3; 226].

However, data types can provide a blunt tool for enforcing static separation. For example, code
executed in a transaction could be restricted to access data whose type is marked as transactional.
It would be a detectable error to access data of this type outside a transaction. This is the approach
taken by STM-Haskell [136], where mutable STM locations are accessible only within transactions.

In Haskell, however, most data is immutable and remains accessible both inside and outside
a transaction. In non-functional languages, most data is mutable and would need to be partitioned
into transactional and non-transactional sections. This distinction effectively divides a program into
two worlds, which communicate only through immutable values.

This division complicates the architecture of a program, where data may originate in the non-
transactional world, be processed in transactions, and then return to the non-transactional world
for further computation or IO. Structuring this kind of program to obey static separation either
requires data to be marshaled between separate transactional and non-transactional variants, or for
transactions to be used ubiquitously. The first option is cumbersome, and the second may perform
poorly [284].

2.2.5.2 Dynamic Separation
Dynamic separation conceptually splits the program heap into transactional and non-transactional
parts, but it provides operations to move data between the two sections. This mitigates some of
the difficulties of programming with static separation, while still allowing flexibility over a range of
TM implementations. For instance, Abadi et al. describe an implementation of dynamic separation
which is built over a TM that uses lazy conflict detection and eager version management [1; 2].
Intuitively, it operates by adding checks within the TM implementation that all of the locations
being accessed are part of the transactional heap; this prevents eager updates made by zombie
transactions from conflicting with non-transactional work elsewhere in the application. Variants of
dynamic separation can support shared read-only data, as with static separation in STM-Haskell.
A disadvantage of dynamic separation, over static, is that it is not so amenable to compile-time
checking for whether or not a program is race-free.

Lev and Maessen propose a related idea for dynamically tracking which objects are guaranteed
to be local to a given thread and which objects might be shared between multiple threads [189].Reads
and writes to both kinds of objects are performed via accessor methods. These methods perform
direct access in the case of local objects and enforce transactional access in the case of shared objects.
Each object has a flag indicating whether or not it is shared; objects start local and transition to
shared when a global variable or a shared object is updated to point to them. Shpeisman et al. use
a similar dynamic technique to Lev and Maessen’s to improve the performance of an STM system
providing strong isolation [288].

2.2. SEMANTICS OF TRANSACTIONS 41

2.2.5.3 Transactional Data-Race-Freedom
A stronger programming discipline than dynamic separation is transactional data-race freedom
(TDRF) [76]. A transactional data-race is one in which a conflict occurs between a transactional
access and a non-transactional access. A program is TDRF if it has no ordinary data races, and no
transactional data races either. Abadi et al. introduced the term violation for a transactional data
race, and violation-freedom for execution where there are no such races [3]. Informally, TDRF is a
stronger property than violation freedom because a TDRF program must be free from ordinary data
races, as well as just ones involving transactions.

TDRF is defined with reference to that program’s behavior under TSC—not with reference
to its behavior on any particular TM implementation. Consequently, accesses that might only be
attempted by a zombie transaction do not qualify as data races, nor do accesses to adjacent bytes in
memory (unless the broader definitions of SC for that language or machine would treat sub-word
accesses as a race).

The examples from the earlier sections on anomalies due to “write granularity”, “zombie trans-
actions”, “privatization and publication” are all TDRF. TDRF, therefore, characterizes the sense in
which these examples are valid, but other examples (such as “racy publication” and “empty publica-
tion”) are incorrect.

2.2.5.4 Summary
In Sections 2.2.4 and 2.2.5, we have illustrated two approaches for giving methodical definitions
of how a TM system should behave in the presence of transactional and non-transactional accesses
to the same locations. The first approach, typified by SLA, is to relate the behavior of a program
using transactions to the behavior of a lock-based reference implementation. The second approach,
typified by TSC, is to define the semantics of transactions directly by extending the notion of
sequential consistency.

There is not yet a consensus on exactly which of these approaches is best.There is, nevertheless,
a great deal of common ground between the different models. First, both approaches provide a
framework for defining the behavior of programs in general, rather than treating specific examples
like “racy publication” on an ad-hoc case-by-case basis. A precise definition is important if programs
are to be written correctly and to be portable across implementations.The second important similarity
is that both approaches introduce a notion of programs being race-free. The set of programs which
are race-free under the SLA, DLA, ALA and ELA models is the same from one model to another
and corresponds to the notion of TDRF.

2.2.6 NESTING
Having examined the basic semantics for TM, we now consider the additional complications intro-
duced by nesting. A nested transaction is a transaction whose execution is properly contained in the
dynamic extent of another transaction.

42 2. BASIC TRANSACTIONS

There are many ways in which nested transactions can interact, and the different design choices
have been studied independently of TM (e.g., Haines et al. investigate a rich system that combines
concurrency, multi-threading, and nested transactions [128]). For now, however, we assume that (i)
each transaction can have at most one pending child transaction within it (“linear nesting” [229]),
(ii) the inner transaction sees modifications to program state made by the outer transaction, and (iii)
there is just one thread running within a given transaction at a given time. In this restricted setting,
the behavior of the two transactions can still be linked in several ways:

Flattened Nesting. The simplest approach is flattened nesting, also known as subsumption nesting.
In this case, aborting the inner transaction causes the outer transaction to abort, but committing the
inner transaction has no effect until the outer transaction commits. This is reminiscent of re-entrant
locks: a lock may be acquired multiple times by the same thread but is only released once all of the
matching unlock operations have occurred. The outer transaction sees modifications to program
state made by the inner transaction. If the inner transaction is implemented using flattening in the
following example, then when the outer transaction terminates, the variable x has value 1:

int x = 1;

do {
StartTx();
WriteTx(&x, 2); // Outer write
do {
StartTx();
WriteTx(&x, 3); // Inner write
AbortTx();
...

Flattened transactions are easy to implement, since there is only a single transaction in execution,
coupled with a counter to record the nesting depth. However, flattened transactions are a poor
programming abstraction that subverts program composition if an explicit AbortTx operation is
provided: an abort in a transaction used in a library routine must terminate all surrounding transac-
tions.

Closed Nesting. Transactions that are not flattened have two alternative semantics. A closed trans-
action behaves similarly to flattening, except the inner transaction can abort without terminating
its parent transaction. When a closed inner transaction commits or aborts, control passes to its
surrounding transaction. If the inner transaction commits, its modifications become visible to the
surrounding transaction. However, from the point of view of other threads, these changes only be-
come visible when the outermost transaction commits. In the previous example, if closed nesting
were to be used, variable x would be left with the value 2 because the inner transaction’s assignment
is undone by the abort.

For executions that commit successfully, the behavior of flattening and closed nesting is equiv-
alent. However, closed nesting can have higher overheads than flattened transactions and so, if com-
mits are common, aTM system can use flattening as a performance optimization—i.e., optimistically

2.2. SEMANTICS OF TRANSACTIONS 43

executing a nest of transactions using flattening, and if an abort occurs in an inner transaction, then
re-executing the nest with closed nesting.

Open Nesting. A further type of nesting is open nesting. When an open transaction commits, its
changes become visible to all other transactions in the system, even if the surrounding transaction is
still executing [231]. Moreover, even if the parent transaction aborts, the results of the nested, open
transactions will remain committed. If open nesting is used in the following example then, even after
the outer transaction aborts, variable z is left with the value 3:

int x = 1;

do {
StartTx();
WriteTx(&x, 2); // Outer write
do {
StartTx();
WriteTx(&z, 3); // Inner write

} while (!CommitTx());
AbortTx();
...

As we discuss in Section 2.3.5, open nesting is intended as an abstraction to allow higher-level
notions of conflict detection and compensation to be built (e.g., allowing two transactions to con-
currently insert different items into a hashtable, even if the implementations involves updates to a
common location).This can allow greater concurrency between transactions—for instance, allowing
concurrent transactions to increment a single shared counter without provoking a conflict. Neverthe-
less, open transactions do permit a transaction to make permanent modifications to a program’s state,
which are not rolled back if a surrounding transaction aborts—e.g., writing entries to a debug log,
or simply recording how far a transaction has reached in order to identify conflict hot-spots [107].

Open transactions can subvert the isolation of a transaction, and so using them correctly
requires great care. For instance, the semantics can be particularly subtle if the inner transaction
reads data written by the outer one or if the inner transaction conflicts with subsequent work by
the outer transaction. Moss and Hosking describe a reference model for nested transactions that
provides a precise definition of open and closed nesting [229].

Zilles and Baugh described an operation similar to open nested transactions which they
called “pause” [346]. This operation suspends a transaction and executes non-transactionally until
the transaction explicitly resumes. As with open nesting, the semantics of such operations can be
subtle; for instance, whether or not an implementation may roll back the enclosing transaction
while the “pause” operation is executing. Unlike open nesting, operations in a pause do not have
transactional semantics and must use explicit synchronization.

Parallel Nesting. Appropriate semantics for nested transactions become murkier if, instead of
restricting ourselves to linear nesting, we consider models where multiple transactions can execute
in parallel within the same parent transaction. There are many design choices in this kind of system.

44 2. BASIC TRANSACTIONS

A key decision is how to handle two computations C1 and C2 that occur in parallel within a single
transaction; must these be serialized with respect to one another as two nested transactions or can
they interact freely? Permitting parallel code to be reused within transactions suggests that they
should behave as normal.

Similar questions emerge in combinations of OpenMP and transactions [25; 225; 323]. Volos
et al. distinguish shallow nesting, in which a transaction may have multiple constituent threads,
but no further transactions within it, and deep nesting in which transactions occur within parallel
threads within transactions [323]. They define the semantics using a “hierarchical lock atomicity”
(HLA) model, by analogy with SLA. Conceptually, in HLA, one lock is used for synchronization
between top-level transactions, and then additional, separate locks are used for threads belonging to
the same parent (e.g., threads working on the implementation of the same transactional OpenMP
loop). Volos et al.’s implementation is designed to support programs that are race-free under this
definition. It supports shallow nesting by extending the TM implementation to manage logs from
different threads. Deep nesting is supported by using locks following the HLA model (arguing that
maintaining the parent/child relationships between threads and transactions would be likely to add
a substantial overhead).

Vitek et al. [320] formalize a language with nested, parallel transactions as an extension to a
core language based on Java. Agrawal et al. investigate a programming model that permits parallelism
within transactions in an extension of Cilk [13]. Moore and Grossman also examine a model that
combines nesting and parallelism [226]. Ramadan and Witchel introduce a kind of nesting that
supports various forms of coordination between sibling transactions [252] (e.g., to attempt a set of
alternative transactions and to commit whichever completes first).

More broadly, all these different forms of nesting provide another illustration of TM features
which cannot be specified very clearly as extensions to a single-lock atomicity model.

2.3 PERFORMANCE, PROGRESS AND PATHOLOGIES

In Section 2.2, we described techniques that have been used to define the semantics of transactions.
In this section, we examine TM techniques from the point of view of their performance—both in
practical terms of how fast transactions run and in terms of any assurance that a thread running a
transaction will eventually be able to complete it.

There are several different angles toTM performance,and it is worthwhile trying to distinguish
them:

Inherent Concurrency. The first of these is the inherent concurrency available in a workload using
transactions: what is the optimal way in which a TM system could schedule the transactions, while
providing specified semantics (e.g., TSC)? This provides a bound on the possible behavior that a
practical TM implementation could provide. Some workloads provide a high degree of inherent
concurrency—e.g., if all of the transactions access different pieces of data. Other workloads provide

2.3. PERFORMANCE, PROGRESS AND PATHOLOGIES 45

a low degree of concurrency—e.g., if every transaction is performing a read-modify-write operation
on a single data item.

Actual Concurrency. The second consideration is the extent to which the concurrency obtained by
a TM implementation compares with the inherent concurrency that is available. The granularity at
which a TM performs conflict detection will affect how the actual concurrency compares with the
inherent concurrency available in a workload. For instance, a TM using a single lock to implement
SLA would perform very poorly under this metric for most workloads.

Guarantees. The third consideration is whether or not theTM implementation gives any guarantees
about the progress of transactions, rather than just trying to run them“as fast as possible”.For instance,
is there any kind of fairness guarantee about how the transactions being run by different threads will
behave?

Sequential Overhead. The final consideration is the sequential overhead of a TM implementation:
in the absence of any contention, how fast does a transaction run when compared with code without
any concurrency control? If a TM system is to be useful, then using it must not incur such a high
overhead that the programmer is better off sticking with a sequential program. It is, therefore,
important to keep in mind, when considering practical implementations, that overall performance
depends not just on the algorithmic design choices which we focus on in this book, but also on the
maturity of an implementation, and the use of appropriate implementation techniques.

In this section, we examine the ways in which TM implementations affect the performance
that is obtained (or not) in a workload, and on the techniques with which a workload can be structured
to increase the concurrency that is available.

We start by introducing the terminology of nonblocking synchronization, which provides a
framework for defining the kinds of progress guarantees that are offered by many TM systems
(Section 2.3.1). We then discuss the interaction between the TM’s conflict detection mechanisms
and the way in which it executes different workloads (Section 2.3.2), and the use of contention
management techniques and transaction scheduling to improve the practical performance of programs
(Section 2.3.3). We describe the techniques used in TM systems to reduce conflicts between transac-
tions (Section 2.3.4). Finally, we show how the inherent concurrency in workloads can be increased
by incorporating higher-level notions of conflicts, rather than working at the level of individual reads
and writes (Section 2.3.5).

2.3.1 PROGRESS GUARANTEES
Here is an example signaling protocol between two transactions. If x is initially 0, then Thread 1’s
transaction sets the variable to 1, and Thread 2’s transaction loops until it sees a non-zero value:

46 2. BASIC TRANSACTIONS

// Thread 1 // Thread 2
do { do {
StartTx(); StartTx();
WriteTx(&x, 1); int tmp_1 = ReadTx(&x);

} while (!CommitTx()); while (tmp_1 == 0) { }
} while (!CommitTx());

How should this example behave? Intuitively, one might like this idiom to be a correct way of
synchronizing between the two threads, and in many cases, it does seem to work: if Thread 1
executes first, then Thread 2 will see the update to x, and commit its transaction. This happens
irrespective of the implementation techniques used by the TM.

The problem is when Thread 2 starts its transaction before Thread 1’s. In this case, many
implementations can leave Thread 2 spinning endlessly:

• An implementation using pessimistic concurrency control might prevent the two conflict-
ing transactions from proceeding concurrently. Therefore, Thread 2’s transaction will prevent
Thread 1’s transaction from executing, and so Thread 2 will wait forever.

• An implementation using optimistic concurrency control might leave Thread 2 spinning if the
TM system only uses commit-time conflict detection.

If programmers are to use transactions, then they need precise guarantees of whether or not this
kind of program is required to make progress. Conversely, the language implementer needs a precise
definition of howTM should behave if they are to be confident in designing a correct implementation.
Defining liveness properties for TM is an open research question; liveness properties are often
subtle, and explicit guarantees about liveness are often omitted from specifications of synchronization
constructs, programming languages, and processors.

A possible starting point are concepts from nonblocking synchronization.These provide a frame-
work for defining one aspect of the kinds of progress that a TM system might provide. As with the
semantics of transactions (Section 2.2, and Figure 2.2), we are concerned with progress at two levels:

• TM-level progress of the individual operations such as StartTx and CommitTx—e.g., if lots of
threads are trying to commit transactions at the same time, then can the TM implementation
livelock within the CommitTx operation?

• Transaction-level progress of complete transactions through to a successful commit: e.g., if one
thread is executing transaction TA while another thread is executing transaction TB, then is it
guaranteed that at least one of the transactions will commit successfully, or can they both get
in one another’s way, and both abort?

At either of these two levels, a nonblocking algorithm guarantees that if one thread is pre-empted
mid-way through an operation/transaction, then it cannot prevent other threads from being able to
make progress. Consequently, this precludes the use of locks in an implementation, because if the

2.3. PERFORMANCE, PROGRESS AND PATHOLOGIES 47

lock-holder is pre-empted, then no other thread may acquire the lock. Three different nonblocking
progress guarantees are commonly studied:

The strongest of these guarantees is wait-freedom which, informally, requires that a thread
makes forward progress on its own work if it continues executing [141]. At the TM-level, “forward
progress” would mean completion of the individual TM operations that the thread is attempting. At
the transaction level, forward progress would mean execution of transactions through to a successful
commit. In either case, wait-freedom is clearly a very strong guarantee because the thread is required
to make progress no matter what the other threads in the system are trying to do. Although there are
general-purpose techniques to build wait-free algorithms, the resulting implementations are usually
slow and only applied in niche settings.

The second nonblocking progress guarantee is lock-freedom. This requires that, if any given
thread continues executing then some thread makes forward progress with its work. This is weaker
than wait-freedom because it doesn’t guarantee that if Thread 1 continues executing then Thread 1
itself will make progress. However, lock-freedom precludes livelock, and the use of actual locking
in an implementation. Lock-free systems usually involve a helping mechanism, so that if one thread
finds that it cannot make progress with its own work, then it will help whichever thread is in its way.

The third nonblocking progress guarantee is obstruction-freedom [145]. This requires that a
thread can make progress with its own work if other threads do not run at the same time. Intuitively,
a thread that has been preempted cannot obstruct the work of a thread that is currently running.
This precludes the use of ordinary locks because if thread T1 were to be pre-empted while holding a
lock that thread T2 needs, then T2 would have no option but to wait. Obstruction-free algorithms
do not, in themselves, prevent livelock—T1 and T2 may continually prevent one another from
making progress if both threads are running. To remedy this, obstruction-free algorithms are usually
combined with a contention manager that is responsible for causing T1 or T2 to back off temporarily
so that both operations can complete; in effect, the contention manager is responsible for ensuring
liveness, while the underlying obstruction-free algorithm is responsible for correctness [145].

From a practical point of view, many of the earliest STM implementations supported non-
blocking TM operations—usually with obstruction-freedom or lock-freedom. We return to these
STM systems and the implementation techniques that they use in Section 4.5.

However, whether or not a TM system needs to be nonblocking has remained a contentious
point. Ennals suggested that it is unnecessary to provide nonblocking progress guarantees in a TM
implementation [100]—arguing that a modern programming language runtime system controls the
scheduling of application threads, and so the problem of one thread being pre-empted while holding
a lock is not really a concern. Many researchers developed lock-based STM systems which aimed
to be faster than nonblocking designs (e.g.,[83; 85; 99; 138; 274]).

Conversely, recent STM designs have demonstrated that nonblocking progress guarantees can
be provided with performance comparable to lock-based designs [208;313;314].The authors of these
systems point out that some potential uses of TM require the use of nonblocking synchronization—

48 2. BASIC TRANSACTIONS

for example, if transactions are used for synchronization between OS code and an interrupt handler,
then a deadlock would occur if the interrupt handler were to wait for code that it has interrupted.

In addition to nonblocking progress guarantees, other notions of liveness are useful in TM
systems. Guerraoui et al. introduced the notion of a system-wide pending commit property, meaning
that if a set of transactions are executing concurrently, then at least one of them will be able to
run to completion and commit [123]. A TM which satisfies this property cannot abort all of the
transactions involved in a conflict.

Some of the trade offs between progress guarantees and TM design have been investigated
from a formal point of view; for instance Attiya et al. showed that an implementation of TM cannot
provide opacity,disjoint-access parallelism [164],and also allow wait-free read-only transactions [23].
Guerraoui and Kapałka examine obstruction-free transactions from a formal viewpoint, showing that
obstruction-free TMs cannot be implemented from ordinary read/write operations, but that they
can be built from primitives which are strictly less powerful than atomic compare-and-swap [124].

Guerraoui et al. formalized an additional aspect of progress with the notion of permissive-
ness [119]. Informally, a TM is permissive if it does not abort transactions unnecessarily; for instance,
a TM that provides opacity should not abort transaction schedules, which are opaque. Existing STM
implementations are usually not permissive. In many cases, this is because two transactions can ex-
ecute their read/write operations in a consistent order (transaction TA always before TB), but they
invoke their commit operations in the opposite order (transaction TB first, then TA). Extra book-
keeping is often needed to allow this reversed commit order, and the cost of this bookkeeping can
outweigh the gain in concurrency. Guerraoui et al. also introduce a strong progressiveness progress
property that is met by some practical TM implementations. A TM provides strong progressive-
ness if (i) a transaction that runs without conflict is always able to commit, and (ii) if a number of
transactions have “simple” conflicts on a single variable, then at least one of them will commit.

2.3.2 CONFLICT DETECTION AND PERFORMANCE
The high-level design choices between different conflict detection mechanisms can have a substantial
impact on the performance of a TM system and the degree to which it is suited to different kinds
of workload.

There is a recurring tension between design choices that avoid wasted work (where a transaction
executes work that is eventually aborted) and design choices that avoid lost concurrency (where a
transaction is stalled or aborted, even though it would eventually commit). To illustrate this, let us
consider a synthetic workload that can exhibit both problems:

2.3. PERFORMANCE, PROGRESS AND PATHOLOGIES 49

// Thread 1 // Thread 2
do { do {
StartTx(); StartTx();
WriteTx(&x, 1); WriteTx(&x, 1);
// Long computation // Long computation
... ...
if (Prob(p)) { if (Prob(p)) {
AbortTx(); AbortTx();

} } while (!CommitTx()); } } while (!CommitTx());

In this example, the threads are doing identical work, and both make conflicting writes to x before
starting a long computation. Once the computation is complete, they abort with probability p.
Otherwise, they attempt to commit. For this example, we shall assume that there are no other
transactions running in the system and that an explicit AbortTx() operation is used to trigger an
abort; in practice, these aborts may be due to the code performing an operation that frequently
introduces a conflict.

If the probability p is high, then most of the attempted transactions will call AbortTx. Con-
sequently, it is worthwhile executing both thread’s transactions concurrently, in the hope that one
of them will choose to commit. Conversely, if the probability p is low, then it is best to run only
one of the transactions at a time, because the conflicts on x will cause the other transaction to abort,
wasting the computation it has done.

Let us consider how this example would behave with various conflict detection mechanisms:

• Eager detection of conflicts between running transactions: in this case,a conflict is detected between
the two accesses to x. This occurs even if the value of p is high, and, therefore, even when it
is unlikely that either transaction would actually try to commit. Contention management or
transaction-aware scheduling is needed to avoid livelock (Section 2.3.3).

• Eager detection of conflicts, but only against committed transactions: in this case, the transactions
can proceed concurrently, and a conflict is detected when one of them tries to commit. Livelock
can be prevented by a simple “committer wins” conflict resolution policy. If p is high then this
will behave well. If p is low, then one thread’s work will be wasted. Nevertheless, the system
has the pending-commit property because at any instant one or other of the threads is doing
work that will be committed [123].

• Lazy detection of conflicts between running transactions: in this case, a conflict occurs between
the two threads’ accesses to x, but the transactions are allowed to continue nevertheless. The
resulting behavior will depend on how the tentative conflict is resolved when one of the
transactions tries to commit (e.g., whether the system attempts to enforce some form of per-
thread fairness).

• Lazy detection of conflicts, but only against committed transactions: in this case, one transaction
may continue running even though another has committed a conflicting update. Once such a
commit has happened, the first transaction is doomed to abort and will be wasting its work.

50 2. BASIC TRANSACTIONS

It is clear that eager detection of tentative conflicts puts a particular strain on mechanisms to avoid
repeated conflicts between a set of transactions. As Spear et al. [300], Shriraman et al. [290], and
Tomic et al. [318] observe, such systems effectively require that the TM anticipates which of the
transactions involved in a conflict is most likely to be able to commit in the future. In a system with
a non-trivial number of conflicts, this is difficult to do well because either transaction might go on
to abort because of a conflict with some other transaction.

To avoid these problems, Welc et al. designed a hybrid conflict detection system [332]. Un-
der low contention, it detects conflicts eagerly and uses eager version management. Under high
contention, it switches to allow lazy conflict detection and uses lazy version management.

Shriraman et al. and Spear et al. also argued that mixed forms of conflict detection are effective
in practice [290; 291; 300]: performing eager detection of conflicts between concurrent writers but
performing lazy detection of read-write conflicts against committed transactions. They observe that
this provides most of the concurrency benefits of using full lazy conflict detection, while avoiding
much of the wasted work.

Bobba et al. introduced a taxonomy of “performance pathologies” that occur with many TM
implementations [40]:

• Friendly fire. As in our previous example, a transaction TA can encounter a conflict with
transaction TB and force TB to abort. However, if TB is immediately re-executed, then it
might conflict with TA and force TA to abort. Without contention management, this cycle
can repeat.

• Starving writer. This occurs with TMs that give priority to readers: a writer TA can stall,
waiting for a reader TB to complete, but another reader TC starts before TB is finished. A set
of readers, continually starting and committing, will prevent TA from ever making progress.

• Serialized commit. Some TM implementations involve short, global critical sections to serialize
transactions. If the transactions themselves are short, then the serialization introduced by these
critical sections can harm scalability.

• Futile stalling.Futile stalling can occur if a transactionTA encounters a conflict with transaction
TB, and TA decides to wait until TB has finished. Intuitively, this makes sense because it allows
TA to continue later, rather than aborting. However, if TB aborts then TA has been delayed
without benefit.

• Starving elder. TMs with lazy conflict detection and a committer-wins policy can prevent a
long-running transaction from being able to commit: by the time it tries to commit, it has
conflicted with a more recent short-running transaction.

• Restart convoy. TMs with lazy conflict detection can form “convoys” comprising sets of trans-
actions making similar memory accesses. At most, one transaction can commit from each such
convoy, with the remaining transactions needing to be re-executed.

2.3. PERFORMANCE, PROGRESS AND PATHOLOGIES 51

• Dueling upgrades. This pathology occurs when two transactions read from a location and then
subsequently update it. With eager conflict detection, at most one of the duelists can be
permitted to upgrade.

In addition, with HTM, care is needed to provide performance isolation between different processes.
Typical hardware does not provide complete performance isolation in any case (for instance,hardware
threads may compete for space in a cache), but TM introduces particular problems because a process
cares about the rate at which its complete transactions commit, as well as the rate at which their
constituent instructions execute.

Zilles and Flint identify specific problems that occur with some HTM designs [347]. Some
TMs require a complete transaction to be present in physical memory if it is to commit. Unlike
traditional virtual memory systems, this is a hard requirement: the transaction cannot run at all
unless it has the required memory. Mechanisms for handling large transactions can be problematic,
if they require transactions to be serialized in their execution, or if they involve “overflow” modes
which change system-wide execution, or if they use conflict detection mechanisms that may generate
false positives between concurrent transactions from different processes. Finally, if an HTM system
were to allow a transaction to cross from user-mode into kernel-mode, then conflicts could occur
between kernel-mode execution on behalf of one process and kernel-mode execution on behalf of a
different process.

2.3.3 CONTENTION MANAGEMENT AND SCHEDULING
One way to mitigate poor performance caused by conflicts between transactions is to use a con-
tention manager (CM), which implements one or more contention resolution policies. When a conflict
occurs, these policies select whether to abort the “acquiring” transaction that detects the conflict,
the “victim” transaction that it encounters, and whether or not to delay either transaction. Many
different contention management policies have been studied, varying considerably in complexity
and sophistication [122; 123; 278; 280]:

• Passive. This is the simplest policy: the acquiring transaction aborts itself and re-executes.

• Polite. The acquiring transaction uses exponential backoff to delay for a fixed number of
exponentially growing intervals before aborting the other transaction. After each interval, the
transaction checks if the other transaction has finished with the data.

• Karma. This manager uses a count of the number of locations that a transaction has accessed
(cumulative, across all of its aborts and re-executions) as a priority. An acquiring transaction
immediately aborts another transaction with lower priority. However, if the acquiring trans-
action’s priority is lower, it backs off and tries to acquire access to the data N times, where N

is the difference in priorities, before aborting the other transaction.

52 2. BASIC TRANSACTIONS

• Eruption.This manager is similar to Karma,except that it adds the blocked transaction’s priority
to the active transaction’s priority; this helps reduce the possibility that a third transaction will
subsequently abort the active transaction.

• Greedy.The Greedy CM provides provably good performance when compared with an optimal
schedule. In the absence of failures, every transaction commits within a bounded time, and
the time required to complete n transactions that share s locations is within a factor of s(s +
1) + 2. A transaction is given a timestamp when it starts its first attempt. Upon contention,
transaction TA aborts transaction TB if TB has a younger timestamp than TA (or if TB is
itself already waiting for another transaction).

• Greedy-FT. This extends the Greedy policy and provides robustness against failed transactions
via a timeout mechanism.

• Kindergarten. This manager maintains a “hit list” of transactions to which a given transaction
previously deferred. If transaction TA tries to obtain access to data in use by transaction TB,
then if TB is on the list, TA immediately terminates it. If TB is not on the list, then TA adds
it to the list and then backs off for a fixed interval before aborting itself. This policy ensures
that two transactions sharing data take turns aborting.

• Timestamp. This manager aborts any transaction that started execution after the acquiring
transaction.

• Published Timestamp. This manager follows the timestamp policy but also aborts older trans-
actions that appear inactive.

• Polka. This is a combination of the Polite and Karma policies. The key change to Karma is to
use exponential backoff for the N intervals.

Selecting between contention managers can be dependent on the TM, on the workload, and on the
form of concurrency control used by the TM. For instance, as shown by the “friendly-fire” example
in the previous section, if a TM uses eager conflict detection, then the CM must get one or other of
the conflicting transactions to back off sufficiently long for the other to complete.

No policy has been found which performs universally best in all settings, though Polka has
often worked well [280], as have hybrids that switch from a simple passive algorithm to a more
complex one if contention is seen, or if transactions become long-running [93].

Work such as that of Shriraman et al. and Spear et al. has shown that if conflicts are only
detected with committed transactions, then the choice of CM algorithm is much less critical because
the underlying TM system ensures progress for more workloads [290; 291; 300].

In addition, a further challenge in contention management is how to combine CM algorithms
within the same program; many early TM benchmarks exhibit a broadly homogeneous mix of
transactions, and so a single strategy is appropriate across all of the threads. In more complex

2.3. PERFORMANCE, PROGRESS AND PATHOLOGIES 53

workloads, there may be sections of the program that favor different strategies—either varying
across time or concurrently for different kinds of data.

2.3.3.1 Contention Management in Real-Time Systems
Pizlo et al. describe an application of transactional memory to resolve priority inversion problems
involving lock-based critical sections in Real-Time Java [242]: methods are executed transactionally
on a uniprocessor system, and a high-priority thread can preempt a low-priority thread and roll back
the low-priority thread’s tentative execution of a method.

Gottschlich and Connors also applied contention management to the context of real-time
systems in which the CM should respect per-thread priorities [109]. Using commit-time validation,
the CM provides an abort_before_commit hook, which is invoked when a transaction is about
to commit successfully. This hook gives the transaction a chance to abort itself if it sees a possible
conflict with a higher priority in-flight transaction: the transaction could commit, but chooses not to
in order to avoid the higher priority transaction aborting. A second permission_to_abort hook
is used with commit-time invalidation; in effect, the committing transaction must check that it is
permitted to abort all of the victim transactions that it conflicts with. If it does not receive permission,
then it aborts itself.

Gottschlich and Conners show how priority-inversion-style problems can occur with some
TM design choices. For instance, if a transaction writing to a location cannot detect that concurrent
transactions are reading from it, then a high priority read-only transaction may continually be aborted
by low-priority writers. Spear et al. address this problem by making sure that readers are “visible” if
they are operating at high priority [300].

2.3.3.2 Queuing and scheduling
Recent work has explored using forms of queuing to reduce contention. Intuitively, it should often
be possible to predict if transactions TA and TB are likely to conflict and, if so, to then to run them
sequentially rather than concurrently.

One option is for the programmer to provide information about possible conflicts. Bai et
al. introduced a key-based technique for executing transactions that access dictionary-style data
structures [26] in which transactions are partitioned between processors based on the keys that they
are accessing.This can have two benefits: it prevents conflicting transactions from running in parallel,
and it promotes locality since repeated accesses to the data representing the same key will be made
from the same processor.

Yoo et al. describe a scheduling system based on an estimate of a process-wide conflict
rate [340]. Under low contention, threads run transactions directly. If the conflict rate is high,
then threads request that transactions are run via a centralized queue.

With CAR-STM, Dolev et al. maintain per-core queues of transactions that are ready to
run [90]. Application threads place transactions on these queues, and dedicated transaction-queue
threads (TQ threads) take transactions off the queues and execute them. If a transaction TA is

54 2. BASIC TRANSACTIONS

aborted because of a conflict with transaction TB, then TA is moved to the queue that TB was
fetched from. In effect, this serializes the transactions. As an extension, the permanent serializing
contention manager keeps TA and TB together as a group if they conflict with a third transaction.
This extension guarantees that any pair of dynamic transactions can conflict at most once. A collision
avoidance mechanism attempts to avoid transactions conflicting even this much: an application
can provide information about likely collisions, and CAR-STM uses this to decide where to place
transactions.

Ansari et al. extend this work by running transactions on dedicated TQ threads, moving
transactions between TQ threads according to the conflicts that occur, and also varying the number
of TQ threads according to the abort rate: if aborts are frequent then the number of TQ threads is
reduced to avoid running conflicting transactions concurrently, but if there are few aborts, then the
number of TQ threads can safely be increased [18; 19; 20; 21].

Sonmez et al. investigated fine-grained switching between optimistic and pessimistic concur-
rency control, based on the level of contention that is seen; optimistic concurrency is used for data
on which contention is low, and pessimistic concurrency is selected if contention is high. In practice,
this approach is not always successful because, under the pessimistic implementation, the avoidance
of wasted work is offset by an added risk of roll-backs to recover from deadlock [297].

Dragojević et al. investigated a prediction-based technique for deciding when to serialize trans-
actions [94]. They predict the read/write-sets of a transaction based on the previous transactions
executed by the same thread. If a high abort rate is seen, then transactions that are predicted to
conflict are executed serially.

Kulkarni et al. show how application-specific knowledge is useful when scheduling work
items in a system using optimistic concurrency control: heuristics that promote cache reuse for one
workload can trigger pathological behavior in another (e.g., LIFO processing of newly generated
work items) [181]. These observations may apply to TM, and similar controls may need to be
exposed.

2.3.4 REDUCING CONFLICTS BETWEEN TRANSACTIONS
Some programming idioms simply do not fit well with TM. For instance, suppose that a program
initially scales well, but the programmer wishes to add a statistics counter to track the number of
times that a particular operation is used:

do {
StartTx();
int v = ReadTx(&count);
WriteTx(&count, v+1);

// Long-running computation
...

} while (!CommitTx())

2.3. PERFORMANCE, PROGRESS AND PATHOLOGIES 55

Each thread’s accesses to count will conflict. Worse, if lazy conflict detection is used, these conflicts
may go undetected until after the long-running computation has been done. The conflicts on count
can remove all of the possible concurrency between the transactions. Even worse, the programmer
might not even care about detecting conflicts on count if erroneous values can be tolerated when
gathering statistics.

Harris and Stipić described a taxonomy of “benign” conflicts where an implementation of
TM would typically signal a conflict but where, at a higher level, the conflict does not matter to the
application [139]:

• Shared temporary variables. This type of conflict occurs when transactions use shared data for
temporary storage.The values do not need to be retained from one transaction to the next, but
the accesses must typically be treated as conflicts. Fraser described this kind of conflict in a
red-black tree implementation [105] in which transactions working near the leaves of the tree
will write to a sentinel node whose contents do not need to be retained between transactions.

• False sharing. These conflicts occur when the granularity at which the TM detects conflicts is
coarser than the granularity at which the application is attempting to access data. For instance,
if a TM detects conflicts on complete cache lines, then transactions accessing different fields
held on the same line will conflict. Lev and Herlihy introduced the terms read-coverage and
write-coverage to distinguish these larger, coarser sets on which conflict detection is performed
from the exact read-sets and write-sets that a transaction accesses [143].

• Commutative operations with low-level conflicts. This happens in our example: the complete
increments to count are commutative, but the low-level reads and writes that they are built
from will conflict.

• Making arbitrary choices deterministically. For instance, a GetAny() operation for an imple-
mentation of sets over linked lists may return the same item to two concurrent callers. How-
ever, using a non-deterministic implementation could reduce conflicts, by allowing concurrent
transactions to remove different items.

These problems can be tackled at multiple levels in the system:

2.3.4.1 Value Prediction and Value-Based Validation
Tabba et al. show how speculation can be used in an HTM system to mitigate the effect of false
conflicts caused by cache-line-granularity conflict detection [312]: a transaction can speculatively use
stale cache lines, so long as the values that it used are checked when the transaction is subsequently
validated. This means that a concurrent transaction can make updates to other parts of the same
cache line without triggering an abort.

Similar techniques have been used in STM systems [77; 135; 236] (Section 4.4.2), and other
systems based on speculative execution (e.g., [30; 88]).

56 2. BASIC TRANSACTIONS

2.3.4.2 Early Release and Elastic Transactions
Several early STM systems provided forms of early release operation [105; 146; 295; 298]. that allows
a program to explicitly remove entries from a transaction’s read-set or write-set. A recurring example
is searching for an item in a sorted linked list; traversing the list will draw all of the items into the
read-set, and so a search that finds an item near the end of the list will conflict with an insertion near
the start.Early release can be used to discard the earlier items from the read-set since conflicts to them
do not matter. Programming with early release can resemble hand-over-hand manual locking [149].

Using early release correctly requires great care. Correct usage depends on the complete set
of operations that might manipulate the data structure. The “search” example is correct if the only
other operations are simple insertions and deletions, but it is incorrect if a hypothetical “delete all
greater than X” operation was added which truncates the list at X. That kind of operation would
make it incorrect to use early release because the conflict with these concurrent bulk deletions could
go undetected.

The second problem with early release is how it interacts with composition. Suppose that a
list contains the elements 1..10 and a thread searches for 4 and then searches for 8. Early release
during the search for 8 would remove the read-set entries for 4.

Elastic transactions allow a transaction to perform a prefix of operations which do not need to
be serialized along with the “real” part of the transaction [104]. Conflicts can be tolerated during
this prefix before maintaining a read-set and write-set as normal once the first update is made (or
once a specific form of read operation is used). This provides cleaner support for composition than
early release: atomicity extends from the first update to the end of the complete transaction even if
multiple operations using elastic transactions are executed.

2.3.4.3 Tracking Dependencies
In some situations aborts can be avoided by explicitly tracking conflicts that occur between transac-
tions, and avoiding aborting transactions so long as data is forwarded consistently between them—
e.g., if transaction TA and transaction TB conflict, then this is acceptable so long as one of them
always appears to run after the other. Circular dependence must either be prevented by stalling
transactions, or the cycle must be avoided by aborting transactions. This observation can lead to an
increase in concurrency between transactions (e.g., in Ramadan et al.’s HTM [254] and STM [255]).
However, it does raise the specter of cascading aborts in which the abort of one transaction must trigger
the aborts of any other transactions that have dependencies on it.

This kind of dependency-tracking could provide better scalability for our example using
a shared counter: transactions using the counter can run concurrently, so long as their actual
ReadTx/WriteTx pairs are not interleaved.

Pant et al. [239] and Titos et al. [317] examined the use of value-prediction hardware to
provide a transaction with values that are expected to be written by a conflicting transaction. Pant et
al. also examine a limited form of communication of uncommitted values [240], extending an HTM
using eager version management with the ability for a transaction to read uncommitted state, with
the reader performing additional checks to watch for the speculative state to be committed.

2.3. PERFORMANCE, PROGRESS AND PATHOLOGIES 57

2.3.4.4 Partial Reexecution
An alternative to reducing the frequency of conflicts is to reduce the penalty that is incurred if they
occur. Intermediate checkpoints can be used during a transaction’s execution, representing a snapshot of
the transaction’s current state. If a conflict occurs after a checkpoint then execution can be restarted
from the snapshot, rather than from the start of the whole transaction [175; 326].

Abstract nested transactions (ANTs) [139] provide a mechanism for partial re-execution of
sections of a transaction. ANTs provide a hint to the TM implementation that the operations within
the ANT should be managed separately from the rest of the enclosing transaction: for instance,
an STM-based implementation may keep separate logs for an ANT so that it can be reexecuted
without rerunning the complete transaction. ANTs would work well for our example of a shared
counter: the ReadTx/WriteTx pairs would be placed in an ANT, and these sub-transactions could
be re-executed if conflicts occur. Currently, ANTs have been implemented only in STM-Haskell.

2.3.5 HIGHER-LEVEL CONFLICT DETECTION
Contention management (Section 2.3.3) and conflict-reduction techniques (Section 2.3.4) all pro-
vide ways of reducing the amount of contention experienced as transactions execute. However,
they are fundamentally limited by the fact that transactions are expressed using ReadTx/WriteTx
operations. As with our simple example using a shared counter, a transaction can often be using
abstractions that commute at a higher level but which conflict in terms of the actual reads and writes
that they perform. Chung et al. give a practical example of this kind of problem in a transactional
version of the SPECjbb2000 workload [63].

This observation has led to several techniques that allow the programmer to raise the level of
abstraction at which a TM system operates, introducing higher-level notions of conflict detection:
e.g., if the TM system “knows” that a given ReadTx/WriteTx pair is performing an increment, then
it can permit concurrent transactions to execute while incrementing the same shared counter.

All of the systems for performing higher-level conflict detection rely on a notion of explicitly-
defined abstract data types, which are required to completely encapsulate the shared state that they
are managing (Figure 2.6). This requires, for instance, that all of the accesses to the shared counter
should be made via Inc/Dec/Read operations that the TM system manages, rather than being made
by direct access to the underlying shared memory. Agrawal et al. developed a type system to enforce
this kind of discipline [14].

For each abstract data type (ADT), the programmer must specify the following:

• Commutativity. In terms of their effect on the abstract state,which pairs of operations commute
with one another? For example, Inc and Dec commute with one another, but they do not
commute with Read.

• Inverses. If a transaction rolls back after performing an operation on the ADT, then how should
its work on the ADT be undone? In this case, an increment by x should be compensated by

58 2. BASIC TRANSACTIONS

void Inc(int x)

Shared Counter

void Dec(int x)

int Read()

Inc(x) / Inc(x) commute
Inc(x) / Dec(x) commute

...

Inverse(Inc(x)) : Dec(x)
...

Figure 2.6: An abstract data type (ADT) implementing a shared counter.The counter’s value is accessed
only via the Inc, Dec, and Read operations. The ADT defines which operations commute with one
another and what their inverses are.

a decrement by x. On a shared counter, Read is a disposable operation which does not require
an inverse.

This leads to a need for concurrency control at two levels. First, there must be high-level concurrency
control, to make sure that the operations executed by two concurrent transactions commute with one
another. Typically, this is implemented by pessimistic concurrency control using abstract locks, which
are acquired by a transaction’s operation on an ADT, and held until the transaction commits. For a
shared counter, there would just be one abstract lock, acquired in one mode for Inc and Dec, and
acquired in the other mode for Read. For a shared set, there could be a separate abstract lock for
each key in the set.

In addition to this high-level abstract locking, there must be low-level concurrency control
within the implementation of the ADT. For instance, even though two transactions may execute
Inc, the individual increments must be performed atomically. One approach is to use open nested
transactions (Section 2.2.6) to do this: the Inc operation itself runs inside a transaction but commits
immediately to memory. This serializes it with respect to other operations on the ADT.

An alternative approach to using open nesting is to rely on an existing thread-safe data struc-
ture’s implementation to provide this low-level concurrency control. Herlihy and Koskinen intro-
duced this technique as transactional boosting [142; 177]. Unlike open nesting, transactional boosting
allows the existing thread-safe data structure’s implementation to execute non transactionally, using
its own internal synchronization, rather than assuming that the data structure’s implementation
should be executed within a sub-transaction.

More generally, in addition to commutativity, we can exploit knowledge of how different
operations can be reordered with respect to one another in controlled ways [178]—e.g., using a
model like Lipton’s notions of left-movers and right-movers [195]. Similar ideas of high-level
conflict detection have been used in other transactional systems [329] and in the Galois system for
optimistic parallelization [181; 182].

2.4. SUMMARY 59

2.4 SUMMARY
In this chapter, we have introduced a basic programming interface for TM, sketched the main design
choices that are taken in TM implementations, and examined the use of TM from the point of view
of its semantics and the kinds of progress properties that can be provided.

To conclude this chapter, we return to a series of trade offs that have arisen at several points.
First, there is the tradeoff between the semantics provided by a TM interface and the range of

implementation techniques that are available. This was not always understood in earlier work where
an “improvement” to a TM implementation might reduce the set of programs that it supports. It
is, therefore, important, when evaluating different practical techniques, to identify whether or not
they support the same set of programs. The classification of programming disciplines such as static
separation and TDRF provides one way of doing this, with reference to a common definition of
TSC rather than the details of a given implementation.

Second, there is the tradeoff involving concurrency between transactions and the performance
of a TM implementation. Many papers have shown, informally, that greater concurrency can be sup-
ported by keeping additional information about how transactions have interacted—but the amount
of bookkeeping needed to identify these opportunities has often been non-trivial, and if a workload
has a low level of contention, then it has little opportunity to benefit from any additional concurrency.

Finally, when looking at the practical performance of TM systems, many of the existing
implementations involve both a careful design of algorithms and care over the low-level details of
the code; e.g., how data is laid out in memory in software or exactly which messages might be added
to a directory protocol in hardware. Separating out the degree to which “good algorithms” versus
“good code” contribute to performance is difficult, and firm results favoring one kind of technique
over another are rare.

61

C H A P T E R 3

Building on Basic Transactions
The TM programming interface from Chapter 2 can be very cumbersome to use: reads and writes
must be written verbosely as ReadTx/WriteTx calls, and the logic of an algorithm is obscured by all
the boilerplate involved in starting and committing transactions. The basic TM interface has other
problems too, beyond its verbosity. The exact interface is often rather coupled to a particular TM
implementation; e.g., whether or not an explicit AbortTx is available and whether or not reexecution
of failed transactions can occur at any time. This limits portability of programs using TM. The basic
interface does not provide any constructs for condition synchronization where one thread wishes to
wait until a data structure is in a given state (e.g., a queue is not full): some form of integration
with condition synchronization is necessary if TM is to be used as a general-purpose abstraction for
concurrency control. The basic interface is not good from a programmability viewpoint because it
requires code to be written explicitly to use TM, making it hard to re-use common libraries.

In this chapter, we look at how to extend the simple TM interface to remedy some of its
shortcomings and how to build higher-level language constructs that are portable across a range
of implementations. First, we look at atomic blocks as a mechanism to delimit code that should
execute atomically and in isolation from other threads (Section 3.1); atomic blocks avoid the need
to call explicit ReadTx/WriteTx operations by hand. We examine the design and implementation
of atomic blocks and how their semantics relate to those of TM.

We then look at how to extend atomic blocks with support for condition synchronization, and
integration with non-TM features like garbage collection (GC), system calls, and IO (Section 3.2).

Section 3.3 looks at current experience programming with TM—tools such as debuggers and
profilers, workloads based on TM or atomic blocks, and user studies about how these techniques
compare with lock-based programming.

Finally, in Section 3.4, we survey research on alternatives to atomic blocks. This includes
work on “transactions everywhere” models, in which transactional execution in the norm, and models
in which TM is used as an implementation technique for ordinary critical sections.

3.1 BASIC ATOMIC BLOCKS

Since early work on language constructs for TM, a prevalent idea has been to provide some kind
of construct for marking an atomic block of statements. The implementation wraps this block in
operations to manage a transaction and replaces the memory accesses that occur within the block
with ReadTx/WriteTx calls. Implementations of atomic blocks have been developed for many

62 3. BUILDING ON BASIC TRANSACTIONS

languages, including C/C++ [232; 327; 336], C# [138], Haskell [136], Java [134; 220; 336; 345],
OCaml [266], Scheme [170], and Smalltalk [259].

Various keywords are used in the literature, but for uniformity in this book, we write examples
using atomic blocks in a Java or C#-like language [50; 134; 136]. Unsafe languages, such as C/C++,
may require different implementations or place different requirements on the kinds of TM that they
can use,but the language features are likely to be similar.There is substantial ongoing work examining
these topics [8; 73; 232; 287].

As in the previous chapter, terminology differs somewhat among different viewpoints for
these constructs. Referring to the ACID properties of transactions, atomic is a misnomer or at least
an over-simplification because TM provides isolation as well as atomicity. An alternative viewpoint is
that “atomic” should be taken to mean “indivisible” rather than the “all or nothing” of ACID. From
this viewpoint, an atomic block is one whose effect on the process’s state is that of an indivisible
update.

Many of the concepts for atomic blocks were anticipated in a paper by Lomet in 1977 [199],
which was published soon after the classic paper by Eswaran [101] on two-phase locking and
transactions. Lomet reviewed the disadvantages and shortcomings of synchronization mechanisms,
such as semaphores, critical regions, and monitors, and noted that programmers used these constructs
to execute pieces of code atomically. His suggestion was to express the desired end directly and
shift the burden of ensuring atomicity onto the system. An atomic action appears atomic from a
programmer’s perspective, as no other thread or process can see the intermediate steps of an action
until the action completes and commits.

Returning to atomic blocks and the dequeue example from Chapter 2, the PushLeftmethod
could be written as follows:

void PushLeft(DQueue *q, int val) {
QNode *qn = malloc(sizeof(QNode));
qn->val = val;
atomic {
QNode *leftSentinel = q->left;
QNode *oldLeftNode = leftSentinel->right;
qn->left = leftSentinel;
qn->right = oldLeftNode;
leftSentinel->right = qn;
oldLeftNode->left = qn;

}
}

The semantics of the construct are subtle, but for now, assume that the block executes with the failure
atomicity and isolation properties of a transaction, and that the contents of the block are automat-
ically reexecuted upon conflict so that it appears to run exactly once. The resulting transaction is
dynamically scoped—it encompasses all code executed while control is in the atomic block, regard-
less of whether the code itself is lexically enclosed by the block—transactional execution extends
into any functions called from within the block.

3.1. BASIC ATOMIC BLOCKS 63

Some languages also define atomic functions or methods, whose body executes in an implicit
atomic statement [242]:

void Foo() {
atomic {

if (x != null) x.foo();
y = true;

}
}

⇐⇒
atomic void Foo {

if (x != null) x.foo();
y = true;

}

Composability
A key advantage of atomic blocks over lock-based critical sections is that the atomic block does
not need to name the shared resources that it intends to access or synchronize with; it synchronizes
implicitly with any other atomic blocks that touch the same data. This feature distinguishes it
from earlier programming constructs, such as monitors [156] or conditional critical regions [157],
in which a programmer explicitly names the data protected by a critical section. It also distinguishes
atomic blocks from constructs like Java’s synchronized blocks, or C#’s lock regions.

The benefit of this is a form of composability: a series of individual atomic operations can be
combined together, and the result will still be atomic. This does not hold with lock-based abstrac-
tions. Consider a list that uses internal synchronization to provide linearizable Insert and Remove
operations on a set of keys. With locks, there is no immediate way to combine these operations to
form a new Move operation that deletes an item from one list and inserts it into another—either
one must break the encapsulation of the list and expose whatever kind of concurrency control it uses
internally, or one must wrap additional concurrency control around all of the operations on the list.
Conversely, if the list were implemented with atomic blocks, one could write:

bool Move(List s, List d, int item) {
atomic {

s.Remove(item); // R1
d.Insert(item); // I1

}
}

As a result, an atomic block enables abstractions to hide their implementation and be composable
with respect to these properties. Programming is far more difficult and error-prone if a programmer
cannot depend on the specified interface of an object and instead must understand its implementa-
tion. Using locks in application code to achieve mutual exclusion exposes this low level of detail. If
a library routine accesses a data structure protected by locks A and B, then all code that calls this
routine must be cognizant of these locks, to avoid running concurrently with a thread that might
acquire the locks in the opposite order. If a new version of the library also acquires lock C, this
change may ripple throughout the entire program that uses the library.

An atomic block achieves the same end but hides the mechanism. The library routine can
safely access the data structure in a transaction without concern about how the transactional prop-
erties are maintained. Code calling the library need not know about the transaction or its imple-

64 3. BUILDING ON BASIC TRANSACTIONS

mentation nor be concerned about isolation from concurrently executing threads. The routine is
composable.

Limitations of Atomic Blocks
The atomic block is not a parallel programming panacea. It is still, regrettably, easy to write incorrect
code, and writing concurrent code remains more difficult than writing sequential code. However,
there are two additional problems when programming with atomic blocks:

Many prototype implementations lack orthogonality between atomic blocks and other lan-
guage features: either there are some language features that cannot be used in atomic blocks, or
there are some settings where atomic blocks cannot be used. Operations with external side-effects
(e.g., IO) are the most prominent example of non-orthogonality; we look at many problems of this
kind in Section 3.2 along with the techniques developed to support them.

The second problem is that, even with orthogonality, some programming idioms do not work
when they form part of an atomic action. A particular problem occurs with barrier-style operations
which involve synchronization between threads. Here is an example from Blundell et al. [35; 36],
which illustrates the kind of problem that occurs when enforcing atomicity around an existing
synchronization construct:

volatile bool flagA = false;
volatile bool flagB = false;

// Thread 1 // Thread 2
atomic { atomic {
while (!flagA); // 1.1 flagA = true;
flagB = true; // 1.2 while (!flagB);

} }

The code in the atomic blocks is incorrect since the statement 1.1 can only execute after Thread
2’s atomic block, but the statement 1.2 can only execute before Thread 2’s atomic block: hence it is
not possible for these two blocks both to run atomically and with isolation. Although this example
is contrived, it illustrates a kind of problem that can occur if the synchronization is buried within a
library that the two atomic blocks use: either the use of the library needs to be prohibited inside
atomic blocks, or the library needs to be written to use some other synchronization mechanism
instead of transactions. We return to this kind of example when looking at IO in Section 3.2.

3.1.1 SEMANTICS OF BASIC ATOMIC BLOCKS.
Early work that provided atomic blocks often defined their semantics implicitly, based on the prop-
erties of a particular implementation.As with examples such as “privatization” in the previous chapter,
code that one might expect to work often failed on early implementations, and code that worked
on one variant of atomic blocks did not necessarily work on others. One might prefer a language
construct to provide clearly-defined semantics, and to permit a range of different implementations
(much like there are many GC algorithms, suited to a variety of workloads, but providing the same
abstraction to a programmer [114]).

3.1. BASIC ATOMIC BLOCKS 65

It is useful to distinguish the semantics of atomic blocks from those of TM.There are several
reasons: we may wish to support implementations of atomic blocks that do not use TM at all (e.g.,
using lock-inference techniques [59; 74; 129; 151; 214]). Second, recent implementations of atomic
blocks are complex and may involve work in many parts of a language implementation in addition
to the use of TM: e.g. transforming a program to sandbox zombie transactions (Section 3.1.3), or
transforming a program to improve performance (Section 4.2.2). It, therefore, makes sense to define
the public interface of atomic blocks seen by the programmer, in addition, to any private interfaces
used within a given implementation.

Many possible semantics for atomic blocks are discussed in the literature. In this book, we
focus on two specific designs, mirroring the approaches taken in Chapter 2:

3.1.1.1 Single-Lock Atomicity (SLA) for Atomic Blocks
As with TM, a notion of SLA is appealing because many programming languages already include
locking. We can apply the idea of SLA to the definition of atomic blocks, much as we did to the
definition of TM: each atomic block behaves as if it executes while holding a single, process-wide
lock. This lock-based version then serves as a reference implementation for the behavior of the
program using atomic blocks. The question of how a given program should behave using atomic
blocks is then reduced to the question of how the lock-based version behaves under the language’s
existing semantics. This provides a methodical approach for defining how other language constructs
interact with atomic blocks: they should behave the same as they would with a single lock.

Modern languages typically define which lock-based programs are considered race-free [43;
207].Variants of SLA can either require that an implementation is faithful to the lock-based reference
for all programs—or, more weakly, require that the implementation is faithful only when the lock-
based program is race-free. Menon et al. illustrate how supporting all programs consistently with the
Java memory model can complicate the implementation of SLA or undermine its performance [219;
220].

Using locks to define the semantics of atomic blocks raises the same kinds of problems that
can occur when using locks to define the semantics of TM—e.g., it is not clear how to extend the
definition to include constructs such as open nesting, since there is no clear lock-based counterpart
for these.

However, there is an additional difficulty when using lock-based reference models with
atomic blocks. When defining the semantics of TM, weaker notions such as disjoint lock atomicity
(DLA), asymmetric lock atomicity (ALA), and encounter-time lock atomicity (ELA) provided ad-
ditional models that allowed faster implementations than SLA.These designs are problematic when
used to define semantics for atomic blocks. This is because DLA, ALA, and ELA are defined in
terms of the data accesses made by a transaction: these accesses are explicit with a ReadTx/WriteTx
interface, but they are implicit when using atomic blocks, and the accesses made may usually be
changed during optimization. For instance, consider this variant on the “empty publication” example
under DLA:

66 3. BUILDING ON BASIC TRANSACTIONS

// Thread 1 // Thread 2
data = 1; atomic {
atomic { int tmp = data;
int r = flag; flag = 42;

} if (ready) {
ready = 1; // Use tmp

} }

Like the original “empty publication” example, this involves a race on data. However, under SLA,
the Java memory model nevertheless guarantees that if Thread 2 sees ready==1 then it will also
see data==1. In addition, under DLA, the programmer may hope that the synchronization on
flag means that the two atomic blocks must synchronize on a common lock, and so Thread 2
will still see the publication from Thread 1. However, it seems equally reasonable for an optimizing
compiler to remove Thread 1’s read from flag because the value seen is never used. With this read
removed, there is no synchronization between the threads under DLA, and so the publication is not
guaranteed.

The crux of the problem is that DLA, ALA, and ELA can be used in defining the semantics of
programs using a TM interface explicitly, but they are less appropriate when defining the semantics
of atomic blocks because ordinary program transformations can remove memory accesses and,
therefore, change the sets of locks involved. We, therefore, stick with SLA as one model for the
semantics of atomic blocks.

3.1.1.2 Transactional Sequential Consistency (TSC) for Atomic Blocks
In Section 2.2.5, we discussed the use of transactional sequential consistency (TSC) as an mechanism
for defining the semantics of transactions in a way that, unlike SLA, avoided referring to existing
synchronization constructs.

With transactions, TSC requires that the effects of a transaction being attempted by one
thread were not interleaved with any operations being executed by other threads. The same idea can
be applied at the level of atomic blocks: under TSC, if an atomic block is being executed by one
thread, then no other operations can appear to be interleaved from other threads. Once again, the
“appear to” is important: an implementation of TSC may execute threads in parallel, and they perform
all kinds of low level interleaving between their operations. However, if the implementation is to
provide TSC, then the effects of these low-level interleaving must be invisible to the programmer.

Figure 3.1 contrasts SLA withTSC: both models allow the executions shown in Figure 3.1(a)–
(b), but TSC prohibits the execution in Figure 3.1(c) in which the work being done outside the
atomic block is interleaved with Thread 1’s execution of the atomic block. For simple workloads,
where atomic blocks just contain accesses to shared memory, case (c) can only occur if the program
has a data race—in which case the distinction can appear academic if we are only interested in
race-free programs.

3.1. BASIC ATOMIC BLOCKS 67

atomic { x = 1; x = 2; }Thread 1

Thread 2

(a) Execution of Thread 2’s non-transactional work before Thread 1’s atomic block (valid under
SLA and TSC).

atomic { x = 1; x = 2; }Thread 1

Thread 2

(b) Execution of Thread 2’s non-transactional work after Thread 1’s atomic block (valid under
SLA and TSC).

atomic { x = 1; Thread 1

Thread 2

x = 2; }

(c) Execution of Thread 2’s non-transactional work during Thread 1’s atomic block (only valid
under SLA, not valid under TSC).

Figure 3.1: Contrasting SLA with TSC. In this example, Thread 1 executes an atomic block, and
Thread 2 executes other work, without using an atomic block.

However, the differences between SLA and TSC become more significant when we consider
howatomicblocks might interact with other language features, in addition to data in shared memory.
For example, suppose that a program executes the following two pieces of work concurrently:

// Thread 1 // Thread 2
atomic {
print("Hello ");

print("brave new");
print("world!");

}

The output “Hello brave new world!” is valid under SLA: Thread 2 does not require the lock held by
Thread 1’s atomic block. However, under TSC, this output is prohibited because TSC requires that
no other thread’s work is interleaved within Thread 1’s atomic block. We return to many examples
of this kind throughout the chapter to illustrate the subtleties that exist in defining the semantics of
atomic blocks, and the differences between options that have been explored in the literature.

68 3. BUILDING ON BASIC TRANSACTIONS

The use of TSC to define the semantics of atomic blocks builds on definitions such as the
operational semantics for STM-Haskell [136], or the high-level semantics of Abadi et al. [3] and
Moore and Grossman [226]. In each case, these semantics define a simple time-sliced model of
execution, in which threads execute complete atomic blocks without any other thread’s operations
being interleaved. This kind of definition has also been termed a strong semantics [3].

3.1.2 BUILDING BASIC ATOMIC BLOCKS OVER TM
With SLA and TSC in mind as definitions for the semantics of atomic blocks, we now turn to the
main implementation techniques used in building atomic blocks over TM. A basic implementation
starts by expanding the block itself into a loop that attempts to execute the contents in a series of
transactions:

atomic {
...

}
�⇒

do {
StartTx();
...

} while (!CommitTx());

Intuitively, the loop will continue attempting the body of the atomic block until it manages to
commit successfully. The body of the loop must be compiled to use TM for its memory accesses.
With the example API from Chapter 2, this means replacing each read and write with a call to the
corresponding ReadTx/WriteTx operation.

We must also ensure that any function calls or method calls made from within the atomic
block will also use the TM API. Some implementations use dynamic binary translation to do
this [236; 328; 339], but a more common technique is to generate specialized versions of functions
during compilation.For instance, in the Bartok-STM implementation of atomic blocks for C#, each
method Foo logically has a TM-aware version named Foo$atomic [138]. Each method call within
an atomic block is replaced by a call to the corresponding $atomic method. Similarly, within an
$atomic method, memory accesses must be expanded to use ReadTx/WriteTx and calls modified
to use $atomic methods. The Deuce-STM system performs this kind of rewriting dynamically
during class loading in a Java Virtual Machine [174].

We call this explicit instrumentation. Implementing explicit instrumentation can require par-
ticular care in the handling of indirect branches—e.g., calls to virtual methods or calls via function
pointers.The challenge is in making sure that an instrumented version of the target code is available,
and that this is correctly executed when performing a call inside an atomic block. Harris and Fraser
developed techniques to handle virtual function calls by maintaining a second virtual-method-table
per class [134]. Wang et al. discuss techniques to handle function pointers [327] by using static
analyses to identify the functions that might be possible targets. STM systems based on dynamic
binary translation [236; 328; 339] handle both of these cases by simply translating the target of
an indirect branch if necessary. Detlefs and Zhang developed techniques to instrument accesses to
by-ref parameters passed in to functions containing atomic blocks [81].

Some TM implementation implicitly perform transactional reads and writes whenever a trans-
action is active—this is particularly true of HTM systems. In these, it is unnecessary to generate

3.1. BASIC ATOMIC BLOCKS 69

Program using atomic blocks, assuming
race-free programs run with TSC

TM implementation
supporting opacity and

TSC for TDRF programs

TM implementation
without opacity, and

supporting only programs
that obey static

separation

Explicit instrumentation of
data accesses inside

atomic blocks

Explicit instrumentation of
data accesses inside

atomic blocks

Explicit re-validation

Segregation of
transactional & non-
transactional data

Figure 3.2: Two example ways to support TSC for race-free programs over different underlying TMs:
strong guarantees could be inherited from the TM itself, or they could be built over a weaker TM.

separate $atomic versions of methods for data accesses, although there can be some cases where
other kinds of specialization are useful—e.g., if a TM-aware memory allocator is to be used (Sec-
tion 3.2.5), or if performance could be improved by distinguishing accesses to thread-local data.

Function Compatibility. Many implementations of atomic blocks provide facilities to indicate
which methods can be used inside them and which cannot. This is particularly useful for library
methods whose behavior is incompatible with atomicity—e.g., the barrier example from Section 3.1
should not be used inside atomic blocks, and so it may be better to discover this kind of use at
compile-time.

The STM.NET system provides an AtomicNotSupported attribute that can be used to label
this kind of function, along with related attributes to indicate functions which can be used only inside
atomic blocks. As an optimization, annotations have also been used to identify functions that can
be used safely inside an atomic block without any instrumentation—Ni et al. call this a tm_pure
function [232].

3.1.3 PROVIDING STRONG GUARANTEES OVER WEAK TM SYSTEMS
How should an implementation of atomic blocks provide semantics such as SLA or TSC? In both
of these semantics, idioms like the privatization and publication examples from the previous chapter
must be supported, and implementation details like data-access granularity must be hidden.

Figure 3.2 sketches two of the possible alternatives. The first, on the left, is to provide strong
guarantees in the TM itself: for instance, ensuring that there are no granular lost update (GLU)
problems caused by the TM’s writes spilling over onto adjacent locations, providing opacity so that
transactions see a consistent view of memory as they run, and either providing strong isolation,

70 3. BUILDING ON BASIC TRANSACTIONS

or, at least, sufficient constraints on transaction ordering that transactional-data-race-free (TDRF)
programming idioms work.This is straightforward and natural if the underlying TM provides strong
guarantees—e.g., if the atomic block can be supported over an HTM system with strong isolation.

However, many implementation techniques have been developed that allow strong language-
level properties to be provided without necessarily providing them at the TM level. This is the
right-hand path on Figure 3.2. In effect, this provides an additional layer in the language run-
time system, above the TM, to ensure that the remainder of the system is shielded from whatever
anomalous behavior might be produced. As a running example of this second approach, consider an
implementation that is building on a TM which does not provide opacity and which supports only
static separation (i.e., where any given piece of shared mutable data must be accessed either always
transactionally or always non-transactionally). Other options exist, but we focus on this one because
it provides a challenging setting: a naïve implementation will exhibit a whole range of anomalies.

3.1.3.1 Detecting Invalid Transactions
When building on a TM without opacity, it is necessary to detect if a transaction becomes invalid,
and to sandbox its effects in the meantime. For instance, consider a simple example with a transaction
that enters a loop depending on the values it sees in x and y:

atomic {
if (x != y) {
while (true) {
/*W1*/

}
}

}

If the program’s atomic blocks maintain an invariant that x==y, then this example could enter
an endless loop at W1 if it sees inconsistent values in the two variables. This example is contrived,
but more complex practical examples have been observed—e.g., Fraser reports a problem with a
transaction looping while traversing a particular kind of red-black tree implementation [105].

To detect this kind of invalidity, the program must usually be compiled to include explicit
validation checks. Standard analyses can be used to optimize the placement of these validation
checks, while still ensuring that they are executed on all looping code paths. The implementation
of this additional validation work can also be guarded by a thread-local test so that “real” validation
is only done, say, every 1M iterations; this adds little delay to detecting invalidity, but it reduces the
overhead that checking imposes. Alternatively, if a periodic timer is available, then it can be used to
set a validation-request flag or to directly perform validation itself.

3.1.3.2 Sandboxing Invalidity and Building Strong Isolation
In addition to detecting invalidity, our example implementation must sandbox the effects of an
invalid transaction—for instance, instead of entering a loop at W1, the program might attempt to

3.1. BASIC ATOMIC BLOCKS 71

write to arbitrary memory locations. One way to do this is to build strong isolation over the weaker
guarantees that a given TM provides.

Hindman and Grossman [154; 155] and Shpeisman et al. [288] introduced early implementa-
tions of strong isolation in this kind of setting.The basic idea is to expand non-transactional accesses
into optimized short transactions so that they detect whether or not there are conflicts. This means
that conflicts between transactional and non-transactional accesses will be handled correctly by the
TM.

When compared with full transactions, these optimized versions can be specialized to perform
a single memory access, rather than needing to maintain logs in the normal way. Sequences of related
accesses (e.g., read-modify-write to a single location) can also be aggregated and specialized. In
addition, specialization may be possible within the implementation according to the particular TM
being used—e.g., whether or not eager version management is used.

Static analyses can also be used to improve the performance of this approach by identifying
non-transactional accesses that need not communicate with the TM—e.g., because the data involved
is immutable, thread-local,or never accessed transactionally. In each of these cases, there is no possible
conflict between the transactional and non-transactional accesses. However, note that analyses must
consider the accesses made by the implementation of transactions, rather than just the accesses
that the programmer might anticipate from the source code under TSC or SLA—for instance, an
analysis must consider the granularity of accesses to avoid GLU problems and the effects of zombie
transactions.

Shpeisman et al. introduced a “not accessed in transactions” (NAIT) analysis that identifies
which non-transactional accesses cannot conflict with transactional accesses. Schneider et al. in-
vestigated enhancements of this approach in a JIT-based implementation [281], using a dynamic
variant of NAIT (D-NAIT) and additional escape analyses.They exploit the fact that all of the heap
accesses are made by code generated by the JIT: the results of the NAIT analysis therefore only need
to be sound for this body of actually-runnable code, rather than for the larger set of code that makes
up the application and the libraries it may use. This observation reduces the number of memory
accesses that need to be expanded to interact with the TM. Indeed, it can mean that a program does
not need to have any accesses expanded until it starts to use transactions, enabling a “pay to use”
implementation. In addition, a JIT-based approach can accommodate dynamically-generated byte-
code functions. Bronson et al. investigated feedback-directed selection between different customized
barrier implementations in an implementation of strong isolation [44].

An alternative technique is to use memory-protection hardware to isolate data being used
inside atomic blocks from data that is being used directly. Baugh et al. showed how this can be done
using hardware extensions for fine-grained user-level protection [28] (Section 5.5.4). Conventional
page-based memory protection hardware can also be used, albeit in a rather complex design [5]. In
this latter approach, the process’s virtual address space is organized so that there are two views of the
same heap data mapped at different virtual address ranges.One view is used for transactional accesses,
and the other view is used for non-transactional accesses.The TM implementation revokes access to

72 3. BUILDING ON BASIC TRANSACTIONS

the normal view of a page before accessing it within a transaction.Thus, conflicting non-transactional
accesses will incur page faults. To avoid disastrous performance, changes to page permissions can
be made lazily (rather than switching them back-and-forth as each transaction starts and commits),
dynamic code updating can be used to replace instructions that generate frequent access violations
by short transactions, transactional and non-transactional allocations can be made on separate pages
(to discourage false sharing), and NAIT-style static analyses can be used to identify operations that
cannot produce transactional/non-transactional conflicts.

3.1.3.3 Summary
As we have shown in this section, there are several techniques that can be put together to build SLA
or TSC over a weaker TM. Whether or not these are needed in a particular implementation depends
both on the language guarantees to be offered, and, of course, on the underlying properties of the
TM.

For a specific target semantics, such as supporting race-free programs with SLA or TSC, it is
not yet clear exactly which combination of these approaches works best. For instance, techniques to
build strong isolation can be very complicated to implement and introduce additional instrumenta-
tion at run-time. On the other hand, by building on a TM with weaker guarantees, a wider range of
TM systems can be used, and it is possible that these may be faster than TMs which natively provide
stronger guarantees.

3.2 EXTENDING BASIC ATOMIC BLOCKS
Basic atomic sections built over TM lack many of the features that programmers expect. There
is no way to express condition synchronization where one thread’s atomic block needs to wait for
another thread. This severely limits the applicability of atomic blocks—for instance, it prevents
a blocking producer-consumer queue from being written. In addition, as we said at the start of
the chapter, basic atomic blocks do not provide orthogonality with other language features—the
simple implementation that we sketched does not provide mechanisms for performing IO within
an atomic block or for using existing programming abstractions that might be implemented using
locks. It is also unclear how language runtime services interact with the implementation of atomic
blocks—e.g., to handle memory allocations or to operate the garbage collector.

We examine all of these questions in this section. First, we consider techniques to extend
atomic blocks with support for condition synchronization (Section 3.2.1). Then, we consider sup-
port for failure atomicity and how this can be provided by integration with a language’s exception
mechanisms (Section 3.2.2). Finally, we look at integration between atomic blocks and a series of
non-TM facilities such as IO and system calls (Section 3.2.3–3.2.7).

3.2.1 CONDITION SYNCHRONIZATION
In database systems, transactions are generally independent operations on a database. However,
within a single process, it is often necessary to coordinate which operations execute and when—for

3.2. EXTENDING BASIC ATOMIC BLOCKS 73

instance, one atomic block stores an item into a shared data structure, and another block wants to
wait until the item is available.

3.2.1.1 Retry and OrElse
Harris et al. [136] introduced the retry statement to coordinate atomic blocks in STM-Haskell,
Ringenburg and Grossman introduced an analogous statement for a variant of ML [266], and Adl-
Tabatabai et al. developed implementations for the Java programming language [7]. Semantically, an
atomic block is permitted to run only when it can finish without executing any retry statements;
retry can be seen as indicating that the atomic block has encountered a state in which it is not
yet ready to run. For instance, one could write:

public void TakeItem() {
atomic {

if (buffer.isEmpty()) retry;
Object x = buffer.GetElement();
...

}
}

If the buffer is empty then the retry statement indicates that the atomic block is not yet ready
to execute. This example illustrates the advantage of combining atomic and retry statements:
since the predicate examining the buffer executes in the atomic block, if it finds an item in the
buffer, then this value will be present when the next statement in the block goes to get it. The
transaction’s isolation ensures that there is no “window of vulnerability” through which another
thread can come in and remove an item. Unlike explicit signaling, with conditional variables and
signal/wait operations, retry does not need to name either the transaction being coordinated
with, or the shared locations involved.

Operationally, when building atomic blocks over TM, a transaction that executes a retry
statement simply aborts and then re-executes at some later time. Typical implementations of retry
work by delaying this re-execution until another atomic block has updated one of the locations
involved—in this example, that might mean waiting until a flag in the buffer is updated, but in more
complex cases, a series of locations may need to be watched.

The retry operation provides a form of composable blocking, in the sense that a thread may
group together a series of atomic operations into a larger compound atomic operation. For instance,
to take two successive items from a buffer:

public void TakeTwo() {
atomic {
buffer.TakeItem();
buffer.TakeItem();

}
}

This example also illustrates the interaction between retry and nesting—semantically, a retry in
either TakeItem operation signals that the entire nest is not yet ready to run. When built over TM,

74 3. BUILDING ON BASIC TRANSACTIONS

this can be implemented by rolling back to the very start of the outermost atomic block. If lazy
version management is used, then optimized implementations could defer complete roll-back until
it is known exactly which data is written by a conflicting transaction.

Harris et al. [136] also introduced the orElse operation: if X and Y are transactions then X
orElse Y starts by executing X:

1. If X commits, the orElse statement terminates without executing Y.

2. If X executes a retry statement, the tentative work done by X is discarded, and the orElse
operation starts executing Y instead.

3. If Y commits, the orElse statement finishes execution.

4. If Y executes a retry statement, the orElse statement as a whole executes retry.

The orElse statement must execute in an atomic block because the composition of two transactions
is itself a transaction that can commit, abort, or retry.

For example, suppose we want to read a value from one of two transactional queues, and that
GetElement is a blocking operation that will retry if a queue is empty. The following code checks
the queues and returns a value from Q1 if possible; otherwise, it attempts to dequeue an item from
queue Q2. As a whole, the code only retries if both are empty:

atomic {
{ x = Q1.GetElement(); }
orElse
{ x = Q2.GetElement(); }

}

Harris et al. deliberately specified left-to-right evaluation of the alternatives, as opposed to running
them concurrently or in non-deterministic order. The motivation for left-to-right evaluation is that
it enables orElse to be used to adapt blocking operations into ones that produce a failure code. For
instance, the following code returns null if a blocking GetElement operation tries to wait on an
empty queue:

Object GetElementOrNull () {
atomic {

{ return this.GetElement(); }
orElse
{ return null; }

}
}

Some practical systems provide a mechanism to limit the number of reexecutions [50]—variants of
retry could include a maximum re-execution count, a time-out for waiting, or a time-out for the
block’s complete execution.

3.2. EXTENDING BASIC ATOMIC BLOCKS 75

The semantics of retry and orElse enable many examples to be written concisely and, as
shown above, they provide forms of composition that are not present when using locks and condition
variables. However, a disadvantage of retry and orElse is that their behavior needs to be explained
either in terms of prescience or in terms of speculation and aborts—both of these notions can be
unintuitive for some programmers and difficult to implement when building atomic blocks over
lock inference rather than over TM.

3.2.1.2 Explicit Watch Sets
There are several alternatives to retry, and orElse. Some systems provide a form of retry, which
specifies an exact watch set [50; 266]. Only variables in the watch set need to be monitored while
waiting. Consequently, a watch set can be smaller than the transaction’s complete read set. Reducing
the size of this set can improve performance, particularly for hardware, which may only be able to
watch for updates on a limited number of locations.

The use of explicit watch sets fits well with the dual data structure style of concurrent data
structures pioneered by Scherer and Scott [279]. In a dual data structure, blocking operations are
expressed by adding explicit reservations to the structure, and arranging for updates that satisfy a
reservation to wake the reserver—e.g., a dual stack would hold records representing pop operations
that are attempted when the stack is empty. In this framework, atomic blocks can be used to update
the data structure to add reservations, and a single-entry watch set can be used to monitor a flag
within the reservation.

However, explicit watch sets do not provide the same kind of composability as retry, and
programming with them requires care to ensure that all of the necessary locations have been con-
sidered. For instance, it might be straightforward to write something like “retry full” to watch
the full flag of a single buffer, but this would be insufficient in a more complex example such as:

atomic {
if (!stop) {
buffer.TakeItem();

}
}

In this case, the thread should watch the stop flag as well as full, because the decision to access
the buffer is dependent on the value of stop. To avoid this kind of problem, one could restrict the
use of watch sets to simple non-nesting atomic blocks, and one could require the retry operation
to be lexically inside the block (as with some forms of roll-back [8]).

3.2.1.3 Conditional Critical Regions
Harris and Fraser proposed a form of guard [134], using a syntax modeled after conditional critical
regions. For example, to decrement x when its value is positive, a programmer could write:

atomic (x > 0) {
x--;

}

76 3. BUILDING ON BASIC TRANSACTIONS

This syntax makes the guard condition explicit at the start of the atomic block, and so it might
encourage programmers to do as little computation as possible before deciding whether or not to
continue executing. Consequently, this may lead to smaller watch sets than with a retry operation.
However, the semantics of the original implementation are essentially the same as retry because
the condition could be an arbitrary expression, including a call to a function with side-effects. The
side-effects would be rolled back if the condition was false.

Note that if a thread is waiting on entry to a conditional critical region in a nested atomic
block, then it must still watch the complete read-sets for the enclosing blocks: as with our example
with the stop flag, the decision to execute the conditional critical region might be dependent on a
value that the thread has read in one of these outer blocks.

3.2.1.4 Condition Synchronization and Nesting
Suppose that we use retry to write a synchronization barrier in which a set of n threads waits until
they are all ready to continue:

// Count threads
atomic {
threads_present++;
if (threads_present == n) {
should_continue = true;

}
}
// Wait until all threads are present
atomic {
if (!should_continue) retry;

}

The first atomic block counts the threads as they arrive at the barrier and sets the flag
should_continue once all are present. The second atomic block waits until the flag is set.

The problem here, as with some of our earlier examples in Section 3.1, is that the code cannot
be used if it might occur within a nested atomic block.This problem occurs both with closed-nesting
and with flattening: the outer level of atomicity prevents the updates to threads_present from
being visible from one thread to the next. Related problems can occur with nested critical sections
or monitors [157].

There are a number of approaches to this problem. One option, of course, is to say that the
programmer should not use constructs such as barriers within atomic sections: it does not make
sense for the complete barrier operation to execute atomically because it naturally involves two
separate steps. Type systems or annotations could be used to help avoid this kind of program (e.g.,
identifying which functions might block internally).

A second option is to provide mechanisms for controlled communication between atomic
blocks. One possibility are Luchangco and Marathe’s transaction synchronizers which encapsulate
mutable state that is being shared between transactions [203]. Transactions explicitly “synchronize”
at a synchronizer. Multiple transactions can synchronize concurrently, whereupon they directly see

3.2. EXTENDING BASIC ATOMIC BLOCKS 77

one another’s accesses to the encapsulated data.This can be used, for instance, to produce aTM-aware
barrier that allows a set of transactions to proceed only once they have all reached the barrier.

A further form of controlled communication are Smaragdakis et al.’s transactions with isolation
and cooperation (TIC). This system provides block-structured atomic actions and a wait operation
that punctuates them, committing the preceding section and starting a new transaction for the
subsequent section. In our example barrier, this would allow the implementation to publish the
update to threads_present. In addition to wait, TIC provides an “expose” construct to identify
code sections where this kind of waiting can occur:

expose (Expression) [establish Statement]

The “establish” statement executes, after waiting, to fix-up any thread-local invariants if the trans-
action is punctuated by waiting. Static rules ensure that wait only occurs under expose, and that
callers are aware whether or not methods they call may use expose and wait internally.

3.2.1.5 Condition Synchronization and Race-Freedom
If an implementation of atomic blocks provides SLA or TSC for race-free programs, then we must
consider exactly which uses of retry are considered correct and which are considered to be data races.
It is important to have a precise notion of which uses of retry are correct because implementations
are usually based on instrumenting transactions so that they wake up threads blocked in retry
(Section 4.6.2)—without a precise definition of which uses are correct, it is not clear exactly where
wake-up operations might be needed.

It is not immediately clear how to extend an SLA style of semantics to incorporate synchro-
nization with retry: there is no direct counterpart in a lock-based program, and so we cannot simply
reduce these constructs to a reference implementation and ask the question whether or not that is
race-free.

For an TSC style of semantics, Abadi et al.’s notion of violation freedom [3] says that a program
is incorrect if there is a data race between a normal memory access in one thread and an access in
an attempt to run an atomic action in another thread—irrespective of whether the atomic action
succeeds normally, or whether it reaches a retry statement.

That suggests that the following example is not race-free because of the accesses to x:

// Thread 1 // Thread 2
atomic { x = 42;
if (!x) {
retry;

} }

Conversely, the following example is race-free because the atomic blocks never attempt to read
from x under TSC:

78 3. BUILDING ON BASIC TRANSACTIONS

// Thread 1 // Thread 2 // Thread 3
atomic { atomic { x=100
if (u != v) { u++;
if (!x) { v++;
retry; }

} } }

Finally, the following example is also race-free because Thread 1 can only read from x inside its
atomic block if it executes before Thread 2’s atomic block (and, therefore, not concurrently with
Thread 2’s normal write to x):

// Thread 1 // Thread 2
atomic { atomic {
if (!u) { u = 1;
if (!x) { }
retry; x = 1;

} } }

3.2.2 EXCEPTIONS AND FAILURE ATOMICITY
Most languages provide some mechanism for non-local control-flow via exceptions, and so it is
necessary to consider how this interacts with atomic blocks. There are two main design choices
to make: what happens if exceptions are used inside atomic blocks (i.e., raised within a block and
handled within the same block), and what happens if an exception is raised within an atomic block,
but not handled until outside the block.

The first of these design choices is not contentious: an exception that is raised and handled
within a single atomic block should behave as normal. This enables code re-use within atomic
blocks. For instance, consider the following example:

int x = 1;

try {
atomic {

x = 2;
try {

throw new Exception();
} catch (Exception) {

x = 4;
}

}
} catch(Exception) { print(x); };

In this case, the exception is raised inside the atomic block and handled by the inner-most catch
block. This leaves x with the value 4. The atomic block then finishes normally, without executing
the print statement. This design choice reflects the use of exceptions for scoped error handling.

3.2. EXTENDING BASIC ATOMIC BLOCKS 79

However, suppose that an exception goes unhandled within an atomic block. Does this cause
the effects of the block to be rolled back? For instance, in the following example, should 1 be printed,
or 2:

int x = 1;

try {
atomic {

x = 2;
throw new Exception();
x = 3;

}
} catch (Exception) { print(x); };

Printing 1 corresponds to aborting the transaction when the exception leaves the atomic block.
Printing 2 corresponds to committing it. There are arguments for each of these choices.

3.2.2.1 Committing
In many ways, it is simpler to commit a transaction while propagating an exception. Committing is
consistent with the usual behavior of other kinds of control-transfer: for instance, language proposals
typically commit if returning from a function within an atomic block. In addition, committing
means that, in a sequential program, it is safe to add or remove atomic blocks because throwing an
exception in an atomic block does not change the program’s final state.

Committing enables implementations of atomic blocks to use lock inference techniques
without maintaining information about how to roll back the effects of the block. Furthermore,
committing avoids the need to consider how to roll back the state manipulated by the atomic block
while still preserving the exception itself—e.g., if the exception itself was allocated inside the atomic
block, then it would need to be retained in some form during the roll-back.

3.2.2.2 Aborting
Aborting while propagating an exception enables uses of atomic blocks for failure atomicity as well
as for isolation. Consider our somewhat contrived example of moving an item between two lists:

bool Move(List s, List d, int item) {
atomic {

s.Remove(item); // R1
d.Insert(item); // I1

}
}

Letting an exception at I1 abort the atomic block simplifies the code by eliminating the need to
provide explicit compensation.With the “committing” semantics, if insert I1 fails, then it is necessary
for the programmer to manually undo the effect of R1. More significantly, if a library throws an
exception for which a surrounding transaction cannot reasonably be expected to be prepared (out of

80 3. BUILDING ON BASIC TRANSACTIONS

memory, say, or divide-by-zero caused by a library bug), committing on the way out probably means
leaving data structures in an inconsistent state.

This form of failure atomicity has been investigated independently of transactions [160; 286].
Experience often suggests that error-handling code is difficult to write and to debug, and so au-
tomating some aspects of state management via roll-back can be valuable, particularly, with low-level
failures or asynchronous interruption.

This “aborting” semantics for exceptions agrees with traditional transactional programming—
in the first example, the statementx=3has not executed,and so committingx=2would be inconsistent
with all-or-nothing execution.

3.2.2.3 Discussion
Although the arguments in favor of aborting/committing now seem well understood, there is not a
consensus of one approach being strictly better than the other. Hybrid designs are possible, as are
techniques to build one form of behavior over the other, so long as some form of user-initiated abort
is provided.

One hybrid approach is to distinguish particular kinds of exception that cause roll-back,
introducing “committing exceptions” and “aborting exceptions”. Alternatively, one might distinguish
particular kinds of throw statement, atomic block, or try...catch construct. These alternatives
have been explored in transactional programming models for C/C++ [8; 232; 287].

Beyond exceptions, there are further design choices to make in languages that combineatomic
blocks with richer forms of non-local control-flow. Kimball and Grossman examined the interactions
between atomic blocks and first-class continuations in an extension to Scheme [170]. Additional
complexities include continuations captured within an atomic block being resumed after the block
has been committed and the use of co-routine-style iteration from within an atomic block.

3.2.3 INTEGRATING NON-TM RESOURCES
As we said at the start of this section, early implementations of atomic blocks lacked orthogonality
with other language features: in many cases, it was not possible to perform system calls and IO
operations; it was not possible to use non-transactional synchronization constructs; and in some
cases, it was not even possible to perform memory allocation reliably. In this section, we try to
identify common techniques that have emerged.

Concretely, we look at how to provide integration between atomic blocks and existing binary
libraries, storage management, locks, condition variables, volatile data, IO, system calls, and
external, non-memory transactions. In each of these cases, our reference point is a semantics that
provides atomic blocks with SLA or TSC execution for race-free programs. This kind of reference
point lets us untangle two distinct problems:

• First, we must decide how a given language feature ought to behave when used inside atomic
blocks.To do this, we consider how it would behave when used in atomic blocks implemented
by a global lock or when used inside atomic blocks implemented with TSC.

3.2. EXTENDING BASIC ATOMIC BLOCKS 81

• Second, we must identify implementation techniques that are consistent with these desired
semantics.

With these two problems in mind, there are four basic approaches for handling any particular feature:

Prohibit It. This is appropriate when the semantics of the feature are incompatible with the se-
mantics we want for atomic blocks.The barrier synchronization idiom from Section 3.1 is one such
example; if a method contains such code, then it may be better to prevent it from being called inside
atomic blocks and thereby detect possible problems at compile-time.

Execute It. Some abstractions can simply be instrumented with ReadTx/WriteTx operations and
executed as part of a transaction—e.g., this applies to many standard libraries.

Irrevocably Execute It. A general-purpose fall-back technique for IO and system calls is to use
irrevocable execution (also known as inevitability). When a transaction becomes irrevocable, the TM
implementation guarantees that it will not be rolled back.This allows it to execute non-speculatively.
In many implementations, the thread running an irrevocable transaction can invoke normal non-
transactional operations without needing to consider how to roll these back or compensate for them.
Forms of irrevocable execution have been explored both in software (e.g., [303; 333], Section 4.6.3)
and in hardware (e.g., [37; 197]).

Integrate It. The final general technique is to integrate an abstraction with TM. This may mean
writing a special version of the abstraction for use inside atomic blocks and providing transaction-
aware logging, compensation, and conflict detection for threads that are using the abstraction trans-
actionally [50; 133; 190; 215; 228; 243; 322; 346; 346]. For instance, a TM-integrated error-logging
facility might batch up log entries in an in-memory buffer before flushing them to disk when the
transaction commits. The buffer can simply be discarded if the transaction aborts. As with irrevo-
cability, such techniques are applicable to hardware-based implementations, as well as software.

Examples. Having introduced these four main techniques for integrating non-transactional re-
sources, we now consider a series of examples showing how the techniques can be applied in practice
(Sections 3.2.4–3.2.7).

3.2.4 BINARY LIBRARIES
Libraries are an integral part of any software, and so atomic blocks need to call precompiled or newly
compiled libraries. For full orthogonality, programmers might expect to use features like dynamic
linking and loading, or to combine libraries from different compilers and languages into a single
application.

In the longer term, some of this kind of interoperability may come through standardization
on common TM implementations, common calling conventions for transactional functions, and so
on. In the shorter term, dynamic binary rewriting or switching to irrevocable execution on non-
transactional libraries provides a fall-back.

82 3. BUILDING ON BASIC TRANSACTIONS

3.2.5 STORAGE ALLOCATION AND GC
Storage allocation and GC both pose challenges for use within atomic blocks. These operations
provide examples of why many abstractions do not simply “just work” if they are instrumented with
ReadTx/WriteTx calls for use in TM.

Explicit Allocation and De-Allocation. Starting with allocation, part of the problem is that storage
allocation is used both by transactional and non-transactional code. Even if the TM supports strong
isolation, then there is still the question of how to manage allocations that involve system calls to
expand the heap or that trigger access violations to demand-initialize new pages.

To handle these problems, many implementations of atomic blocks use integration between
storage allocation and the TM runtime system. Commonly, allocations execute non-transactionally;
if the transaction commits, then this tentative allocation is retained.De-allocation requires more care.
It is not always sufficient to defer de-allocation requests until a transaction commits. For instance,
consider this contrived example:

void TemporaryData() {
atomic {
for (int i = 0; i < 1000000; i ++) {
void *f = malloc(1024);
free(f);

}
}

}

Executed without the atomic block, this would run in constant space, allocating and deallocating a
series of blocks of memory. If it is to do the same with the atomic block, then the implementation
must track the status of memory allocations and identify balanced de-allocations, in which data is
allocated and then de-allocated within a single transaction [162].

In addition to tracking balanced usage, a second problem with de-allocation is deciding when
the storage becomes eligible for re-use. The recycling of memory from transactional usage, through
the allocator, to non-transactional usage, can give rise to privatization-style problems: one thread
might be accessing the data speculatively within a zombie transaction, even though another thread
has re-allocated the data for some other non-transactional use. Consequently, in systems where
zombie transactions can occur, non-transactional use of a given memory block must be delayed until
any speculative transactional use has finished—for instance, by delaying re-use until any transactions
preceding the de-allocation have been validated (Section 4.6.1). Similar re-use problems are faced
in many systems using lock-free synchronization [105; 144; 222], and they led to epoch-based lists
of tentative de-allocations that are awaiting re-use. This kind of problem is also one of the central
issues addressed by RCU [217].

Garbage Collection. It is rarely practical to combine garbage collection with TM by simply in-
strumenting the collector and running it in the context of whatever transaction happens to trigger
GC. The volume of data accessed would be vast, and the synchronization used during GC may be

3.2. EXTENDING BASIC ATOMIC BLOCKS 83

incompatible with the TM. In practice, the GC is really part of the language runtime system, and
so it should be integrated with the TM rather than being executed transactionally.

Some early implementations of atomic blocks simply aborted all transactions when running
GC [134].This seems reasonable ifatomic blocks are short or GC comparatively sporadic.However,
it is less reasonable if atomic blocks are long-running and might need to span a full GC cycle in
order to complete successfully. In any case, integration between the GC and TM must be explored in
settings that use incremental GC (in which small amounts of GC work are mixed with application
work) or concurrent GC (in which the GC runs concurrently with application code).

A basic approach is to treat the TM system’s read/write-sets as part of the GC’s roots, either
ensuring that the objects they refer to are retained by the collector or updating them if the objects are
moved during collection [136].With this scheme, if GC occurs during a transaction that subsequently
aborts then there is no need to revert the garbage collection or to put moved objects back in their
old locations: in effect, the TM operates above the level of the GC. It is less clear how to exploit
this approach in an HTM system in which a software GC would typically operate above the level
of the TM.

As Shinnar et al. [286], Harris et al. [138] and Detlefs and Zhang [81] discuss, integration
between TM and a GC can introduce some complexity if the TM logs refer to interior addresses of
individual fields, and the runtime system does not provide a ready mechanism to map these addresses
back to object references.

Additional care is needed to support variants of the TemporaryData example: if a transaction
allocates temporary data structures, then references to these can build up in the transaction’s logs,
keeping the temporary objects alive even when the application has finished with them.

The approach taken with Bartok-STM [138] is to arrange for the collector to consider two
views of the heap:one in which all current transactions are rolled back and another in which all current
transactions are committed. Objects are retained if they are reachable in either one of these views.
For simplicity, all active transactions are validated before doing this, and any invalid transactions are
rolled back immediately. This means that the remaining transactions have non-overlapping sets of
updates, so there are at most two values for any given field.

TM can also be useful in the implementation of GC. As McGachey et al. show, this is
particularly apparent in the case of systems where GC work proceeds concurrently with the execution
of an application [216]: transactions can be used to isolate pieces of GC activity, such as relocating
an object in memory.

Class Initialization, Object Finalizers, and Destructors. The final storage-related question is how
to run initialization and clean-up code such as static initializers and finalizers in Java or constructors
and destructors in C++.

In Java, the language specification is very precise that class initialization occurs exactly once
at the first use of each class. If this use occurs within an atomic block, then the language designer
must consider whether the initializers executes transactionally (and may, therefore, be rolled back
if the transaction aborts) and whether or not it sees any tentative updates of the transaction that

84 3. BUILDING ON BASIC TRANSACTIONS

triggers loading. The implementation of class initialization is often complicated and involves native
parts of the JVM implementation. Irrevocable execution may be the only pragmatic option.

In terms of clean-up during object de-allocation, then the first question is if operations such
as finalizers and destructors should run at all? Under SLA or TSC, transactions that abort due to
conflicts are not visible to the programmer, so arguably the objects allocated during these transactions
should appear to never have been allocated. Conversely, it seems clear that finalizers and destructors
should run normally for objects that have been allocated by transactions that ultimately commit.

It is not clear how to handle objects in examples like the TemporaryData one where data is
allocated and destroyed within a transaction. For instance, does the finalizer run within the context of
the transaction itself or within some other thread granted special access to the transaction’s tentative
work?

It is possible that examples like these do not occur in practice, and so the use of finaliz-
ers within transactions could be prohibited—typical applications of finalizers involve coordinating
de-allocation of external resources, and these cases are better handled at a higher level by proper
integration with TM.

3.2.6 EXISTING SYNCHRONIZATION PRIMITIVES
Should existing synchronization primitives work within atomic blocks, and if so, how?

As Volos et al. illustrate, it is usually insufficient to instrument an actual implementation of
a synchronization primitive to use ReadTx/WriteTx operations and to expect things to work out
correctly [321]. One option, therefore, is to prohibit the use of these primitives [136; 242]. However,
this does prevent re-use of existing libraries that might use locks internally—and locking is pervasive
in many languages’ standard libraries.

If a system is to support synchronization primitives inside atomic blocks, then we can use
models such as SLA and TSC to define the semantics of the constructs in a methodical way, and
then investigate whether or not practical implementation techniques are available. In this section,
we briefly consider combinations of atomic blocks with locks, condition variables and volatile
fields in a Java-like language. We focus on Java’s form of volatile fields in which accesses to the
fields execute with sequential consistency.

3.2.6.1 Locks
Semantically, accommodating locks within atomic blocks is relatively straightforward. Consider
the following example:

// Thread 1 // Thread 2
atomic { synchronized(obj) {
synchronized (obj) { x++;
x++; }

}
}

3.2. EXTENDING BASIC ATOMIC BLOCKS 85

Under both SLA and TSC, the two accesses to x cannot occur concurrently because the threads
performing them would both require the lock on obj; one would expect the result x==2. In other
examples, there are subtle differences between SLA and TSC. Consider this example using nested
critical sections:

// Thread 1 // Thread 2
atomic { synchronized(obj) {
Object n = new ... temp = x;
synchronized(obj) { }
x = n; // Use temp

}
// L1

}

Under TSC, Thread 2’s synchronized block either executes entirely before Thread 1’s atomic
block or entirely after it. This is because TSC semantics prohibit any other thread’s work from
appearing to be interleaved with an atomic block’s execution. An implementation could achieve
this by deferring Thread 1’s unlocking of obj until the enclosing atomic block commits.

However, under SLA, Thread 2’s synchronized block is permitted to run concurrently with
Thread 1’s execution of L1: Thread 2 requires the lock on obj, but not the lock conceptually held
by Thread 1’s atomic block. Furthermore, Thread 2 would be expected to see the work done in
Thread 1’s synchronized block and in the preceding part of Thread 1’s atomic block. To support
these semantics, it may be necessary for Thread 1’s transaction to become irrevocable just before the
point where the lock on obj is released. This example illustrates the subtleties that can occur when
mixing transactions and other constructs and the need for precise specifications of the behavior that
is intended.

Finally, consider the example below:

// Thread 1 // Thread 2
atomic { synchronized(obj) {
x = 42; x = 42;

} }

This is simply a data-race under TSC and under SLA: although both accesses are inside some
kind of synchronization construct, there is nothing to prevent them being attempted concurrently
(much like two threads accessing the same data while holding different locks from one another).
Some systems do aim to support this kind of mixed-mode synchronization by preventing transac-
tions running concurrently with lock-based critical sections or by using programmer-annotations to
control concurrency [111].

3.2.6.2 Condition Variables
Condition variables pose a particular problem within atomic blocks. Signaling a condition variable
(notify/notifyAll in Java) is straightforward: it can be deferred until the atomic block commits.

86 3. BUILDING ON BASIC TRANSACTIONS

The difficulty comes from a wait operation. For instance, consider the typical usage when waiting
to update a shared data structure:

atomic {
...
synchronized (buffer) {
while (full==true) buffer.wait();
full = true;
item = i;

}
...

}

Ordinarily, the section of code before the wait should appear to run before the condition variable
has been signaled, but the section of code after the wait should appear to run after the signal. The
problem here is the same as the barrier example in Section 3.1: when both of these sections of code
involve side-effects, exposing one set of effects and not the other is incompatible with the entire
block running atomically. The problem with condition variables is therefore more one of defining
semantically how they should interact with atomic blocks, rather than just one of implementation
complexity.

Various definitions are possible. Under SLA, behavior must be equivalent to using a single
lock in place of the atomic block: the nested wait would release the lock on the buffer but not the
enclosing lock used (conceptually) by the atomic block. Work preceding the wait should be visible
to another thread that acquires the lock on the buffer. Under TSC, no other threads’ work should
appear to be interleaved with the atomic block.

Under either semantics, it may be appropriate to prohibit the use of wait within atomic
blocks, or to warn the programmer of the risk that they will write a deadlock in this way. If an
abstraction that uses condition variables internally is to be used inside atomic blocks, it would be
necessary to integrate the abstraction with TM at a higher level—for instance, providing a variant
of a buffer with TM-aware synchronization, rather than condition-variable synchronization.

From a practical viewpoint, Carlstrom et al. examined the behavior of Java applications built
using TM [49]. They observed that waiting within nested synchronized blocks is generally dis-
couraged in any case, and so one might expect that wait would typically not be used within
synchronized blocks within atomic blocks. They also saw that treating wait as a retry al-
lowed many idioms to work, in effect only running an atomic block when it can complete without
calling wait.

Other approaches are possible. AtomCaml provides a form of condition variable in which a
thread finishes part of an atomic action,committing its work thus-far, then waits,and then starts a new
atomic action. Ringenburg and Grossman note how the thread must start listening for notifications
when it commits the first atomic action, to avoid lost-wake-up problems [266]. Dudnik and Swift
discuss implementing this form of waiting in a C-like language [95], splitting a normal wait

3.2. EXTENDING BASIC ATOMIC BLOCKS 87

operation into a “prepare wait” step to execute inside an atomic block, and a “complete wait” step
for execution outside the block.

3.2.6.3 Volatile Data
In Java and C#, volatile data provides a low-level synchronization mechanism between threads.
Concurrent accesses to volatile fields do not form data races in these languages, and so a program
using volatile data would be expected to be race-free under SLA and under TSC. In addition,
neither Java nor C# allows volatile memory accesses to be reordered with one another.

In rather ugly code, one might write:

volatile int x;

// Thread 1 // Thread 2
atomic { r1 = x;
x = 10; r2 = x;
x = 20;
x = 30;

}

Under SLA, the reads into r1 and r2 may see a series of values for x, so long as they are consistent
with the order of the writes from Thread 1—e.g., r1==10, r2==20, but not r1==20, r2==0. Under
TSC, the reads should not see intermediate values from the atomic block, so only 0 and/or 30
should be seen.

Providing either of these semantics requires care if multiple volatile fields are involved, or
if an update to a volatile field is used to publish a transactionally-allocated data structure. It may
be much simpler to use irrevocability if cases like this are rare.

3.2.7 SYSTEM CALLS, IO, AND EXTERNAL TRANSACTIONS
Perhaps, the most serious challenge in using transactions is communication with entities that are
outside the control of the TM system. Modern operating systems such as Unix and Windows
provide a very large number of mechanisms for communication, file manipulation, database accesses,
interprocess communication, network communication, etc.The implementations of these operations
typically involve making system calls to the OS, and the use of these operations can be buried deep
within libraries. These operations involve changes in entities which are outside the control of the
TM system: if atomicity is to be extended to include these operations then mechanisms are needed
to prevent conflicts between concurrent operations and to roll back state if a transaction needs to be
aborted.

While there is no general mechanism to manage these operations, ideas such as SLA or TSC
can be used to define the intended behavior of different operations in a consistent way. As we discuss
below, many implementation techniques exist on a case-by-case basis, and switching to irrevocable
execution often provides a fall-back [37; 303; 308; 333].

88 3. BUILDING ON BASIC TRANSACTIONS

A system can buffer operations such as file writes until a transaction commits and then write
the modified blocks to disk. Similarly, the system could also buffer input, to be replayed if the
transaction aborted and reexecuted. These seem like simple solutions until we combine them in a
transaction that both reads and writes. Suppose the transaction writes a prompt to a user and then
waits for input. Because the output is buffered, the user will never see the prompt and will not
produce the input. The transaction will hang.

In some cases, compensating actions can be used to undo the effects of a transaction. For
example, a file write can be reverted by buffering the overwritten data and restoring it if a transaction
aborts. Compensation is a very general mechanism, but it puts a high burden on a programmer to
understand the semantics of a complex system operation. This becomes particularly difficult in the
presence of concurrency when other threads and processes may be manipulating the same system
resources (e.g., in the case of the file write, then the tentatively-written data must remain private
until the writing transaction commits).

Many systems support transaction processing monitors (TPMs) [31], which serve as a coor-
dinator for a collection of systems, each of which supports transactions and wants to ensure that the
operation of the collection appears transactional to all parties outside the group. TPMs generally
use a two-phase commit protocol, in which the constituent transactions first all agree that they are
ready to commit their transactions (and all abort if any wants to abort) and then commit en masse.

A number of papers discuss transaction handlers that invoke arbitrary pieces of code when a
transaction commits or aborts [50; 133; 215; 346], or which provide for two-phase commit between
different transactional constructs [133; 190; 215].These handlers can interface transactions to TPMs
or other transactional systems and implement compensating actions to revert external side effects.

Baugh and Zilles studied the extent to which different techniques apply to the system calls
made by large applications [29] and Volos et al. developed a TM-aware API for handling many
resources [322]. They introduce “sentinel” objects which represent associations between threads and
logical state within the kernel (e.g., access to a given file). These sentinels are used to signal conflicts
to the transactions involved and avoid the need to hold long-term locks on data structures within
the kernel.

Another approach is to allow IO operations in transactions only if the IO supports transac-
tional semantics, thereby enabling the TM system to rely on another abstraction to revert changes.
Databases and some file systems are transactional, and there is renewed research interest in broaden-
ing support for transactional styles of interaction [243;244] (in part motivated by enabling integration
into transactional programming models).However, the granularity of these systems’ transactions may
not match the requirements of an atomic block. For example, Windows Vista supports transactional
file IO, but these transactions start when a file is first opened. Therefore, if an atomic block only
performs one write, it is not possible to use a file system transaction to revert this operation, without
discarding all other changes to the file.

3.3. PROGRAMMING WITH TM 89

3.3 PROGRAMMING WITH TM
In this section, we briefly survey the practical experience that has been gained in programming with
prototype implementations of TM and atomic blocks—for instance, integration with debuggers
and profilers (Section 3.3.1), the development of benchmark workloads (Section 3.3.2), and user
studies of programmer productivity (Section 3.3.3).

3.3.1 DEBUGGING AND PROFILING
Software development tools and development environments must evolve to support atomic blocks
and TM. If an SLA semantics is provided, then this can allow the debugging of transactional
applications to be reduced to the problem of debugging lock-based programs—either by directly
executing the program using locks or by using the hypothetical behavior of the program using locks
as a guide for the behavior of the debugger when using transactions.

More broadly, however, the concepts of optimistic or aborted execution do not exist in today’s
tools. What does it mean to single step through an atomic transaction? A breakpoint inside the
transaction should expose the state seen by the transaction. However, how does a debugger present a
consistent view of a program’s state, since part of the state not relevant to the transaction but visible to
the debugger,may have been modified by other threads? Furthermore,with lazy version management,
transactionally modified state resides in two places: the original location and a buffered location.
The debugger must be aware of this separation and able to find appropriate values. In addition, how
does a programmer debug a transaction that aborts because of conflicts? Lev and Moir discuss the
challenges of debugging transactional memory [192].

In more recent work, Herlihy and Lev describe the design and implementation of a debugging
library for programs using TM [143]. Their system “tm_db” is designed to provide a common
interface that, from one side, can be used by a debugger and, from the other side, can be supported
by a range ofTMs.They propose that, from the point of view of the programmer,only the logical value
of a memory location should usually be presented—e.g., if a TM implementation uses eager version
management, then these tentative operations should remain hidden until a transaction commits.
When single-stepping, the debugger shows the logical values for most of the heap and shows non-
committed state only from the current thread.

Zyulkyarov et al. proposed similar ideas, letting a user distinguish between this kind of “atomic-
level” view of the program, in which the user should not have to be aware of the details of how the
blocks are implemented (e.g., TM, or lock inference), and a “transaction-level” view, in which a
user investigating lower level problems can investigate transaction logs, conflicts, and so on [351].
Zyulkyarov et al. also introduced mechanisms to allow transactions to be introduced or removed
from within the debugger, for instance, allowing a series of operations to be dynamically grouped
into a transaction, to allow the user to investigate whether or not a bug is occurring due to a lack of
atomicity between the operations.

In communicating with the user, Herlihy and Lev propose distinguishing the logical trans-
action, which represents a single attempt to execute an atomic block, from a series of physical

90 3. BUILDING ON BASIC TRANSACTIONS

transactions which are used to implement it. Thus, a transaction identified as 3.4.1 might indicate
thread number 3, executing logical transaction 4 for the 1st time. This helps indicate progress to the
user, and it provides an ID scheme that can be understood in terms of the source program.

Aside from debugging, profilers and other tools are important both for the uptake of TM-
based programming models and for developing a deeper understanding of the characteristics of
transactional workloads.

Elmas described how a data-race detector for lock-based programs can be extended to accom-
modate synchronization using transactions [98]. It is based on a happens-before ordering between
synchronization operations and can be configured to support an SLA-style model in which this is a
total ordering between the start and commit of all transactions or a DLA-style model in which only
transactions accessing overlapping data are ordered. As in our examples in Section 2.2, this leads to
different notions of which programs are considered race-free.

At a coarse granularity, several researchers have studied whole-program characteristics, such
as commit/abort ratios, the sizes of read/write-sets, or histograms of how frequently different trans-
actions need to be re-executed [17; 65; 241]. This provides some guidance for tuning TM imple-
mentations – for instance, what volumes of data need to be handled in the common case – but
only limited insight into exactly where a problem might occur within a large application that uses
transactions in multiple ways.

Chafi et al. developed finer-grained profiling hardware for the TCC HTM implementa-
tion [54] (Section 5.3.3).Their system,“TAPE”, tracks which transactions overflow hardware buffers
and which transactions and data are involved in conflicts. Zyulkyarov et al. described a “conflict point
discovery” profiling technique, based on identifying the frequency with which operations at different
PCs trigger conflicts [351].

3.3.2 TM WORKLOADS
Many early papers on transactional memory used simple data-structure microbenchmarks such as
linked-lists, red-black trees, and skip-lists. This reflects one possible use for transactions: enabling
higher-performance implementations of this kind of nonblocking data structure. Such workloads
may involve transactions making a handful of memory accesses, and it may be reasonable to assume
that they are written by expert programmers.

More recently, many TM researchers have investigated writing larger parts of applications
using transactions. These workloads may involve transactions containing hundreds (or even thou-
sands) of memory accesses. This second kind of TM workload often reflects a use of transactions
in the hope that they are easier to use than existing synchronization constructs, rather than because
the implementation is believed to be faster than existing alternatives.

3.3.2.1 Synthetic Workloads
STMBench7 [127] is a TM-based benchmark developed from the OO7 benchmark for object-
oriented databases. STMBench7 provides coarse-grained and medium-grained lock-based versions,

3.3. PROGRAMMING WITH TM 91

along with transactional versions for various languages. The benchmark performs complex and
dynamically-selected operations on a complex pointer-based data structure.

WormBench[349] is a synthetic application implemented in C#, providing a configurable
level of contention and configurable read/write-set sizes. It can be used to mimic characteristics of
other applications to study or debug some performance issues in a simpler setting.

3.3.2.2 Applications and Computational Kernels
The Stanford Transactional Applications for Multi-Processing benchmark suite (STAMP) provides
eight applications that have been structured to use transactions [47].The STAMP workloads exhibit
a range of characteristics in terms of the time that they spend inside transactions (from almost none,
up to almost 100%) and in terms of the size and conflict characteristics of the transactions (from very
short transactions to those spanning hundreds of thousands of instructions). Kestor et al. developed
transactional versions of a set of “Recognition, Mining and Synthesis” applications developed from
BioBench and MineBench [168].

In addition to general benchmarks suites,a number ofTM workloads have illustrated particular
uses for TM or particular synergies between TM and different forms of algorithm:

Scott et al.examined the use ofTM in implementing a Delaunay triangulation algorithm [283].
Aside from providing an example TM workload, this program demonstrates how data can change
between being thread-private to being accessed transactionally. Programming models where transac-
tional and non-transactional data are statically separate would not work well here, and any overhead
on the non-transactional accesses would harm overall performance.

Kang and Bader designed a TM-based algorithm to compute a minimum spanning forest of
sparse graphs [167]. They argue that graph-based algorithms are well suited to TM because such
algorithms can involve visiting a dynamically selected series of nodes (making it difficult to lock
nodes in advance), and many algorithms can be expressed as atomic operations on a single node
and its neighbors (thereby making the size of transactions small and a good fit even for bounded-
size TMs). They show how an algorithm for finding minimum spanning trees can operate as a
step-by-step graph exploration algorithm of this kind.

Nikas et al. investigated the use of TM in an implementation of Dijkstra’s algorithm for
computing single-source shortest paths [16; 233], showing how optimistic synchronization enables
helper threads to opportunistically process non-minimum nodes from a priority queue.

3.3.2.3 Games
Spear et al. [308] used part of a 3D game to evaluate the use of irrevocable transactions.Their system
involves animating a set of multi-segment objects and performing collision detection between them.
The game can use irrevocable transactions to perform periodic rendering of the current state of all
of the objects, thereby allowing the rendering to proceed regularly and to be decoupled from the
underlying physical simulation.

92 3. BUILDING ON BASIC TRANSACTIONS

Zyulkyarov et al. [350] and Gajinov et al. [107] each investigated techniques for expressing
parallel implementations of the Quake game server using TM, investigating where atomic blocks
work well, and where they do not. The main positive results came from the core game data structure
representing the map. Encapsulating a player’s move in a transaction simplified the logic when
compared with a lock-based implementation, removing the need for a preparation phase that was
used to select which parts of the map to lock.TM worked less well in cases where there were external
interactions and in cases where the structure of the code did not fit with block-structured transactions.
Both of these observations point to potential difficulties when incrementally introducing transactions
into an existing program.

Baldassin and Burckhardt explored the use of TM to parallelize a simple “Space Wars 3D”
game [27], finding the basic programming model convenient, but performance hampered both by
high levels of contention and high sequential overhead. They improved performance by allowing
transactions to run concurrently, working on private copies of objects and introducing explicit merge
functions between the states of objects that have experienced a conflict. For instance, simply picking
one update over the other, or combining them if they commute.

3.3.2.4 Programming Paradigms
Singh developed a library of join patterns using atomic blocks in STM-Haskell [294].These patterns
provide a form of synchronous interaction between a thread and a set of channels; for instance,waiting
for an input value to be available from both of two channels.The orElse construct provides a natural
way to combine alternatives, and the retry construct provides an opportunity to wait for a value
which matches a user-supplied predicate; if a value putatively received is not valid, then retry
abandons the current transaction and waits for an alternative value to be available.

Lam and Sulzmann developed a library for constraint logic programming using the GHC
Haskell implementation of atomic blocks [185]. The system maintains a “constraint store” and
uses a set of domain-specific rules to simplify it (e.g., to compute greatest-common-divisors, a rule
might replace Gcd(m) and Gcd(n) with Gcd(m-n) and Gcd(n)). Lam and Sulzmann model each
rewrite rule by a thread and use STM to manage the constraint store to prevent conflicting updates.
To avoid conflicts on a linked-list used to store the constraints, threads take “small steps” along the
list in separate transactions, and then they manually re-validate these by additional validation when
making an update. Perfumo et al. study the performance of this system on a range of problems [241].

Donnelly and Fluet [91] and Effinger-Dean et al. [96] designed transactional-event systems
that build on message-passing programming paradigms. If a set of transactions communicates with
one another, then their fates get bound together, in the sense that they must either all commit or all
abort. Ziarek investigated the use of memoization in this kind of setting, tracking the communication
performed by a transaction, and allowing the results of an earlier communication to be re-used if
the operation that triggered it is re-executed [343; 344].

3.3. PROGRAMMING WITH TM 93

3.3.2.5 TM in the OS kernel
Rossbach et al. explored workloads within the Linux operating system kernel for suitability for
implementation with TM [253; 270; 271]. This provides a large-scale test of how TM performs in
a real system.

They developed a special-purpose co-operative transactional spinlock (cxspinlock) for use
in this setting. Ordinarily, a cxspinlock’s holder executes transactionally and detects conflicts with
other threads based on the data that they are accessing (somewhat like a software implementation
of Rajwar and Goodman’s SLE system [248], Chapter 5). A cxspinlock’s implementation selects
dynamically and automatically between locks and transactions, starting out with transactions and
falling back to locking if the kernel attempts an IO operation. Transactional use of the cxspinlock
is prevented while any thread holds it as an actual lock; this prevents problems with mixed trans-
actional and non-transactional accesses. This approach avoids the need for system-wide irrevocable
transactions; at worst, the system scales according to the placement of the locks.

3.3.2.6 Discussion
Benchmarks such as the STAMP suite provide a common starting point for much work on eval-
uating the performance of transactional memory, and, inevitably, experience will grow about how
transactions are best used and where they perform well and where they do not. However, even as
they stand, the current benchmarks provide some indications of recurring patterns for using TM
and how programming models can affect workloads.

A common pattern in many of these benchmarks is to use optimistic concurrency control to
execute items from a shared work list. Transactions are used to serialize independent items, allowing
concurrency when the contention rate is low, but providing as-if-sequential behavior if conflicts
exist. The data structures accessed by the work items are often complicated (so designing fine-
grained locking would be difficult), or there are many data structures that are accessed together
(so locking could not be encapsulated within them), or the potential access set is vastly lager than
the actual set touched (e.g., in Labyrinth from the STAMP suite). Any of these properties makes
it difficult to design an effective scalable locking implementation. In addition, if transactions are
formed from items from a work queue, then serializing these items directly provides an effective
fall-back technique when there are few cores or when contention is high.

3.3.3 USER STUDIES
Finally, we turn to user studies that try to address the question “Is transactional programming actually
easier?” There are a few initial results:

Rossbach et al.’s study examined 147 undergraduate students who had been set a series of
programming challenges using fine-grained locks, coarse-grained monitors, and TM [269]. In each
case, the problem was to model access to different lanes in a “shooting gallery” game. Broadly speak-
ing, the syntax of the initial TM implementation was found to be cumbersome (more resembling the
explicit interface of Chapter 2 than language-integrated atomic blocks). Subjectively, transactions

94 3. BUILDING ON BASIC TRANSACTIONS

were found more difficult to use than coarse-grained locking, but they were easier than developing
fine-grained locking. Synchronization errors were reduced when using transactions—moderately so
when compared with coarse grained locking, but vastly so with fine-grained.

Pankratius et al. studied a group of 12 students working on a parallel desktop search engine
in C [238]. The projects were built from scratch, performing indexing and search functions. The
students were initially introduced to parallel programming and the TM prototype.Three pairs used a
combination of pthreads and locks, and three pairs used pthreads and atomic blocks.The execution
time of the best TM-based implementation of the indexer was around 30% of the time of the best
lock-based implementation and faster than locks on 9 out of 18 of the queries.

3.4 ALTERNATIVE MODELS

The combination of atomic blocks and TM occurs so frequently that the two concepts are often
combined or confused. In this section, we describe some of the alternatives which illustrate different
language constructs that can be built over TM.

One alternative, going back to some of the earliest work on STM [146] is to use a library-
based interface to transactions, rather than language extensions. An advantage of a library-based
approach is that it can operate without requiring changes to a compiler. Gottschlich et al. describe
the design of a library-based interface to TM from C++ [108; 110]. Dalessandro et al. have argued
that a carefully-designed interface can be a significant improvement over the kind of simple explicit
interface we used in Chapter 2—for instance, C++ smart pointers can be used to remove some of
the verbosity of explicit method calls for each memory access [75]. Nevertheless, where language
extensions are possible, Dalessandro et al. observed that they led to clearer programs, and they can
provide greater decoupling between the code written by a programmer and the details of a particular
TM implementation.

3.4.1 TRANSACTIONS EVERYWHERE
Several research projects have investigated programming models where atomicity is the default.
These “transactions everywhere” [184] models have an intuitive appeal: start with a correct, simple
program built from large atomic actions, and then refine these to smaller atomic steps if this is
necessary to achieve good performance.

The TCC programming model is an early example of this approach [131], combining in-
novative language features with a new underlying memory subsystem (we return to the hardware
components in Section 5.3.3). When programming with TCC, the programmer divides the program
coarsely into atomic actions that run concurrently on different processors. The TCC implementa-
tion ensures atomicity and isolation between these blocks. The programmer can also constrain the
commit ordering of the blocks, if this is important.

For example, consider the following sequential program to compute a histogram in buckets
of the number of times that values are seen in the data array:

3.4. ALTERNATIVE MODELS 95

for (i = 0; i < 1000; i++) {
buckets[data[i]]++;

}

By default, this will run as a single atomic action. The loop can be parallelized by replacing it
with a t_for construct, making each iteration into its own atomic action and guaranteeing that
the iterations will appear to occur in the same order as the sequential code. In this case, since the
iterations’ work is commutative, it would be safe to use a t_for_unordered loop which allows
the iterations to commit in any order. Further variants allow iterations to be chunked to reduce
overheads. While-loops, explicit fork operations, and lower-level synchronization constructs are
also available.

With the Automatic Mutual Exclusion (AME) model, the program’s main method is treated
as a single atomic action, and explicit yield statements are included to indicate points at which
atomicity can be punctuated [1; 2; 6]. An asynchronous method call operation is provided to al-
low one atomic action to spawn another; the new operation will occur after the atomic action it
was spawned within. A simple implementation of AME could run these asynchronous actions se-
quentially, whereas a TM-based implementation could speculatively run them in parallel in separate
transactions. A BlockUntil operation is provided to allow an atomic action to delay its execu-
tion until a given predicate holds. For example, an atomic action may wait for a queue to become
non-empty before removing an item from it:

BlockUntil(queue.Length() > 0);
data = queue.PopFront();

Combining these features, one could write a loop to process different items from an array in parallel:

for (int i = 0; i < a.Length ; i ++) {
async ProcessItem(i);

}
yield;
BlockUntil(done == a.Length);

...

void ProcessItem(int i) {
...
done++;

}

In this example, the initial for loop atomically spawns separate asynchronous actions to process
each element of the array. The yield operation completes the atomic action containing the loop,
and it allows the asynchronous processing to occur. The ProcessItem(i) method handles item i
and increments the count of items that have been finished. Finally, the code after yield starts a
new atomic action, and it delays it until the processing is finished. With AME, one could imagine
starting with this as a simple, “clearly correct” program, and then relaxing atomicity by splitting

96 3. BUILDING ON BASIC TRANSACTIONS

ProcessItem into a larger number of small asynchronous work items (to use more cores), or adding
additional yield points.

A downside of this kind of approach is that programmers must be careful of whether or not
yield is used in functions that they call. For instance, if the author of ProcessItem wants to
make sure that it occurs as a single atomic action, then he or she must take care not to call into
any functions that might yield. To clarify this, AME requires that the programmer identify which
functions might yield, both at the function’s definition and at all of its call sites.

Finally, the Concurrent Objects with Quantized Atomicity system (COQA) [198] provides
an object-oriented style of atomicity which draws, in particular, on Actor programming models.
In COQA, methods operate as atomic tasks, and an implementation can be built using TM-like
techniques to allow a task to dynamically “acquire” the objects that the method uses.The programmer,
therefore,does not need to be concerned about interleaving between individual operations in methods
on the same object. COQA provides three kinds of method call to express possible concurrency or
relaxation of atomicity. In a normal synchronous call (o.m(v)), the callee executes in the same atomic
task as the caller. An asynchronous call (o->m(v)) allows a new task to be created; this task operates
atomically, but is independent of the caller. Finally, a sub-task operation (o=>m(v)) is provided to
express a form of synchronous call akin to open nesting: the callee executes synchronously, but any
resources it acquires are released at the end of the call, and become available to other tasks.

3.4.2 LOCK-BASED MODELS OVER TM
An alternative to designing new language constructs which use TM is to develop techniques that
use it to implement existing features—in effect, using TM as an implementation technique, rather
than a programming interface [42].

The most popular technique is to implement ordinary critical sections using TM instead of
using locks.This approach has two attractions: it can improve the scaling of existing programs without
requiring code changes, and it avoids the need to design new language constructs for exposing TM.

With speculative lock elision (SLE) [248], critical sections execute speculatively with TM-like
techniques being used to dynamically detect conflicts between them. If there is a conflict between
speculative critical sections then one or other of the critical sections can be re-executed, or the
implementation can fall back to non-speculative execution and actually acquire the lock in ques-
tion. Conflicts between speculative and non-speculative critical sections can be detected by having
speculative sections monitor that the locks they acquire are currently available.

Rajwar and Goodman’s original hardware design for SLE [247; 248] transparently identified
instruction sequences that were idiomatic of lock acquire/release operations.We return in detail to the
hardware mechanisms used by SLE in Chapter 5. Software implementations have been integrated
in language runtime systems, based on using TM-style implementation techniques to modify the
reads and writes being performed in speculative sections [272; 330; 345].

Care is needed to ensure that an implementation of locks over TM is correct. Programming
idioms such as the privatization and publication examples are race-free when implemented with

3.4. ALTERNATIVE MODELS 97

locks, and so these must be supported when locks are implemented with TM. In addition, as Ziarek
et al. discuss [345], to allow completely transparent interchange between locks and transactions in
Java, the set of schedules induced by transactional execution must be a subset of the set of schedules
permitted under locks as defined by the Java Memory Model [207]. By framing the development in
this way, it is possible to handle programs even if they are not race-free.

An additional source of problems when using TM to implement lock-based critical sections
is how to handle nesting. Consider this example, which illustrates how Java’s synchronized blocks
cannot be transparently replaced by atomic sections:

// Thread 1 // Thread 2
synchronized (l1) { while (true) {
synchronized(l2) { synchronized(l2) {
x=10; if (x == 10) {

} break;
while (true) { }
} }

} }

In this example, Thread 1 writes 10 to x inside a critical section. Meanwhile, Thread 2 continually
reads from x, and breaks out of its loop when it sees 10. The location x is consistently protected by
lock l2.When implemented with locks, it is not possible for both of these threads to get stuck looping
forever, and so this should not be possible with a TM-based implementation of the synchronized
blocks.

However, Thread 1’s operations are wrapped inside an enclosing synchronized block pro-
tected by lock l1, and so a naïve implementation of synchronized blocks using TM could keep all
of Thread 1’s work buffered speculatively. Implementing this with TM is not as simple as separating
out Thread 1’s accesses under l1 and l2: using locks it would be entirely correct for the thread to
perform operations between its two lock acquires, and for Thread 2 to expect to see these.

Building on work by Welc et al. [330], Ziarek et al. [345] investigated these interactions in
detail, developing an execution environment that combines lock-based and TM-based implemen-
tations of atomic blocks and synchronized regions. They term this approach “pure-software lock
elision” (P-SLE) since it operates on conventional hardware. The runtime system dynamically de-
tects whether the semantics provided by the TM system are compatible with the use of the language
constructs, in which case it switches to a lock-based fall-back implementation.

Conceptually, the challenges in using TM for critical sections like these are simpler than the
challenges of designing semantics for atomic blocks. First, in this case, the existing semantics of
the synchronized blocks provide a definition for what the implementation should do, and avoid the
ambiguity over whether a particular example should be considered a badly-synchronized program
or whether a particular implementation technique should be considered incorrect.

Second, in any problematic cases, the implementation can fall back to non-speculative exe-
cution and directly acquire the locks—nesting, IO, and the use of other synchronization techniques
can all be handled in this way. This permits a range of implementation techniques, including sim-

98 3. BUILDING ON BASIC TRANSACTIONS

ple ones where locks are used frequently and more complex ones that can execute more programs
speculatively.

Usui et al. investigate a hybrid adaptive-locking approach, selecting between TM and locks on
the basis of a cost-benefit analysis using run-time statistics [319]. This uses a syntax atomic (l1)
{...} which can be implemented as either an atomic block (when the system is in “transaction
mode”) or as a lock-based critical section onl1 (when in “mutex mode”).The cost-benefit analysis can
consider both the dynamic properties of the critical sections themselves (e.g., whether or not conflicts
are frequent) and also the other costs associated with the different implementation techniques (e.g.,
the run-time overhead that a particular TM implementation imposes). In effect, this means that
transactions are used only when they yield benefits. Usui et al.’s implementation requires that the
programmer ensures that the synchronization used is correct whether it is implemented with locks
or with TM. However, one could imagine applying these ideas to select between lock-based and
TM-based implementation of synchronized blocks with the same semantics.

3.4.3 SPECULATION OVER TM
Futures provide an abstraction for adding concurrency to a sequential program [130]. A program
creates a future representing a piece of asynchronous work that can proceed in the background, and
the program can later force the future to retrieve the result of the computation. If the computation
has not yet been completed, then this forms a synchronization point and the force operation blocks
until the result is ready.

Programming with futures requires care: there is ordinarily no concurrency control between
the asynchronous work going on in different futures or between this work and the rest of the program.
TM-like techniques have been used to develop forms of safe future that avoid these problems [230;
331]. With safe futures, the creation and forcing of futures is treated as an entirely transparent
annotation: when compared with the original sequential program, mis-placed annotations may slow
the program down, but they will not change its result.

It is not sufficient to simply run each safe future transactionally: first, this would introduce
races between the future itself and its continuation. Second, although TM would serialize different
futures with respect to one another, it would not force this serial order to be consistent with the
original sequential program.The first problem can be tackled by, in effect, using strong isolation while
safe futures are active. The second problem can be tackled by specializing commit operations so that
they follow the program’s original sequential order. Similar techniques are used in implementations
of thread-level speculation.

The IPOT model of von Praun et al. uses similar ideas to support the addition of implicit
parallelism into a sequential program [324]. IPOT provides a tryasync {...} construct that
identifies a block of code as a possible target for asynchronous execution. Additional annotations
can identify patterns of data usage—e.g., variables being used in reductions, or “racy” variables on
which conflict detection is unnecessary. A form of finish block can be used to delimit points at
which all asynchronous work (whether speculative or not) must be complete).

3.5. SUMMARY 99

The Grace system provides a safe programming model based on fork-join parallelism [30]. It
guarantees that the behavior of a parallel implementation of the program will be consistent with a
sequential counterpart in which thread spawns are treated as normal synchronous function calls, and
locking and joins become no-ops.This eliminates lock-induced deadlocks, race conditions, atomicity
violations, and non-deterministic thread ordering. In return for these guarantees, Grace requires that
the program’s sequential execution is meaningful, in the sense that it cannot use threads that run
indefinitely, or which involve inter-thread communication via condition variables. Grace uses a TM-
style implementation based on virtual memory page-level conflict detection and versioning, building
on techniques developed by Ding et al. for speculative parallelization of sequential code [88].

In all of these models, the possibility to revert to normal, non-speculative execution provides
a fall-back to be used in the case of system calls or other work that cannot be made speculatively.

3.5 SUMMARY
In this chapter, we have introduced language constructs based on TM, examined how they can
be implemented, how to provide integration between these constructs and the rest of a modern
language, and, finally, how TM-based programming has progressed in practice.

Integrating atomic blocks in a mature existing programming language is clearly a major
undertaking, interactions with other abstractions like locks, condition variables, and volatile data all
introduce complexity.To approach this in a methodical manner, definitions like single-lock atomicity
(SLA) or transactional sequential consistency (TSC) can be extended to specify the ideal behavior
for these constructs, and then practical implementations can be developed by providing this behavior
for race-free programs. Building a full implementation that combines these features is clearly a large
piece of work, but the design choices and pitfalls are increasingly well understood.

As we have illustrated, atomic blocks are not the only way in which TM can be exposed to
programmers; it is important to distinguish different possible workloads and the different motivations
that exist for building them using transactions. One recurring alternative – going back to some of
the earliest work on TM – is simply to expose TM as a programming library to help implement
nonblocking data structures or other low-level synchronization primitives. For instance, a 4-word
atomic-compare-and-swap operation would drastically simplify the implementation of the double-
ended queue from Chapter 2. Compared with general-purpose atomic blocks, this kind of use
in specialized data structures is a very different proposition: it may place a greater emphasis on
performance and scalability, and a lesser emphasis on ease-of-programming and portability (much
like specialized algorithms using vector-processing extensions are tailored to the facilities of a given
processor family).

101

C H A P T E R 4

Software Transactional Memory
In this chapter,we describe the techniques used in software implementations of transactional memory
(STM). We focus on STM systems that operate on conventional processors, deferring until the next
chapter architecture support for hybrid software/hardware combinations and the design of new
hardware features to accelerate STM.

Shavit and Touitou’s paper [285] coined the term “software transactional memory”. However,
the programming abstraction was rather different than the TM interface from Chapter 2; Shavit and
Touitou’s design required a transaction to provide, in advance, a vector listing the memory locations
that it might access, and to express its proposed memory updates as a function that maps the values
seen in these locations to the new values to store back in memory.This approach inspired many early
STM implementations, particularly nonblocking designs.

The performance of recent STM systems, particularly those integrated with an optimizing
compiler, has reached a level that makes current systems a reasonable vehicle for experimentation and
prototyping. However, it is still not clear whether the overhead of STM can be reduced to practical
levels without hardware support. STM systems, nevertheless, offer several advantages over HTM:

• Software is more flexible than hardware and permits the implementation of a wider variety of
more sophisticated algorithms.

• Software is easier to modify and evolve than hardware.

• STMs can integrate more easily with existing systems and language features, such as garbage
collection.

• STMs have fewer intrinsic limitations imposed by fixed-size hardware structures, such as
caches.

Given the limited experience that exists implementing and using TM, these considerations suggest
that STM will continue to play an important role.

We start this chapter by introducing core implementation techniques that are common across a
large number of STM systems (Section 4.1). We describe different ways that the STM’s concurrency
control metadata is associated with the application’s data and ways in which the STM’s logs are
structured.

Beyond these core techniques, a linear presentation of a rich set of research work inevitably
becomes a compromise among competing imperatives. A chronological presentation can capture
the large-scale evolution of the area but may obscure smaller-scale interactions by separating related

102 4. SOFTWARE TRANSACTIONAL MEMORY

papers. Alternatively, grouping papers by topic raises questions of which are the most important
dimensions of the research area and which contributions most clearly define a paper.

The organization of this chapter is one such compromise. We structure the majority of our
discussion around a series of detailed case studies of four different kinds of implementation technique.
Each of these is illustrative of techniques used in state-of-the-art STM systems, and the selection
between them typically represents a fundamental aspect of the design of an STM system.

The first of these case studies (Section 4.2) describes the use of per-object versioned locks which
combine a lock to control write access to data along with a version number which can be used to let
reading transactions detect conflicts. Typical configurations of McRT-STM [7; 274] and Bartok-
STM [138] use these techniques. We discuss techniques that were developed to reduce the straight-
line overhead of conflict-free transactions—for instance, the use of eager version management and
static analyses to optimize the placement of TM operations in atomic blocks.

The second case study (Section 4.3) describes the use of a global clock along with per-object
STM metadata. These techniques can readily support STM systems that provide opacity—that is,
STM systems that guarantee that a transaction always sees a consistent view of memory as it runs.
The TL2 STM system [83] popularized this technique. We describe the basic design, along with
extensions and refinements that both improve the scalability of access to the clock itself and increase
the level of concurrency between transactions that synchronize using it.

In our third case study (Section 4.4), we examine STM systems that dispense with per-object
STM metadata entirely and only use a fixed amount of global state for detecting conflicts. With
care, non-conflicting transactions can still run in parallel. Global metadata might seem to pose a
problem with respect to scalability. However, on some systems, it is entirely appropriate—e.g., on
the Niagara-II CMP, threads on the same chip have access to a common cache, so the metadata
is shared by the threads involved. In other cases, simplifications to the STM implementation may
compensate for any loss in scaling over the intended workloads. JudoSTM [236], RingSTM [305],
and the NOrec STM [77] are examples of systems with global metadata.

Our final case study (Section 4.5) looks at techniques for making nonblocking STM systems—
as opposed to the lock-based systems of Sections 4.2–4.4.There has been cross-fertilization between
blocking and nonblocking STM systems: the most recent nonblocking designs, e.g. Marathe et
al.’s [208] and Tabba et al.’s [313; 314], combine techniques such as those from Sections 4.2–4.4
with fall-back mechanisms to retain strong progress guarantees.

In these case studies, we focus on the techniques used for managing metadata and for detecting
conflicts between transactions.As we have illustrated through Chapters 2–3,a full STM system needs
to provide more than that. For instance, it may require guarantees about how transactional and non-
transactional code interacts, and mechanisms for condition synchronization, for irrevocability, and
so on. We discuss these techniques in Section 4.6, looking at related ideas that have been employed
in different STM systems.

Section 4.7 describes STM systems that span clusters of machines, rather than operating
within a single system. Distributed operation changes the performance characteristics of the un-

4.1. MANAGING STM LOGS AND METADATA 103

derlying system, and if transactions must span separate physical address spaces, then distributed
algorithms are needed to support them.

Finally, in Section 4.8, we survey work on testing and validating the correctness of STM
systems—for instance, using model-checking to exhaustively test parts of an STM algorithm and
using testing frameworks to exercise an STM with “tricky” workloads.

Some Notes on Terminology and Pseudo-Code. Terminology varies somewhat between papers, and
so for consistency,we have tried to use a common set of terms throughout the discussion.A transaction
descriptor is the per-transaction data structure that keeps track of the state of the transaction; it might
be as simple as a single-word status field saying whether or not the transaction has committed, or it
might involve additional information such as logs of the transaction’s accesses. An undo-log holds the
values that have been overwritten in an STM using eager version management, and a redo-log holds
the tentative writes that will be applied during commit in a system using lazy version management.
A read-set or write-set tracks the memory locations that the transaction has read from or written
to; it does not necessarily keep track of the data values being manipulated by the transaction. In
practice, many systems combine the representation of the undo-log or redo-log with the read-set
and write-set.

When writing pseudo-code, we assume that a processor provides sequential consistency (SC).
In practice, memory accesses can be re-ordered by an optimising compiler or by an actual processor
with a relaxed memory model. The details vary between languages [43; 207] and between proces-
sors [9], so care is needed when implementing an algorithm in a particular setting. Guerraoui et
al. developed techniques to automate the process of introducing memory fences to support STM
algorithms [121], and Spear et al. developed techniques to optimize the placement of them [304].

4.1 MANAGING STM LOGS AND METADATA

In this section, we introduce basic techniques which are used across most STM systems: maintaining
metadata (Section 4.1.1), undo-logs or redo-logs (Section 4.1.2), and managing read-sets and write-
sets (Section 4.1.3).

4.1.1 MAINTAINING METADATA
Most STM systems require a mechanism for associating concurrency-control metadata with the
locations that the program is accessing. There are two main approaches:

• In an object-based STM, metadata is held with each object that the program allocates—this
might be an actual object, in a language like C++, or it might be a block of memory returned
by malloc in C. All fields within the object are associated with the same piece of metadata,
and the object’s representation in memory is extended to provide space to hold it, for instance,
by expanding the object’s header. Figure 4.1(a) shows an example, with the three objects each
having their own metadata.

104 4. SOFTWARE TRANSACTIONAL MEMORY

...

Field 1

Meta-data

Field 2

Field 3

Field n

Field 1

Meta-data

Field 1

Meta-data

Field 2

Field 3

(a) Object-based organization, with separate metadata added to each object and used to control
access to all of the object’s fields.

...

Addr 1 Meta-data

Addr 2

Addr 3

Addr n

Meta-data

Meta-data

Meta-data

(b) Simple word-based organization, with separate metadata for each word of storage.

...

Addr 1 Meta-data

Addr 2

Addr 3

Addr n

Meta-data

(c) A fixed size metadata table, with a hash function used to map addresses to their corresponding
metadata.

...

Addr 1 Meta-data

Addr 2

Addr 3

Addr n

(d) A single, process-wide piece of metadata used for all addresses.

Figure 4.1: STM metadata organization.

4.1. MANAGING STM LOGS AND METADATA 105

• In a word-based STM, metadata is associated with individual memory locations, rather than
complete objects. Typically, there will be a fixed-size set of metadata locations, and a hash
function will map an address onto the location of the metadata value that arbitrates access to
it. Figure 4.1(b)–(d) show three examples—first, with the extreme case of a separate piece of
metadata for each word in memory, next with a hash function used to map addresses to pieces
of metadata, and, finally, the other extreme case of a single piece of process-wide metadata.

The key questions to consider when comparing these approaches are (i) the effect of the metadata
on the volume of memory used, (ii) the effect of accessing the metadata on the performance of
the program, (iii) the speed of mapping a location to its metadata, and (iv) the likelihood of false
conflicts between concurrent transactions. Each of these considerations can affect performance, and
there are tensions between the different factors. Reducing the volume of metadata can reduce the
overhead it adds—both in memory itself and in the caches. However, having a small number of
metadata locations can introduce false conflicts between transactions that access the same metadata
but different locations [348].Various “second chance” schemes and alternative validation mechanisms
have been developed to detect and reduce the impact of these false conflicts (Section 4.4).

The computational overhead of mapping from an address to a metadata location can be reduced
by using a simple mapping function. Several word-based STM systems use modulo arithmetic to
map an address onto a slot in a table of metadata values. With object-based STM systems, if the
metadata is in the object’s header, then it is readily found when accessing fields of the object. Finding
the object header can be more complex when using address arithmetic: in such cases, we require a
mechanism to map an interior pointer back to the start of the enclosing object—e.g., size-segregated
heaps [327], program transformations to keep object header addresses available [81], or tables to
map interior pointers to headers [138].

There are three main advantages to placing metadata within an object’s header. It can often
mean that it lies on the same cache line as the data that it protects, thereby reducing the total number
of cache lines accessed by an operation. It can also allow a single metadata access to be made for
a series of accesses to different fields of the same object. In addition, object-based designs make
the sources of conflicts explicit, and under a programmer’s control, rather than depending on the
runtime system’s placement of data and how this placement interacts with a hash function.

Equally, there are two downsides of using per-object metadata. First, there will be a conflict be-
tween concurrent accesses to different fields of the object—or, in many implementations, to different
elements of the same array. Avoiding these conflicts can require manual reorganization of data struc-
tures. The second downside of placing STM metadata in an object’s header is that it can introduce
coupling between the STM implementation and the memory management system [83; 162]—this
is necessary to avoid problems if the object is deallocated, re-used for some other purpose, and then
the old location holding the metadata is accessed by a zombie transaction.

Hybrid metadata organizations may also be used: for instance, using simpler metadata to
protect objects that are expected to be read-only and using per-word metadata for large objects or
for arrays [261; 265].

106 4. SOFTWARE TRANSACTIONAL MEMORY

00TM metadata

0000

10Hashcode01Normal lock

11

Hashcode

Normal lock

TM metadata

2. First kind of use is

held in header word

3. Second kind of use

triggers inflation

1. Initially header

word is zero

Figure 4.2: Multi-use object header word.

Many language runtime systems already add header information to each object, and techniques
have been developed to allow multiple parts of a runtime system to share space rather than reserving
multiple separate words in every object [12]—e.g., a hash value might be needed or an ordinary
lock to support features such as Java’s synchronized blocks. These techniques can be extended
to accommodate STM. Figure 4.2 shows the approach taken with the Bartok-STM system [138].
Each object has a single header word, and the low two bits distinguish between different uses. The
header word is then claimed by the first use that is encountered (e.g., STM, hashing, or a normal
lock), and the header word is updated accordingly. If a second use is encountered then the object
header is inflated to refer to an external structure that contains space for multiple uses.This approach
can be used to avoid needing to allocate space for STM metadata on every object in the heap: space
is needed only on objects that are actually used during a transaction.

4.1.2 UNDO-LOGS AND REDO-LOGS
STM systems using eager version management require an undo-log of values that will be restored
to memory if the transaction is rolled back. STM systems using lazy version management require a
redo-log of values that will be written to memory if the transaction commits. In either case, the logs
are usually structured as linked lists of chunks so that they can be dynamically extended if necessary
depending on the size of a transaction.

4.1. MANAGING STM LOGS AND METADATA 107

With eager version management, the design of the undo log is not usually seen as a
performance-critical decision. After all, if the conflict rate is low, the actual values recorded in
the log are not required. Nevertheless, a number of aspects of the design require care. First, the
granularity at which logging is done can affect the semantics offered by the TM: if the logging
granularity is wider than the access granularity, then a roll-back can introduce GLU problems (Sec-
tion 2.2.3). To avoid this, either the log needs to record the size of the data actually being accessed,
or the granularity of conflict detection must be at least as large as the granularity of logging (e.g.,
using memory protection hardware [5; 28]).

Second, the information recorded in the log entries can affect the ease with which roll back
is performed. For instance, in an object-oriented language, there is a question of whether to record
entries in terms of an offset relative to an object reference or whether to record entries as a simple
address in memory. Similarly, there is the question of whether or not to record the type of the value
being overwritten. Recording simple (addr,val) pairs may reduce the size of the log, but recording
an object reference may help integration between the STM and the GC—for instance, allowing the
object reference to be updated if the GC relocates the object. Recording additional information,
such as types, can increase the size of the log, but it may simplify roll-back (for instance, if the STM
needs to perform GC-barrier work when updating reference-typed data during roll-back).

With lazy version management, the design of the redo-log is critical to performance because
a transactional read must see the results of an earlier transactional write to the same location. Some
early STM systems used direct searching through logs, and so a transaction that writes to n locations
may require O(n) operations for each read. This can lead to disastrous performance, even in the
absence of contention. There are three main ways to avoid searching:

• An auxiliary look-up structure can provide a mapping from an address being accessed to a
previous redo-log entry. This could be a form of hashtable, mapping addresses to positions
in the log. Care is needed to keep the number of cache lines accessed during the mapping
low, and to provide a “flash clear” operation to avoid iterating through the whole table to
clear it (e.g., a version number can be used in entries, or a per-transaction salt combined with
the hash function to ensure that the same address hashes to different buckets on successive
transactions [138]). Spear et al. discuss the performance impact of different approaches [300].

• A summary of the write-set can be maintained (e.g., using a Bloom filter [33]), and the log
searched only when reading from a location that might be present in the write-set. However,
Felber et al. [103] show that the filter can become saturated on some workloads and ultimately
degrade performance due to searching on every ReadTx operation.

• The STM metadata can provide links to the redo-log entries of the transactions that are
currently writing to locations controlled by the metadata. This is particularly simple if the
STM system uses eager conflict detection and allows only one transaction at a time to make
tentative writes to locations controlled by a given piece of metadata.

108 4. SOFTWARE TRANSACTIONAL MEMORY

The performance of an STM system using lazy version management can be highly dependent on
the design of the redo-log, and so when comparing systems, it is important to quantify the impact
of this aspect of the design versus the impact of the concurrency-control mechanisms themselves.

4.1.3 READ-SETS AND WRITE-SETS
Most STM systems require a mechanism for a transaction to keep track of the locations that it has
read from and written to. With pessimistic concurrency control, this is needed so that the transaction
can release any locks that it has acquired. With optimistic concurrency control, it lets the transaction
detect conflicts.

STM systems differ in terms of how the read and write-sets are maintained. Using a separate
log for each purpose, allows the format of the entries to be customized—e.g., if per-object metadata
is used, then read/write-set entries may refer to object addresses, but the undo/redo-log information
may refer to individual fields. In addition, using separate logs allows all of the entries of a particular
kind to be found easily—e.g., when committing a transaction with eager version management, it is
not necessary to skip over undo information which might otherwise be mixed with read/write-set
information.

On the other hand, using a single combined log may make it more likely for the current
pointer into the log to be kept in a register and may avoid the need to create multiple log entries
relating to the same data item.

4.2 LOCK-BASED STM SYSTEMS WITH LOCAL VERSION
NUMBERS

Our first case study examines the techniques used in STM systems which combine (i) pessimistic
concurrency control for writes, using locks which are acquired dynamically by the STM and (ii) op-
timistic concurrency control for reads, implemented by checking per-object version numbers during
validation. These are “local” version numbers, in the sense that they are incremented independently
on each piece of STM metadata whenever an update is committed to it—as opposed to the systems
in the next section, which obtain version numbers from a global clock.

The main algorithmic design choices are between eager and lazy version management, and
between acquiring locks when a transaction first accesses a location (encounter-time locking, ETL),
or only acquiring them when a transaction commits (commit-time locking, CTL). ETL can support
either eager or lazy version management, but it means that conflicts are detected between running
transactions, whether or not they commit. Conversely, CTL can only support lazy version manage-
ment (because the STM cannot update memory directly until locks have been acquired).This allows
CTL to support lazy conflict detection.

Dice and Shavit [85] and Saha et al. [274] examine the trade offs between these approaches,
and Spear et al. recently revisited these questions [300] (Section 2.3.2).

4.2. LOCK-BASED STM SYSTEMS WITH LOCAL VERSION NUMBERS 109

In this section, we focus on the combination of ETL and eager version management as a
running example. This has been used in many STM systems [5; 7; 138; 273; 274]. These design
choices were motivated by performance considerations on traditional multiprocessors and early
multicore CMPs: eager version management to avoid re-directing reads through a redo-log and
optimistic concurrency for readers to avoid introducing additional contention in the memory system.

In this section, we introduce the main implementation techniques used by this kind of STM
system: the design of versioned locks for STM metadata (Section 4.2.1), the use of static analyses to
optimize the use of STM operations (Section 4.2.2), and the development of techniques to provide
opacity in STM systems using local version numbers (Section 4.2.3).

4.2.1 TWO-PHASE LOCKING WITH VERSIONED LOCKS
The STM metadata used in McRT-STM and Bartok-STM is a versioned lock. This abstraction
combines a mutual-exclusion lock, which is used to arbitrate between concurrent writes, with a ver-
sion number that is used for conflict detection by readers. If the lock is available, then no transaction
has pending writes to the object, and the versioned lock holds the object’s current version number.
Otherwise, the lock refers to the transaction that currently owns the object.

Compared with the basic TM interface from Chapter 2, McRT-STM and Bartok-STM both
use a form of decomposed interface in which the ReadTx/WriteTx operations are broken down into
an initial “Open” operation that performs concurrency control and then a separate operation to carry
out a data access. For instance a ReadTx operation can be expressed as OpenForRead operating on
the object, followed by an actual data access to one of the object’s fields. Similarly, an integer-typed
WriteTx operation is split into OpenForUpdate, followed by LogForUndoIntTx, followed by the
actual write. This decomposition lets the operations be moved independently during compilation.
For instance, if an object-based STM is used, then one OpenForReadTx call could be performed
before a series of accesses to different fields in the same object.

Before reading from an object, a transaction records the object’s version number in its read-set:

void OpenForReadTx(TMDesc tx, object obj) {
tx.readSet.obj = obj;
tx.readSet.version = GetSTMMetaData(obj);
tx.readSet ++;

}

Before writing to an object, a transaction acquires the object’s versioned lock and then adds the
object reference and the object’s old version number into the write-set. Deadlock must be avoided,
whether by timeouts on lock acquires, dynamic detection mechanisms [176], or aborting, releasing
other locks, and then waiting for the additional lock that was needed before re-execution [297].

Before writing to a particular field, the system must record the field’s old value in the transac-
tion’s undo log, so the modification can be rolled back. For example, the runtime system’s function to
record an overwritten value of type int can proceed as follows: (note that the Magic class provides
low-level memory access, available only from within the language runtime system itself).

110 4. SOFTWARE TRANSACTIONAL MEMORY

void LogForUndoIntTx(TMDesc tx, object obj, int offset) {
tx.undoLog.obj = obj;
tx.undoLog.offset = offset;
tx.undoLog.value = Magic.Read(obj, offset);
tx.undoLog ++;

}

Pessimistic locking prevents conflicts on objects that a transaction has written to.However, at commit
time, the treatment of reads requires greater care because there is no attempt to prevent read-write
conflicts from occurring during a transaction’s execution. It is therefore necessary to detect these
conflicts via commit-time validation, in order to ensure that the transaction as a whole appears to
execute atomically. In pseudo-code, a commit operation proceeds as:

bool CommitTx(TMDesc tx) {
// Check read-set
foreach (entry e in tx.readSet) {
if (!ValidateTx(e.obj, e.version)) {
AbortTx(tx);
return false;

}
}
// Unlock write-set
foreach (entry e in tx.writeSet) {
UnlockObj(e.obj, e.version);

}
return true;

}

The first loop validates each entry in the read-set in turn, checking whether or not there was a conflict
on the object involved. Assuming that this succeeds, the second loop releases all of the write locks
that were acquired by the transaction. Releasing a versioned lock increments the version number,
and so this will signal a conflict to any concurrent readers of the object. During validation, there are
seven cases to consider, based on the values recorded in the transaction’s logs, and the current state
of the object’s versioned lock (Figure 4.3):

• Figure 4.3(a)–(c) show the conflict-free cases. In Figure 4.3(a), the transaction read from the
object, and its version number is unchanged at commit time. In Figure 4.3(b), the transaction
added the object to its read-set and later added it to its write-set: the two version numbers
logged are equal, confirming that there was no intervening conflict. In Figure 4.3(c), the
transaction opened the object for writing and then subsequently opened it for reading.

• Figure 4.3(d) shows a simple conflict in which the version number has changed between the
time when the transaction opened the object for reading and when the transaction tries to
commit.

4.2. LOCK-BASED STM SYSTEMS WITH LOCAL VERSION NUMBERS 111

x==42

v100

500:

Open-for-read:

(a)

x==17500:

Open-for-read:

(b)
Open-for-update:

Undo log:

x==17500:

Open-for-read:

(c)
Open-for-update:

Undo log:
addr=500, val=42

x==42

v101

500:

Open-for-read:

(d)

x==42

v101

500:

Open-for-read:

(e)

x==42500:

Open-for-read:

(f)

addr=500, v100

addr=500

addr=500, v100

addr=500, v100

addr=500, v100

addr=500, val=42

addr=500, v100

addr=500, v100

addr=500

x==17500:

Open-for-read:

(g)
Open-for-update:

Undo log:

addr=500, v100

addr=500, v101

addr=500, val=42

Figure 4.3: Conflict detection using a versioned lock. The left hand side shows an object at address 500,
with a single field x, and a versioned lock. The right hand side shows the contents of the transaction
descriptor. Arrows to the far left or right denote pointers to another thread’s descriptor.

112 4. SOFTWARE TRANSACTIONAL MEMORY

• Figure 4.3(e) shows the case when the object was open for update by another transaction at
the point where it was recorded in the read log, and in Figure 4.3(f), the object was open for
update by another transaction at the point of the commit operation.

• Finally, Figure 4.3(g) shows the case where one transaction opened the object for reading and
later opened the same object for writing, but between these steps, another transaction updated
the object. The conflict is detected because the version numbers in the read log and write log
do not match.

If validation completes successfully, then a transaction appears to execute atomically at the start of its
CommitTx operation—even though this is before the point at which the outcome of the transaction
is known. To see why this is correct, note that for a successful transaction, the subsequent validation
work confirms that there have been no conflicts from the point where the transaction initially read
the object, until the point where validation occurs. For locations that have been updated, the use
of pessimistic concurrency control prevents conflicts until the lock is released. Figure 4.4 illustrates
this graphically: the start of CommitTx provides a point at which all of the reads and all of the writes
were free from conflicts.

StartTx OpenForReadTx OpenForUpdateTx

Start

commit

Finish

commitClose objects in

write-set

Validate

read-set

CommitTx

Read objects confirmed as unchanged for this duration

Exclusive access to updated objects for this duration

Transaction appears atomic at this point

Figure 4.4: Providing atomicity over a set of locations using versioned locks.

Note that opening for read neither checks if the object is open by another transaction nor
checks that the transaction’s reads form a consistent view of the heap. This design decision is mo-
tivated by keeping the fast-paths of conflict-free transactions as simple as possible and minimizing
cache invalidations by not forcing readers to modify metadata.

4.2.1.1 Version Number Overflow
If version numbers are large, then the problem of overflow is a theoretical concern rather than a
practical one. However, overflow may become a genuine problem if the version number is packed
into a 32-bit word along with a lock-bit and,possibly,other bits used by the language implementation.

4.2. LOCK-BASED STM SYSTEMS WITH LOCAL VERSION NUMBERS 113

If overflow is deemed rare, then one approach is to detect when it would occur, then to
prevent threads from executing transactions, and to globally re-number the objects so that the
version numbers start from 0 again.

Alternatively, given that version numbers are compared only for equality, it is possible to
tolerate overflow so long as the “old” use of a given number can never be confused with the “new”
use. Bartok-STM exploits this observation: if there are n different version numbers, then it suffices
to ensure that every thread validates its current transaction within the time that n version-number
increments could occur [138]. This observation avoids the need to re-number all of the objects in
the heap.

4.2.2 OPTIMIZING STM USAGE
Decomposing TM operations into separate OpenFor* and LogFor* steps enables the placement
of these low-level operations to be optimized during compilation. Many traditional program trans-
formations apply automatically to STM. For instance, treating the result of an OpenForReadTx
operation as a form of available expression will allow CSE to remove redundant open-for-read
operations. Many STM-related optimizations are possible:

• EliminatingOpenForReadTx/OpenForWriteTxoperations when the target object has already
been opened.

• If write access in the STM also grants read access, then an OpenForReadTx is redundant if it
is dominated by an OpenForWriteTx on the same object.

• Programs frequently contain read-modify-write sequences, e.g., o.a=o.a+1. These would
ordinarily be implemented using an OpenForReadTx followed by an OpenForWriteTx. The
OpenForReadTx operation can be avoided by moving the OpenForWriteTx operation earlier
in the code.

• Analyses to identify immutable objects, or newly-allocated thread-local objects, can allow
OpenForRead* operations to be removed. A simple data-flow analysis can identify some
common cases. In Java, final fields are immutable in most code, and built-in abstractions
such as java.lang.String objects are known to be immutable.

• Additional redundancies may be exposed by moving OpenFor* operations to a method’s caller.

• The buffer overflow checks in the logging operations in a transaction can sometimes be op-
timized into a single test, which checks whether there is sufficient space for all of the data
logged in the transaction.

These optimizations can reduce the number of log entries by 40–60% on a variety of benchmarks,
with a roughly similar improvement in a transaction’s execution time.

Performing these transformations requires care. In the compiler’s internal intermediate code,
the STM operations must be explicitly connected to a specific transaction so a compiler does not

114 4. SOFTWARE TRANSACTIONAL MEMORY

optimize across transaction boundaries and to ensure that the sequencing of operations is respected.
This can be done by encoding the relationships as data-dependencies between the operations—so-
called pseudo-variables or proof-variables [221] that exist within the compiler representation, but
not the generated code.

For instance, an assignment obj.f1=42 would be translated into intermediate code of the
form:

tx = GetTxDescriptor();
<p1> = OpenForWriteTx(tx, obj);
<p2> = LogForUndoIntTx(tx, obj, 4) <p1>;
obj.f1 = 42 <p2>;

The first operation, GetTxDescriptor, fetches the current transaction descriptor from thread-
local storage. This can be re-used across multiple STM operations, rather than being fetched each
time. OpenForWriteTx performs concurrency control to allow the transaction to access obj. The
LogForUndoIntTx operation logs the old value of the first field of obj (assuming this is at offset
4 from the object header). Finally, the write itself is performed. The variables p1 and p2 are both
proof-variables, and the notation identifies where they are needed as inputs (on the right of an
operation), or produced as results (on the left).The dependencies via tx,p1, and p2 prevent incorrect
re-orderings—for instance, they ensure that the logging is performed before the write.

The compiler must be aware that the implementation of GetTxDescriptor is dependent on
the current transaction. For instance, the transaction descriptor can be cached in a register within a
transaction, but not across the start or end of a transaction.

Wu et al. describe additional optimizations applicable to an STM using lazy version man-
agement [336]. Thread-local data can be read and written directly, rather than being written via a
redo-log (this requires checkpointing any thread-local data that is live at the start of the transaction,
and care on indirect writes, to detect whether they access thread-local data, or shared data).

Additional techniques can be used dynamically to eliminate redundant log entries that are
not removed by compile-time optimizations [138]—e.g., dynamically tracking which objects are
allocated inside a transaction (and eliminating undo-log entries for any updates to them). If dynamic
techniques are used then their expense must be traded off against the reduction in log-space usage
that they achieve.

4.2.3 PROVIDING OPACITY
McRT-STM and Bartok-STM typically use invisible reads, meaning that the presence of a reading
transaction is not visible to concurrent transactions which might try to commit updates to the
objects being read. The basic versions of these STMs allow a transaction to experience a conflict
and to continue executing as a zombie; consequently, they do not provide opacity. As we discussed
in Section 2.2.2, one way to obtain opacity is to add incremental validation. However, incremental
validation is likely to be slow because a transaction reading n locations will perform O(n2) individual
validation checks in its execution.

4.2. LOCK-BASED STM SYSTEMS WITH LOCAL VERSION NUMBERS 115

To avoid incremental validation, an STM system could dispense with invisible reading and
maintain explicit visible read-sets. Some STM systems offer this as an option (e.g., some config-
urations of McRT-STM, and also RSTM, Section 4.5.2), but if applied to all transactions on a
conventional system, visible reading introduces contention between readers in the memory system.
Consequently, visible reading has often been found to be costly [274].

An alternative option is to use a global clock. This approach is taken by many STM systems,
and we return to it in detail in the next case study (Section 4.3). However, instead of using a global
clock, there are several techniques which can be used to mitigate the cost of incremental validation
in a system such as McRT-STM or Bartok-STM:

4.2.3.1 Global Commit Counter
Spear et al. observed that validating a transaction (TA) is necessary only if another transaction (TB)
has updated memory since the most recent time that TA was validated [302]. To exploit this with
lazy version management, they introduced a global commit counter and have each thread re-validate
only if the counter has been incremented since its previous validation. This approach is simple and
is often effective. A limitation of it is that every transaction will be revalidated, even if there is no
conflict involved.

4.2.3.2 Semi-Visible Reads
Lev et al. [188; 191] introduced a form of semi-visible reading. This allows a writer to detect that it
is accessing data being used by reading transactions but it does not let the writer detect the identity
of the accessors.

To maintain this information, Ellen et al.’s Scalable Non-Zero Indicators (SNZI [97]) can
be used. A SNZI counter supports Inc and Dec operations but only an IsZero query, rather than
access to the underlying value. A scalable implementation is based on a tree of individual non-zero-
indicators. IsZero is always invoked on the root but Inc and Dec can be invoked on any tree node
(so long as a given thread is consistent in its choice of node). The interior nodes propagate Inc and
Dec toward the root but only if their own local count changes to/from zero; consequently, the tree
filters out contention under high rates of increments and decrements.

A SNZI counter is associated with each piece of STM metadata, and Inc is invoked when
a transaction starts to read from a location, and Dec invoked when it commits or aborts. A writer
invokes IsZero to detect whether or not readers may be present. If a writer sees that readers may
be present, then it increments a global commit counter. Readers use changes in the global commit
counter to trigger re-validation. This can result in substantially less re-validation work because a
writer needs to increment a global counter only when there is a possible conflict, rather than for
every commit.

116 4. SOFTWARE TRANSACTIONAL MEMORY

4.2.4 DISCUSSION
In this section, we have introduced the techniques used in STM systems such as McRT-STM and
Bartok-STM which combine pessimistic concurrency control for updates with optimistic concur-
rency control for reading.

The underlying STM algorithms provide fairly weak semantics: (i) they do not provide opacity
during transactions, (ii) they do not provide conflict detection between transactional and non-
transactional accesses to memory locations, and (iii) they do not all support idioms such as the
privatization example from Section 2.2.3.6. If the programming model requires these properties,
then they must be built over the core STM interface—for instance, by sandboxing faults that occur
and by expanding non-transactional accesses to interact with the STM.

Concurrent with McRT-STM and Bartok-STM, Ennals investigated a library-based STM,
which was also based on versioned locks [99]. Rather than using an undo log, Ennals’ design uses
lazy version management and has transactions take a private snapshot of entire objects that they are
working on. A transaction then operates on the snapshot and, if it commits, writes the snapshot back
to shared memory. Ennals’ design enables lock revocation, provided that the transaction owning an
object has not yet started committing updates.

Hindman and Grossman’s AtomicJava STM system [154] provides atomic sections based
on extending each object with a field that identifies a thread that currently owns the object. Source-
to-source translation is used to add lock acquire/release operations. Pessimistic concurrency control
is used for reads as well as for writes, and thread-private undo logs are used for roll-back. Unlike
most STM systems, locks are transferred between threads by having each thread poll for requests
to release a lock. This approach allows a lock to remain associated with a thread across a series of
operations without being released and re-acquired.

4.3 LOCK-BASED STM SYSTEMS WITH A GLOBAL CLOCK
The next series of STM algorithms that we study are based on the use of a global clock. This clock is
incremented on a process-wide basis (unlike the version numbers used by McRT-STM and Bartok-
STM which are incremented separately on a per-object basis).

To illustrate this idea, we focus on theTL2 STM system [83]. Semantically, the key distinction
between TL2 and STM systems such as McRT-STM and Bartok-STM is that TL2 provides
opacity without requiring incremental validation. (TL2 itself developed from an earlier “transactional
locking” (TL) STM system that was used to explore various combinations of locking mechanisms
and version-number management [84; 85].)

We introduce the original TL2 STM algorithm in Section 4.3.1. Section 4.3.2 discusses
timebase extension, a technique to provide greater concurrency between transactions than the basic
algorithm provides. On some hardware platforms, contention on the global clock may be a worry.
However, as we show in Section 4.3.3, many techniques have been developed either to reduce the
number of times that a thread needs to update the global clock, or to provide alternative, more
scalable, implementations of the clock.

4.3. LOCK-BASED STM SYSTEMS WITH A GLOBAL CLOCK 117

4.3.1 PROVIDING OPACITY USING A GLOBAL CLOCK
Like the STM systems in Section 4.2, TL2 uses versioned locks, which either hold a timestamp
value, or identify a single transaction that currently owns the associated data. TL2 uses lazy version
management, so tentative updates are built up in a redo-log, and it uses commit-time locking, so locks
are acquired only as part of a transaction’s commit function. In addition to the versioned locks, TL2
employs a global clock—this can be a simple 64-bit shared counter, which is incremented each time
a transaction commits.

Each transaction begins by reading the global clock at the point when it starts.This timestamp
is known as its read version (RV). In addition to RV,each transaction is assigned a unique write version
(WV) from the global clock as part of its commit operation. This is used to define the transaction’s
position in the serial order. Each object’s version number records the WV of the transaction, which
most recently committed an update to it.

A transactional read proceeds as follows:

int ReadTx(TMDesc tx, object obj, int offset) {
if (&(obj[offset]) in tx.redoLog) {
// Tx previously wrote to the location.
// Return value from redo-log
result = tx.redoLog[&obj[offset]];

} else {
// Tx has not written to the location.
// Add to read-set and read from memory.
v1 = obj.timestamp;
result = obj[offset];
v2 = obj.timestamp;
if (v1.lockBit ||

v1 != v2 ||
v1 > tx.RV) {

AbortTx(tx);
}
// Add to read-set
tx.readSet.obj = obj;
tx.readSet ++;

}
return result;

}

Since TL2 uses lazy version management, the read operation must first check whether or not the
location is already in the transaction’s redo-log. If it is in the log, then ReadTx returns the value
from the log, ensuring that the transaction sees its own earlier write. If the value is not in the log,
then ReadTx reads the object’s version number, reads the value from memory, and then re-reads the
version number. This series of reads ensures that a consistent snapshot is taken of the two locations:
if v1.lockBit is set then the object was locked by a concurrent transaction’s commit operation, and
if v1!=v2, then the version was changed by a concurrent transaction while the value was being read
from memory.

118 4. SOFTWARE TRANSACTIONAL MEMORY

The key to providing opacity is that ReadTx also checks that the version seen is no greater
than tx.RV. This check ensures that the object has not been updated by any other transaction since
RV was recorded. Consequently, RV provides a timestamp at which all of the locations read by a
transaction represent a consistent view of memory: commits before RV will have been seen, and a
read will abort if it sees a commit after RV.

WriteTx is more straightforward: if this is the first write to a location then it adds an entry
to the redo-log; otherwise, it updates the current log entry.

In pseudo-code, a commit operation proceeds as:

bool CommitTx(TMDesc tx) {
// Lock write-set
foreach (entry e in tx.writeSet) {
if (!Lock(e.obj)) {
goto fail;

}
}
// Acquire unique WV
tx.WV = FetchAndAdd(&globalClock);
// Validate read-set
foreach (entry e in tx.readSet) {
if (e.obj.version > tx.RV) {
goto fail;

}
}
// Write back updates
foreach (entry e in tx.redoLog) {
e.obj[e.offset] = e.value;

}
// Unlock write-set, setting version number
foreach (entry e in tx.writeSet) {
UnlockObj(e.obj, tx.WV);

}
return true;

fail:
// Release any locks acquired
...
return false;

}

Figure 4.5 shows this diagrammatically. While the transaction runs, the point at which RV is taken
represents the instant at which the transaction’s atomic snapshot of memory is valid; the transaction
aborts if it reads any object whose version number is newer than RV. The commit operation is
bracketed by acquiring and releasing write locks. This prevents conflicting operations on objects in
its write-set (as shown by the lower large arrow).The commit operation’s validation loop checks that
none of the objects in the transaction’s read-set were updated after RV. This checks whether there

4.3. LOCK-BASED STM SYSTEMS WITH A GLOBAL CLOCK 119

were any conflicting operations on them after RV but before WV (as indicated by the upper large
arrow in the figure). Consequently, the transaction can appear to occur atomically at the point where
WV was taken. After successful validation, the transaction writes back its updates and releases the
write locks.

StartTx OpenForReadTx OpenForUpdateTx

Start commit,

lock write set

Finish

commitWrite back updates,

unlock write set

Validate

read-set

CommitTx

Read objects confirmed as unchanged for this duration

Exclusive access to write set

Transaction appears atomic at this point

Read global

clock

Reads are initially

consistent at this point

Increment

global clock

Figure 4.5: Providing atomicity over a set of locations using a global clock.

This basic form of TL2 can be extended in many ways:

Read-only Transactions. With TL2, a read-only transaction does not actually require any logging,
beyond a record of RV when it starts.To see why this is possible, notice that with an empty write-set,
the CommitTx operation reduces to (i) allocating WV and (ii) re-validating the read-set. The WV
value itself is not used (since there are no updated objects to write the value back into), and removing
the allocation of WV can reduce contention on the global clock. The re-validation is not needed
because, without any writes, the point at which RV was taken can form the linearization point for
the complete transaction.

Adjacent Transactions by the Same Thread. If CommitTx determines that WV==RV+1, then there
cannot have been any concurrent transactions serialized after RV but before the current transaction.
Consequently, the re-validation loop is not needed because there cannot have been any conflicts.

Hierarchical Locking. Felber et al.’s TinySTM system combines a TL2-style approach with a form
of hierarchical locking [103]. An additional, shared, array is used with slots in the array covering
regions of the process’s address space. Slots in the array each hold counters of the number of commits
to locations in that region.

A transaction maintains read/write masks with one bit per slot, indicating the areas of memory
that it has accessed. In addition, upon its first read from a slot, it records the associated counter’s
current value. If the counter has not been incremented by the time that the transaction attempts to

120 4. SOFTWARE TRANSACTIONAL MEMORY

commit, then it is not necessary to validate accesses to that region of memory. This can streamline
validation work.

Felber et al. also investigate the sensitivity of performance to the sizing of the shared table
and to the way that addresses are mapped to normal metadata entries.

Eager Version Management. Felber et al. [103] and Wang et al. [327] describe variants of a TL2-
style approach which can use eager version management. To do this, encounter-time locking must
be used for writes. In addition, aborted transactions must update the version number for a location
when releasing its lock—if this were not done, then a concurrent call to ReadTx might see v1 before
the aborted transaction, and v2 after the aborted transaction, and not detect that the ReadTx call
has seen a tentative write.

These version number updates can be problematic under high contention: readers can be forced
to abort because of the version-number change, without actually seeing the aborted transaction’s
write. To address this problem, Felber et al. added an incarnation number to each piece of STM
metadata. An aborted transaction increments the incarnation number, but it does not change the
version number. The ReadTx operation checks that the incarnation numbers match in v1 and v2,
and that the read has seen a consistent snapshot of the location and its version number.

Version Number Overflow. As with per-object version numbers, an implementation using a global
clock must accommodate overflow. As before, if 64 bits are available then this is essentially a theoret-
ical concern. Felber et al. describe a technique for handling overflow in the clock [103]: a transaction
detects that a clock has overflowed when it is about to increment it from the maximum possible
value. The transaction aborts itself, waits for other transactions to complete, and then resets all ver-
sion numbers. This aborts some non-conflicting transactions unnecessarily, but for an n-bit clock,
it happens at most once every 2n transactions.

Memory Fences. A naïve implementation of a TL2-style ReadTx operation may require read-
before-read memory fences to ensure that the timestamp seen in v1 is read before the value, and
that the timestamp in v2 is read after. The overhead of these fences can be substantial on processors
such as the POWER4. Spear et al. investigate static analyses for reducing the number of fences that
are needed [304].

In the context of TL2, the idea is to decompose reads and writes into pre-validation, fence,
access, fence, and post-validation stages, and then to allow re-ordering of these stages with respect
to other code, so long as the relative ordering of these stages for independent accesses is retained,
and so long as the post-validation stage has been completed before any potentially unsafe use of the
value is made (e.g., a computed memory access, or an indirect branch). A fence may be removed if
it is adjacent to another fence.

For instance, if a transaction executes a series of K memory accesses, then these analyses allow
the set of initial version number reads to be moved into a batch, then a single fence executed, then
the actual K accesses made, and, finally, a second fence followed by the second batch of version
number reads. Consequently, 2K fences are replaced by 2.

4.3. LOCK-BASED STM SYSTEMS WITH A GLOBAL CLOCK 121

4.3.2 TIMEBASE EXTENSION
TL2’s use of a global clock guarantees that a transaction sees a consistent view of memory as it runs.
However, it can exhibit false positives in which a transaction is aborted despite seeing a consistent
view of memory. Consider the following example:

// Initially: global clock = 0

// Thread 1 // Thread 2
StartTx()

StartTx()
WriteTx(&x,42);
CommitTx();

r = ReadTx(&x);
...

In this case, both threads use RV=0. Thread 2 then runs its transaction completely, so it receives
WV=1, increments the global clock to 1, and sets the version number for x to be 1. Consequently,
Thread 1 sees this version number and aborts because it is later than its RV.

The problem here is that there is not really anything wrong with Thread 1’s transaction; its
view of memory is consistent with a serial order after Thread 2’s transaction, but the fact it saw RV=0
forces it to abort unnecessarily.

Riegel et al. introduced a mechanism to allow transactions to recover from this kind of false
conflict, while still detecting when a genuine lack of consistency occurs [264]. This mechanism was
applied to a TL2-style STM by Wang et al. [327], Zhang et al. [342] and Spear et al. [300]. Instead
of having ReadTx abort if it reads an object version later than RV, the read operation fetches a new
RV’ value from the global clock, and then validates its existing read-set according to the original RV.
If this validation succeeds, then RV’ can replace RV.

In the previous example, Thread 1 would set RV’=1, validate its (empty) read-set, and then
continue with RV=1. Conversely, if Thread 1 had read from x before Thread 2’s update, then the
validation would fail, and Thread 1’s transaction would need to be aborted.

Sadly, timebase extension means that the racy publication idiom is no longer supported. This
is because, referring to the execution example in Section 2.2.3.6, the validation check succeeds for
the data x and the flag x_published even though there was an intervening non-transactional write
to x. Whether or not this is important depends on the programming model that the STM wishes
to support; it illustrates the kind of trade-off that exists between the semantics provided and the
implementation techniques that are correct.

4.3.3 CLOCK CONTENTION VS FALSE CONFLICT TRADEOFFS
On some systems, the fact that every read-write transaction needs to update the global clock might
be a performance worry. Several techniques have been developed which allow threads to avoid
incrementing the global clock on every transaction or which replace a simple integer clock with

122 4. SOFTWARE TRANSACTIONAL MEMORY

a more distributed implementation. In many cases, these represent a tradeoff between reduced
contention on the global clock and a loss of concurrency between transactions.

Timestamp Re-Use Across Threads. Dice et al. observe that introducing a thread ID into the
timestamps permits some atomic compare-and-swap (CAS) operations on the global clock to be
removed [83]. Each object’s STM metadata is extended to include the ID of the thread that most
recently committed an update to the object.To obtain its new write version (WV), a thread compares
the current global clock with the write version from its own most recent transaction. If the numbers
differ, then the thread uses the global clock without incrementing it. If they do not differ, then the
thread increments the global clock as normal. The combination of this ID along with WV provides
a unique ID for the transaction. In the best case, this allows every thread to use the same version
number before incrementing the global clock.

The ReadTx function must be modified to detect a conflict on a read equal to RV. This can
introduce false conflicts, since it is not possible to distinguish a valid read from an earlier transaction
using a given version number, versus an invalid read from a later transaction with the same number.

Non-Unique Timestamps. Zhang et al. observe that, even without introducing thread IDs, there
are some situations where a timestamp can be reused [342]. In particular, if a set of transactions
commits concurrently and are all validated against one another at commit-time, then they can share
a timestamp. In effect, the validation ensures that there are no conflicts within the set, and a common
timestamp is sufficient to signal conflicts to transactions outside the set. The paper shows how to
exploit this observation by providing several variants of the CommitTx function.

Lev et al. describe this as a “pass on failure” strategy: an atomic CAS does not need to be
reexecuted if it fails when incrementing the global clock [188].

Avoiding False Updates. Zhang et al. observe that the original TL2 CommitTx function increments
the global clock even for transactions that fail validation [342]. In the paper, they examine ways to
exploit this observation, in different versions of the CommitTx function, and associated changes to
ReadTx.

Deferred Clock Update. Lev et al. describe a variant of TL2 termed GV5. With GV5, a transaction
does not write back the incremented value to the global clock, but it still uses the new value when
updating the STM metadata [188]. The version numbers in metadata may therefore have values
greater than that of the clock. Readers that see such values increment the counter to (at least)
the version number that they see. This can cause unnecessary aborts—e.g., one thread repeatedly
accessing the same location will abort on every other attempt.

Lev et al. also describe a hybrid scheme, GV6, which uses “pass on failure” with probability
1/32, and uses GV5 the rest of the time. They observe that this reduces unnecessary aborts by
advancing the counter periodically while still reducing the frequency of updating the counter.

Thread-Local Timestamps. Avni and Shavit introduced a technique to allow thread-local clocks to
be used in place of a common global clock [24].The STM metadata is replaced by (thread,time)

4.4. LOCK-BASED STM SYSTEMS WITH GLOBAL METADATA 123

pairs, where time is a value from a per-thread clock, incremented on every successful commit. In
addition to its own clock, each thread has an array of remote clock values for the other threads,
representing the latest times that the current thread has seen from each other thread.

In effect, this local array represents a transaction’s RV in a form of vector clock. If a transaction
running on thread t1 reads from an object with version (t2,v), then this is treated as being earlier
than RV if v is less than or equal to t2’s value in t1’s array. Unlike GV5, this avoids self-aborts
because one thread always sees the most up-to-date value for its own clock.

If a thread reads from an object which contains a timestamp later than its value for the writing
thread, then it aborts its own transaction and refreshes its value from the other thread’s clock.
These aborts can introduce false conflicts, and so this technique represents a tradeoff between the
work lost from false conflicts, versus the savings made by the reduction in communication between
non-conflicting threads.

4.3.4 ALTERNATIVE GLOBAL CLOCK ALGORITHMS
Other STM systems have used a notion of global time. Riegel et al. describe a multi-version STM
system that provides snapshot isolation [263] and linearizable transactions [262]. Each transaction
maintains a timestamp window during which its current snapshot is known to be valid. For instance,
after reading the current global clock into RV , this range is initially [RV , ∞]. The implementation
retains multiple versions of each object, valid over different timestamp windows, making it more
likely that a version is available which falls within the transactional timestamp window. If sufficient
versions are available, this guarantees that read-only transactions can always commit. As objects are
accessed, the timestamp window is reduced by intersection with the timestamps during which the
object’s data is valid.When accessing the current version of an object, the end of that version’s validity
is approximated by the current timestamp (since the point at which the version will become invalid
is not yet known). Re-validation allows the timestamp window to be extended, so long as there has
not been a conflicting update. To provide linearizability, the transaction’s timestamp window must
extend over its commit timestamp.

SwissTM [93] combines a TL2-style global clock, with mixed conflict detection: write/write
conflicts are detected eagerly, and read/write conflicts are detected only at commit time. To ac-
commodate this, Dragojević et al. use STM metadata that holds both a version number (for use in
validation) and a pointer to an owning transaction descriptor (to permit eager write/write conflict
detection). As Spear et al. discuss [302], this can allow transactions with read/write conflicts to
proceed in the hope that the reader commits before the writer.

4.4 LOCK-BASED STM SYSTEMS WITH GLOBAL
METADATA

In this section, we look at techniques for STM systems which use global metadata; that is, the
only shared metadata are global structures, with no individual locks or version numbers associated

124 4. SOFTWARE TRANSACTIONAL MEMORY

Insert(10)

Query(20) = false

Figure 4.6: A Bloom filter, using 3 hash functions. 10 is inserted by setting the 3 bits indicated. A query
of 20 returns false because not all 3 of its bits are set.

with objects in the program’s heap. The attraction of these systems is that they can avoid the space
overhead and cache pressure of using fine-grained metadata, and they can reduce the number of
atomic operations involved in running and committing a transaction.

There are two main challenges in designing an STM system with only global metadata:
First, since the metadata is shared among all of the threads, the design should access it sparingly

to reduce the amount of memory system contention.The systems we describe here typically make per-
transaction updates to the metadata, rather than per-access updates. In addition, the JudoSTM [236]
and NOrec [77] systems (Section 4.4.2) allow read-only transactions to execute without needing to
make any updates to the metadata.

Second, for all but the lowest levels of contention, the STM system needs a way to detect
conflicts in terms of the actual locations that a transaction accesses, rather than executing transactions
serially. We look at two techniques. The first (Section 4.4.1) is to use Bloom filter summaries of
a transaction’s read-set and write-set. These can be compared between transactions to determine
whether or not the transactions might conflict. The second approach (Section 4.4.2) is to use value-
based validation: recording the actual values seen by a transaction and checking these for conflicting
updates during commit.

4.4.1 BLOOM FILTER CONFLICT DETECTION
Bloom filters provide a conservative summary of a set’s contents [33]. They support constant-
time operations to insert and query items, and to test whether or not two sets have a non-empty
intersection. Queries on a Bloom filter are conservative, in the sense that query(x) may return true,
even though x is not actually present in the set. Conversely, if query(x) returns false, then the item
x is guaranteed to be absent from the set. A Bloom filter operates by using a set of hash functions
to map a value x into a set of indices in a bit-vector. An item is inserted by setting the bits at these
indices to 1. A query tests all of the indices, and it returns true if they are all set. Figure 4.6 illustrates
this; we return to hardware mechanisms for managing Bloom filters in Section 5.3.2.

RingSTM introduced the idea of Bloom filter-based conflict detection in a lazy-versioning
STM system [305]. This avoids using any per-location TM metadata in the heap, and it allows a
transaction to maintain its read/write-sets by using a pair of thread-local Bloom filters.

RingSTM uses a time-ordered shared list of transaction commit records. Each record holds
the transaction’s logical timestamp (assigned as part of the commit process), a Bloom filter for its

4.4. LOCK-BASED STM SYSTEMS WITH GLOBAL METADATA 125

write-set, a current status (WRITING, or COMPLETE), and a priority field. A WRITING transaction
is one which has been assigned a position in the serial order but not yet finished writing back its
updates. A COMPLETE transaction has finished its writeback phase.

A transaction starts by recording the logical timestamp of the oldest transaction in the list that
is WRITING. As a transaction runs, it maintains private Bloom filters for its own read-set and write-
set, and a redo-log of its proposed updates. To provide opacity, if desired, a transaction intersects its
read-set filter against the write-sets of other transactions when the shared list is modified. (In effect,
responding to modifications as with a global-commit-counter algorithm.) To commit, a transaction
validates its reads for a final time, and then it uses an atomic CAS to claim a new entry in the shared
list. This establishes the transaction in the serial order. It then completes its writes and updates its
status to COMPLETE.

The priority bit is used to avoid repeated re-execution in the case of conflicts: a thread commits
a dummy transaction with the high-priority bit set, and this disables non-high-priority transactions
from committing until the thread finishes the work it intended.

Rather than using a physical shared list of commit records, RingSTM organizes the list within
a fixed-size ring. Ring entries must be retained until they are COMPLETE. A transaction must abort
if its start time becomes older than the oldest ring entry; if this happens, then it will be unable to
obtain write-sets of the intervening transactions, and so it cannot detect conflicts reliably.

Mehrara et al. [218] describe an STMlite system used for conflict detection between
speculatively-executed loop iterations. As with RingSTM, threads maintain private Bloom filters
summarizing their accesses. However, commit is managed by a central transactional commit man-
ager (TCM) which uses the signatures to determine which transactions to allow to commit. Once
notified of the outcome from the TCM, a thread proceeds to write back the values. No synchroniza-
tion is needed on these writes because the TCM has already verified that transactions are updating
disjoint sets of data.

The InvalSTM system uses a form of commit-time invalidation based on Bloom filters [112].
Each transaction descriptor contains a valid flag, read/write Bloom filter summaries, and a redo
log. A transaction starts with its valid flag set to true, and, if opacity is required, the transaction
checks that the flag remains set after each of its memory reads. For a transaction to commit, it
checks its own write Bloom filter against the read/write Bloom filters of each of the other active
transactions in the system. If a conflict is detected, then a contention manager decides which of the
conflicting transactions should be stalled or should be aborted (by clearing its valid flag). Commits
are serialized on a global lock, and per-transaction-descriptor locks are used to protect the individual
read/write sets.

Gottschlich et al. argue that InvalSTM-style invalidation can have important advantages
for high contention workloads—e.g., if a writing transaction TA conflicts with a set of reading
transactions TB. . .TZ, then it is possible for the contention manager to delay TA or to abort it,
rather than requiring that all of the readers are aborted. They also showed that InvalSTM-style
invalidation can be particularly effective for memory-intensive read-only transactions: opacity is

126 4. SOFTWARE TRANSACTIONAL MEMORY

provided by the checks on the valid flag, and no commit-time conflict detection is required because
the write Bloom filter is empty.

4.4.2 VALUE-BASED VALIDATION
The second technique for conflict detection using simple global metadata is to use a form of value-
based validation, in which a transaction determines whether or not it has experienced a conflict based
on a log of the actual values that it has read from memory, rather than a log of version numbers.
However, a simple commit-time value-based check is insufficient. Consider the following problem:

1. Location X’s initial value is “A”.

2. Transaction T1 reads this value and records it in its read set.

3. Transaction T2 changes X’s value to “B” and commits.

4. Transaction T1 reads X again, but this time sees the value “B”.

5. Transaction T3 changes X’s value back to “A” and commits.

6. Transaction T1 commits and validates its read-set. Since X’s value has returned to “A”, the
transaction will pass validation, even though it read two inconsistent values for X.

JudoSTM. The JudoSTM system [236] ensures that a transaction’s reads always see values from
its own log (so that T1 would see the same value for X if it reads from it more than once), and it
ensures that transactions serialize their validation and commit operations using locks (so that there
cannot be any concurrent changes to X while T1’s accesses are being checked).

JudoSTM supports two kinds of commit: in coarse-grained mode, it uses a single versioned
lock to protect validation and commit operations. Writers hold the lock, and validate and commit
serially before incrementing the single version number.Readers commit without holding the lock,but
they check that the version number is unchanged before and after their work. JudoSTM supports an
additional fine-grained mode, in which a hash function maps individual locations to separate locks.

JudoSTM is also notable in using binary translation to add the instrumentation necessary for
using TM in C/C++.The translator generates specialized versions of the TM operations rather than
using general-purpose logs—e.g., it can specialize the validation code according to the number of
locations being accessed.

TML and NOrec. Dalessandro et al. describe a pair of STM systems which, as with JudoSTM,
operate using global metadata [77; 307].These are designed to provide low-cost fast-path operations,
livelock freedom between sets of transactions, and commit-time conflict detection.

The first system, TML, uses a single global versioned lock. This is used to directly serialize
writing transactions, being held while the transaction runs, and thereby allowing the transaction
to execute without maintaining logs of any kind (assuming that user-initiated roll-back is not sup-
ported).Read-only transactions record the current version number when they start, and they re-check

4.4. LOCK-BASED STM SYSTEMS WITH GLOBAL METADATA 127

it after every read in order to maintain opacity. This approach is effective in workloads where reads
are the common case. Of course, using a single lock without logging means that conflict detection
is extremely conservative: any writer conflicts with any other concurrent transaction.

The second system,NOrec, also uses a single global versioned lock,but unlikeTML, it acquires
the lock only when updating memory during commit. With NOrec, a transaction maintains a read
log of (addr,val) pairs and a snapshot timestamp (RV) taken from the global lock’s version number
at the point where the transaction began. Writes are made directly into the transaction’s redo-log,
with a hashing scheme used to avoid searching. Reads are a little more involved:

int ReadTx(TMDesc tx, int *addr) {
// Check for earlier write:
if (tx.writeSet.contains(addr))
return tx.writeSet[addr]

// Read consistent (addr,val) pair:
val = *addr;
while (tx.RV != global_clock) {
tx.RV = global_clock;
ValidateTx(tx);
val = *addr

}
// Update read-set:
tx.readSet.append(addr, val)
return val

}

The while loop ensures that the transaction’s RV still matches the global clock. If it does not, then
the transaction is re-validated: the ValidateTx function waits until the global lock is not held and
then uses the (addr,val) pairs in the read log to check whether or not the transaction is still valid.
This provides opacity, and ensures that a series of reads from the same location will see the same
value (without needing to explicitly search a read-log on every access).

Read-only transactions need no further work to commit since the ReadTx function has already
ensured that they were consistent at the point of their last read.To commit a transaction with writes,
the global lock’s version number is first sampled, the transaction re-validated, and then the global
lock is acquired (if the version number has changed in the meantime then the commit operation is
restarted). Assuming validation succeeds, then the transaction writes back its log and releases the
lock, incrementing the version number. Note how the use of a versioned lock enables the validation
phase to execute without needing to acquire the lock.

4.4.2.1 Hybrid Use of Value-Based Validation
Value-based validation has also been employed as a “second chance” scheme in the word-based
STM of Harris and Fraser (Section 4.5) where a transaction which fails version-number-based

128 4. SOFTWARE TRANSACTIONAL MEMORY

validation can refresh its expected version numbers by performing a value-based check [135]. Ding
et al. used value-based validation in their work on speculative parallelization using process-level
virtual memory [88], and Berger et al. used value-based validation as part of the Grace system for
multithreaded programming in C/C++ [30].

4.5 NONBLOCKING STM SYSTEMS

The final set of STM systems which we consider are those in which the individual STM opera-
tions provide nonblocking progress guarantees such as lock-freedom or obstruction-freedom (Sec-
tion 2.3.1). The first STM systems were developed to help implement nonblocking data structures,
and so naturally, they are needed to provide nonblocking progress guarantees. In this section, we dis-
cuss some of these early systems, along with more recent STM systems which combine nonblocking
progress with the kinds of implementation technique from the case studies of Sections 4.2–4.4.

The challenge in building a nonblocking STM system, as with other nonblocking algorithms,
is ensuring that the memory accesses made by a transaction all appear to take place atomically,
even though the implementation is performing a series of single-word atomic operations. Lock-
based STM systems can accomplish this by mutual exclusion: if thread T2 is committing a series of
updates, then it locks all of the locations involved, and the locking protocol prevents other threads
from accessing those locations until T2 is finished. With a nonblocking STM, it is impossible for
T2 to prevent T1 from using the memory locations that are involved in T2’s transaction. Instead, T2
must ensure that, no matter how far it has reached through its own commit operation, (i) T1 will
either see all of T2’s updates, or none of them, and (ii) if T1 attempts its own, conflicting, memory
accesses, then the conflict between T1 and T2 will be detected and resolved.

In this section, we introduce the key ideas used by DSTM, the first object-based nonblocking
STM system (Section 4.5.1). We then introduce the broader design space for this kind of STM,
which add one or more levels of indirection to each object’s representation (Section 4.5.2). Finally,
we describe techniques for building nonblocking STM systems without introducing indirection
(Section 4.5.3).

4.5.1 PER-OBJECT INDIRECTION
Herlihy, Luchangco, Moir, and Scherer’s paper [146] was the first published work to describe a
dynamic STM (DSTM) system that did not require a programmer to specify, in advance, the
locations that a transaction is going to access (unlike Shavit and Touitou’s original STM [285]).
DSTM introduced the use of an explicit contention management module in STM systems.

DSTM was implemented as a Java library, for use on an unmodified JVM. The programming
model used explicit transactions, rather than atomic blocks, and required that transactionally-
accessed objects were wrapped by instances of a TMObject class which provides transactional se-
mantics. These objects must be explicitly opened before being read or written in a transaction:

4.5. NONBLOCKING STM SYSTEMS 129

class TMObject {
// Construct new TM object, wrapping obj
TMObject(Object obj);
// Request read/write access to TM object,
// returning current payload
Object OpenForReadDSTM();
Object OpenForWriteDSTM();

}

Transactional objects are implemented via two levels of indirection (Figure 4.7(a)). First, an applica-
tion uses an instance of TMObject to uniquely identify each object in the program. Data structures
are built by using references to the TMObjects, rather than to the underlying application data. In
turn, a TMObject refers to a locator for the object, and the locator identifies: (i) the transaction that
most recently opened the object in write mode, (ii) an old value for the object, and (iii) a new value
for the object. A transaction descriptor itself records a status (ACTIVE, COMMITTED, ABORTED). For
simplicity, the locators themselves are immutable, and so updates to these three fields are made by
using an atomic CAS on the TMObject itself to replace one locator with another.

An object’s logical state can be determined using these data structures:

• If the previous writer is COMMITTED, then the locator’s new value is the logical state of the
object.

• If the previous writer is ACTIVE or ABORTED, then the locator’s old value is the logical state of
the object.

This definition is the crux of how a transaction can atomically update a set of objects: if its descriptor
is linked to all the objects involved, then a single change to its status field from ACTIVE to COMMITTED
will change the logical contents of all of the objects. Conversely, if one transaction TA encounters a
conflict with another transaction TB, then TA can force TB to abort by changing TB’s status field
to ABORTED using an atomic CAS operation.

Let us consider the operations invoked by an example transaction, TC, in more detail:
The OpenForWriteDSTM operation (Figure 4.7(b)) starts by checking if TC already has the

object open for write—i.e., if the object’s locator already refers to TC. If so, then the operation returns
the new value from the locator. Otherwise, TC must gain control of the object. First, if the object
is currently controlled by another active transaction (say, TD), then TC must ensure that TD has
finished. It does this by using an atomic CAS to change TD’s status field from ACTIVE to ABORTED.
At this point, either TD’s status field is ABORTED, or it is COMMITTED (if TD updated its own status,
concurrent with TC’s CAS). In either case, the outcome of TD is now fixed.

The next step is for TC to take control of the object. To do that, it determines the current
logical contents, based on the existing locator, and then allocates a fresh locator with the current
object installed as the old copy, and a clone of the object installed as the new copy.TC uses an atomic
CAS to replace the old locator with the new one (detecting a conflict if there has been a concurrent
replacement of the locator). Note how none of these steps changes the logical contents of the object;

130 4. SOFTWARE TRANSACTIONAL MEMORY

TMObject Locator

Controlling tx

Old body

New body

Tx descriptor

ACTIVE

... ...

Mutable by
controlling tx

Immutable
shared body

(a) Quiescent

TMObject Locator

Controlling tx

Old body

New body

Tx descriptor

ABORTED

... ...

New locator

Controlling tx

Old body

New body

Tx descriptor

ACTIVE

...

Mutable by new
controlling tx

(b) Open for write by a new transaction

TMObject Locator

Controlling tx

Old body

New body

Tx descriptor

ACTIVE

... ...

Read set entry

(c) Open for read by a new transaction

Figure 4.7: DSTM data structures and operations.

4.5. NONBLOCKING STM SYSTEMS 131

the new locator will yield the same logical contents as the old one, but places the object under TC’s
control.

The OpenForReadDSTM operation (Figure 4.7(c)) is simpler, determining the logical contents
of the object and adding the object to the transaction’s read-set (if it is not already held there).

The CommitTx operation needs to perform two steps. First, it must validate the read-set, to
check that it is still consistent at the point of commit. Second, if validation succeeds, the transaction
uses an atomic CAS to change its status field from ACTIVE to COMMITTED. If the transaction commits
successfully, then the start of validation forms the linearization point of CommitTx.

DSTM provides opacity, and the original description of DSTM used re-validation of the
complete read-set upon each OpenFor* operation [146]. Techniques such as a global commit
counter [302], visible readers, or semi-visible readers [188; 191] can be used to avoid full validation
much of the time.

Although the need to use TMObject structures and explicit OpenFor* calls can appear cum-
bersome, Herlihy et al. [147] showed how this kind of boilerplate can be generated automatically,
leading to a programming model comparable to the atomic blocks in Chapter 3. Korland et al.
used a Java bytecode rewriting framework to add STM instrumentation when loading Java classes,
supporting a programming model where individual methods can be marked @atomic [174]. These
atomic methods are instrumented with STM operations, along with their callees.

4.5.2 NONBLOCKING OBJECT-BASED STM DESIGN SPACE
DSTM was a highly influential early STM system, and it formed the basis for many subsequent
designs. The recurring themes in these systems are (i) dynamically associating objects with a trans-
action descriptor, to allow a single update to the descriptor’s status field to effect an atomic update,
(ii) defining a notion of the logical contents of an object in terms of a set of metadata values and
object snapshots, and (iii) using shared data that is generally immutable, such as locators, so that a
thread can determine the object’s logical value without needing locking. Examples of this form of
STM include those of Scherer and Scott [278], Guerraoui et al. [122], Fraser and Harris [105; 106],
Marathe et al. [209; 211], and Spear et al. [302].

This last piece of work introduced a taxonomy of the design choices which these systems take:

• When are objects acquired for writing? As in lock-based STM systems, the main options are
eager acquire in which a writer takes control of an object before writing to it, versus lazy acquire
in which a writer only takes control as part of its commit operation. Eager acquire enables
earlier conflict detection because the presence of a writer is visible. Lazy acquire means that
a transaction only causes conflicts when it is ready to commit, which can avoid livelock.
DSTM [146] is an example of eager acquire, while Fraser’s OSTM [105; 106] is an example
of one using lazy acquire. Marathe et al. describe an adaptive STM which can select between
both choices [209].

132 4. SOFTWARE TRANSACTIONAL MEMORY

• Are readers visible to writers? As in lock-based STM systems, invisible, semi-visible, and visible-
reader strategies are possible. Invisible readers avoid contention between readers in the memory
system. Visible readers enable earlier application of contention-management policies and can
avoid the need for incremental validation if opacity is to be provided. Marathe et al. describe the
use of per-object lists of visible readers [211], and Spear et al. describe the use of bitmap-based
visible readers, with each possible reader being represented by a bit in a single word added to
each object [302].

• How are objects acquired by transactions? Generally, either the TMObject refers to another meta-
data object, such as a DSTM locator, or the TMObject refers to a transaction descriptor from
which the current contents are determined.The latter approach is used in OSTM (Figure 4.8),
with a TMObject using a tag bit to distinguish whether or not the object is currently acquired.
If the object is quiescent then the TMObject refers directly to the current body. If not, then it
refers to a transaction descriptor, and the relevant body is found from its read/write-set entries.
Avoiding locators reduces the number of levels of indirection from 2 to 1. However, without
locators, STM systems usually need to visit each written object twice while committing: once
to install a transaction descriptor to acquire the object, and then once more, after commit, to
remove the descriptor.

• How do objects appear when they are quiescent? The main questions here are how many levels of
indirection are used between an object header and its payload, and whether or not fewer levels
of indirection can be used when an object is quiescent. Marathe et al. describe a technique to
let a TMObject refer directly to an object payload when it is not acquired [209]. In subsequent
work, Marathe et al. inline the new object payload into a locator-like structure. They also
introduce a “clean” bit into the TMObject to signal that the transaction descriptor from the
locator has committed [211] (Figure 4.9). This bit avoids needing to look at the descriptor
(typically reducing the number of cache lines accessed and allowing the descriptor to be re-
used).

• Which nonblocking progress property is provided? This typically entails a choice between lock-
freedom and obstruction-freedom. Lock-free STM systems usually acquire objects lazily, so
that if transaction TA finds itself obstructed by transaction TB, then TA is able to help TB
finish its commit operation. Lock-freedom can avoid livelock between transactions, but it can
introduce heavy contention in the memory system and, although it guarantees system-wide
progress, it does not provide guarantees to any given thread.

4.5.3 NONBLOCKING STM SYSTEMS WITHOUT INDIRECTION
The final set of STM algorithms that we examine combine nonblocking progress guarantees along-
side aspects of the lock-based designs from Section 4.2–4.4. Like many of the lock-based designs,
these STM systems avoid the need to add levels of indirection to the representation of objects in

4.5. NONBLOCKING STM SYSTEMS 133

TMObject Current body

...

(a) Quiescent

TMObject Tx descriptor

Status

Read-set

Write-set
Ownership bit

(b) Acquired

Figure 4.8: Memory structures in OSTM.

TMObject New body

Controlling tx

Old bodyRead bitmap

...

/

/

...

Tx descriptor

Status

Clean

bit

Figure 4.9: Memory structures in RSTM.

Heap Ownership records

Controller tx

Version

...

...

0

1

Controller tx 2

...

100:

200:

300:

ACTIVE

Tx descriptor

(100, old, new, ver)

Figure 4.10: Memory structures in WSTM.

memory; this can help simplify integration between the STM system and the rest of the language
implementation.

Harris and Fraser described the first of these systems [134]. This was a word-based STM
system, termed WSTM. With WSTM, data is usually stored in its normal format in the heap, using
a separate table of STM metadata entries which are associated with the heap under a hash function

134 4. SOFTWARE TRANSACTIONAL MEMORY

(Figure 4.10). WSTM uses lazy acquire and invisible reading, and each transaction’s descriptor holds
(addr,old-val,new-val,version) tuples for each location that the transaction has accessed.
Each metadata entry can hold either a version number, or it can refer to a controlling transaction
along with an ownership count (described below). A bit in the metadata distinguishes these cases.

A word W ’s logical contents is defined in terms of W ’s value and the value of the metadata
word associated with it, M(W):

• If M(W) holds a version number, then W holds its logical contents directly.

• If M(W) is owned by an ABORTED or ACTIVE transaction, then W ’s logical value comes from
the old value in the owning transaction’s descriptor (if it contains an entry for W) and from
W directly, otherwise.

• If M(W) is owned by a COMMITTED transaction, then W ’s logical value comes from the new
value in the owning transaction’s descriptor (if it contains an entry for W) and from W directly,
otherwise.

The use of hashing makes this more complex than the object-based systems because a metadata entry
acquired for one location will implicitly acquire other locations that hash to the same metadata. The
overall design, however, is similar to a lazy-acquire object-based STM in that a commit operation
starts by acquiring the metadata for its write-set, then it validates its read-set, then writes its updates,
and releases the metadata.

To make this algorithm nonblocking, if transaction TA is obstructed by transaction TB, then
TA uses the values in TB’s descriptor to help TB finish. There is one difficult case: if TB is in the
middle of writing back values to memory, then it will resume these writes when it is next scheduled,
potentially trampling on any intervening updates.To avoid this problem, the metadata entries include
an ownership count, incremented and decremented on each acquire and release. Direct access to a
location is enabled only when the count returns to zero; while it is non-zero, any updates must be
retained in a transaction descriptor linked from the metadata entry.

Marathe and Moir describe the design and implementation of this form of nonblocking
word-based STM in more detail [208], along with many extensions and enhancements to the use
of metadata-stealing techniques. They show how to provide variants using eager version manage-
ment and using global-timestamp-style validation. They show that, although the algorithm is very
complicated, the fast paths of a ReadTx operation are essentially the same as those of systems like
McRT-STM and Bartok-STM.

Harris and Fraser described an alternative implementation using OS support to remove trans-
actions from the commit function [135], and Spear et al. showed how Alert-on-Update hardware
can be used to avoid this OS support [306] (Section 5.5).

NZTM. Tabba et al. [313; 314] designed a nonblocking object-based STM system which combines
ideas from systems like DSTM with zero-indirection access to objects. Figure 4.11 shows the
structure of an object in NZTM. Each object can be in one of two modes inflated, in which case the

4.5. NONBLOCKING STM SYSTEMS 135

TMObject

Owner

Backup body

...

Tx descriptor

Status

Abort

request

...

Inflated

bit

Figure 4.11: Memory structures in NZTM (non-inflated).

object header refers to a DSTM-style locator, or non-inflated, in which case the object header refers
to a status field for the transaction which controls the object.

While in the non-inflated mode, the operation of NZTM is relatively straightforward. Each
object has a backup copy which was taken before the currently-owning writing transaction acquired
the object. If the owning transaction is ACTIVE or ABORTED then the object’s logical contents are
taken from this backup copy. Otherwise, if the owner is COMMITTED, the logical contents come from
the main object body.

Unlike earlier nonblocking STM systems,aborts are handled co-operatively via an abort request
flag which is stored in memory along with the owner’s status: if a transaction observes its own flag
set, then it acknowledges this by updating its own status to ABORTED.

If transaction TA requests transaction TB abort, but it does not receive a prompt acknowledg-
ment, then TA can inflate the object rather than waiting indefinitely. Inflation entails setting up a
DSTM-style locator and installing a reference to this locator as the owner of the object (along with
the inflated bit set). The logical state of the object now comes via the locator: as with the ownership
count in WSTM, the underlying state of the object cannot be accessed until the original owner has
finished aborting since other threads cannot prevent the original owner from making updates to the
original object body.

In practice, inflation would be expected to be rare because it occurs only if the owning trans-
action is unable to be scheduled for some reason (e.g., a page fault that takes a long time to be
serviced).

Tabba et al. describe how a single-compare-single-store operation would avoid much of the
complexity in NZTM, by letting a thread make all of its writes conditional on its abort-request
bit remaining clear [313; 314]. Marathe and Scott describe a similar, but earlier, simplification of
WSTM [210].

136 4. SOFTWARE TRANSACTIONAL MEMORY

4.6 ADDITIONAL IMPLEMENTATION TECHNIQUES
The case studies in Sections 4.2–4.4 illustrate many of the techniques used in STM systems for the
core problems of data versioning and conflict detection. In this section,we survey the implementation
techniques which are needed in order to build a full STM system from these foundations.

First, we describe how to support privatization and publication idioms, focusing in particular
on what is needed in order to support race-free programs (Section 4.6.1). Then, in Section 4.6.2,
we show how transaction-based condition synchronization can be implemented. Finally, in Sec-
tion 4.6.3, we describe support for irrevocable transactions.

4.6.1 SUPPORTING PRIVATIZATION SAFETY AND PUBLICATION SAFETY
In order to support privatization idioms, an STM system must respect synchronization that the
threads perform: if Thread 1 executes a transaction (TA) that is serialized before a transaction (TB)
by Thread 2, then code after TB should also appear to execute after TA. For instance, this might
occur if TA accesses an object that is shared, then TB makes the object private, and then code
after TB accesses the private object without using transactions. Menon et al. call this privatization
safety [220].

A similar publication safety property requires that if Thread 1 executes an operation before TA,
then the effects of this operation must be seen by TB. However, Menon et al. show that publication
safety is provided by STM systems so long as (i) the language need only support race-free programs,
(ii) the compiler does not hoist memory operations onto new program paths (such transformations
may introduce races into otherwise race-free programs), and (iii) the STM system itself does not
introduce speculative reads inside a transaction (e.g., via granularity problems such as those in
Section 2.2.3).

In this survey, we consider race-free programs, and, consequently, we focus on the techniques
for ensuring privatization safety. Work such as Grossman et al.’s [115], Menon et al.’s [219; 220], and
Spear et al.’s [299] has shown that there are many alternative and subtle definitions for programming
models that support various kinds of benign races.

In supporting privatization safety, the crux of the problem is ensuring that parts of the im-
plementation of transactions do not appear to occur after the transaction’s position in the serial
order—for instance, ensuring that zombie transactions are not visible to non-transactional code,
and ensuring that if TA is ordered before TB, then TA must have finished writing back its memory
updates before any code after TB accesses those locations.

4.6.1.1 Native Support
Some STM systems provide native support for privatization safety. This occurs naturally in systems
that use a commit token to serialize writing transactions—e.g., some configurations of JudoSTM,
NOrec, and RingSTM.

In these systems, the serialization of writing transactions ensures that the order in which
writers depart from their commit function corresponds with their logical commit order. In addition,

4.6. ADDITIONAL IMPLEMENTATION TECHNIQUES 137

the use of global metadata ensures that a read-only transaction, for whom data has been privatized
by a previous writer transaction, must wait for the writer to completely commit.

Dice and Shavit’s TLRW system [86] demonstrates an alternative approach to providing
native support for privatization safety. TLRW is based on encounter-time acquisition of read-write
locks and uses pessimistic concurrency control for all data accesses. The locks used by TLRW are
designed to be effective on chip-multi-processors in which the lock can be held in a cache that is
shared by the threads running transactions.

4.6.1.2 Process-Wide Fences
We now turn to techniques for supporting privatization safety in STM systems which do not provide
it natively. The first set of these techniques is based on process-wide fences to constrain the order in
which transactions finish their CommitTx operations.

As part of the McRT-Malloc allocator, Hudson et al. [162] used a quiescence mechanism to
ensure that a block of memory could be de-allocated: a free operation is deferred until transactions
which started prior to the free have finished or been successfully validated. This ensures that there
will be no residual accesses to the block, once it has been deallocated, and so it can be re-used for
a new purpose. Quiescence was implemented using an epoch-based scheme, with a global variable
identifying the current epoch, and transactions publishing the epoch number when they started. An
object can be deallocated once the epoch at which the free request was made precedes the current
epochs of every current thread. Handling deallocation is effectively a special case of the privatization
idiom. Similar quiescence mechanisms have been used in implementations of nonblocking data
structures [105].

Wang et al. [327] further developed this quiescence mechanism to use a linked list of active
transactions. A committing transaction is only permitted to finish once all of the transactions that
started prior to the commit have quiesced (either finished their own commit operations or have
validated successfully against the committing transaction). This ensures that, once a transaction TA
has finished its own commit operation, then (i) any transactions which are earlier in the serial
order have also finished their commit operations (hence, code after TA will see the effects of these
earlier transactions), and (ii) any transactions which conflict with TA will have noticed that they
are zombies (and finished rolling back their updates, when the technique is employed with eager
version management).

Concurrently with Wang et al., Spear et al. [301] generalized quiescence to support privatiza-
tion idioms in general. They introduced the idea of privatizing transactions executing a transactional
fence which causes them to wait until all concurrent transactions have finished, and hence until the
now-private data will not be accessed transactionally.

Menon et al. show how privatization safety can be enforced in a TM with lazy version man-
agement by a commit linearization mechanism [219]. In this technique, transactions obtain unique
tickets from a global sequence number at the start of their CommitTx operations. They wait, at the
end of CommitTx, for any transactions with earlier ticket numbers to have finished:

138 4. SOFTWARE TRANSACTIONAL MEMORY

bool CommitTx(TMDesc tx) {
mynum = getTxnNextLinearizationNumber();
commitStampTable[tx.threadID] = mynum;

if(ValidateTx(tx)) {
// Commit: publish values to shared memory
...
commitStampTable[tx.threadID] = MAXVAL;
// Release locks
...
// Wait for earlier TX
for (int i = 0; i < numThreads; i++) {
while (commitStampTable[i] < mynum) {
yield;

}
}

} else {
commitStampTable[tx.threadID] = MAXVAL;

// abort : discard & release
...

}
}

In this example, CommitTx obtains a unique linearization ticket number (mynum) and publishes this
in commitStampTable during its validation and write-back work. Once it has released its locks,
it waits until mynum is less than any entry in the commitStampTable. Consequently, this ensures
that transactions finish executing CommitTx in the same order that they are linearized, and so
any non-transactional accesses after one transaction will see any transactional accesses from earlier
transactions.

Marathe et al. describe a similar technique for privatization safety with lazy version manage-
ment used by Detlefs et al. [212].This is a ticket-based scheme using one shared counter that is used
to issue tickets to serialize writers, and a second shared counter which indicates which writers are
allowed to exit their CommitTx operation. A writer acquires a sequence number just before validating
its read-set. After its writebacks, it waits for its ticket to be “served”, before incrementing the current
ticket for its successor. This avoids iterating over a commitStampTable.

An attractive property of commit linearization and ticket mechanisms is that they require a
transaction to wait only for other transactions to finish executing the CommitTx function, rather than
requiring waiting while application code executes. However, unlike the earlier quiescence schemes,
commit linearization is not sufficient to support privatization safety if eager version management is
used: it does not ensure that conflicting transactions have observed the commit and finished rolling
back.

On some systems, a disadvantage of process-wide fences is that they introduce communica-
tion between transactions which are accessing disjoint sets of data. Yoo et al. show that providing

4.6. ADDITIONAL IMPLEMENTATION TECHNIQUES 139

privatization safety based on quiescence can be costly and scale poorly as the numbers of threads
grows [341].

4.6.1.3 Reader Timestamps
The underlying reason for needing process-wide fences is that, if an STM system uses invisible reads,
then a writing transaction cannot determine which other transactions it might need to synchronize
with. Conservatively, it therefore synchronizes with all concurrent transactions.

Semi-visible reads provide a mechanism to remove much of this synchronization, while still
avoiding the need for shared-memory updates for every object in a transaction’s read-set. Semi-
visible reads allow a transaction to signal the presence of readers, without indicating their identity.
Compared with fully visible reads, in which the identity of all readers is published in shared memory,
semi-visible reads can be more scalable because a set of concurrent readers need only signal their
presence once in total, rather than once for each member of the set.

Based on this idea, Marathe et al. describe a technique to provide privatization safety for an
STM system using a global-clock [212].The key idea is to extend STM metadata to include a reader
timestamp (RTS) in addition to the timestamp of the last writer. On a read, the STM system ensures
that RTS is no earlier than the reader’s start-timestamp (RV), incrementing RTS if necessary. At
commit-time, a writer detects the possible presence of conflicting readers by looking at the maximum
RTS of the locations that it has written to. Read-write conflicts are only possible if this maximum
RTS is later than the writer’s own RV. If a conflict is possible, then the writer synchronizes with all
transactions that started before its commit timestamp.

Assuming transactions typically access disjoint sets of data, the use of read timestamps reduces
the number of times that waiting is necessary. Marathe et al. describe important details of the
algorithm (such as avoiding self-aborts if a transaction performs a read-modify-write sequence)
and optimizations (such as a grace period which allows the read timestamps to be managed more
conservatively, trading off unnecessary synchronization against the frequency of timestamp updates).

4.6.1.4 Commit Indicators
The final privatization mechanism which we examine are commit indicators (CIs) from
SkySTM [188]. Unlike read timestamps, CIs can be used with per-object version numbers, as
well as with a global clock.

CIs exploit the observation that, if a transaction TW makes an object private, then it must
conflict with any other transaction TR that concurrently accesses the object (e.g., via a common
location that they access to determine whether or not the object is shared—not necessarily a direct
pointer to the object). In a system with lazy version management, Lev et al. identify that TW’s
CommitTx operation should not be allowed to complete until all of TR’s effects are written back to
memory.

Conceptually, CIs extend each metadata entry with a count of currently-committing transac-
tions which have read from data protected by the entry. A transaction increments the CIs for each

140 4. SOFTWARE TRANSACTIONAL MEMORY

TVar-A

BLOCKED

Wait queue entry

Read-set

Version

Value

Wait queue

Wait queue entry

Write-set

BLOCKED

Read-set

Write-set

TVar-B

Wait queue entry

Version

Value

Wait queue

Tx-1 Tx-2

Figure 4.12: Condition synchronization in STM-Haskell.

metadata entry in its read-set as part of its validation. It decrements the CIs after its write-backs are
finished. In addition, before releasing write ownership, a transaction waits until the CIs of all of the
locations to which it has written have decreased to zero. Lev et al. discuss constraints on the ordering
between these steps [188] and optimizations to use scalable nonzero indicators (SNZI) [97], rather
than simple counters.

4.6.2 CONDITION SYNCHRONIZATION
How do we combine condition synchronization with the STM systems from Sections 4.2–4.5?
Semantically, the retry operation (Section 3.2.1) can be seen as aborting the current transaction and
re-executing it, but a simplistic implementation built this way clearly performs very poorly because
of the resources consumed while spinning. Even if hardware threads are plentiful, the STM-level
and memory-level contention would usually be unacceptable.

To avoid actually spinning, an implementation needs a mechanism to allow a thread running
a transaction to block and to be woken when a possible update occurs. The implementation must
ensure that lost wake-ups do not occur (i.e., in the case of retry, that a thread is not left asleep once
a conflicting update has been committed).

STM-Haskell implements retry by installing a form of “trip wire” linking each piece of STM
metadata to a list of descriptors for transactions that have accessed it (Figure 4.12). A thread installs
these trip-wires before sleeping, a subsequent update notices them, and wakes the threads that they
refer to. In STM-Haskell, each transactional variable (TVar) contains a head of a doubly-linked list
of wait-queue entries for sleeping threads’ transactions. This allows multiple threads to wait on the
same TVar and, of course, for a single thread to wait on all of the TVars in its read-set.

In STM-Haskell, the retry implementation associates a lock with each transaction de-
scriptor and another with each TVar. A descriptor’s lock must be held while changing the state

4.6. ADDITIONAL IMPLEMENTATION TECHNIQUES 141

(BLOCKED/ACTIVE). The TVar’s lock must be held while manipulating the list of waiting transac-
tions.

Putting all this together, a retry operation:

• Acquires the lock on the current STM descriptor.

• Acquires the locks for the data in its read-set.

• Validates the transaction, to ensure that it (i) saw a consistent view of memory and (ii) this
view of memory is still up-to-date.

• Appends the transaction descriptor to the lists for the read-set locations.

• Updates the transaction’s status to BLOCKED.

• Releases all of the locks.

A commit operation briefly acquires the locks for the metadata for each location that it updates,
and it wakes any waiting threads linked to them. The STM-Haskell system employs a user-mode
scheduling library, and so the actual “sleeping” and “waking” involve directly manipulating the
scheduler’s data structures. Previous STM systems, without user-mode scheduling, used a per-thread
condition variable for sleeping [134].

The STM-Haskell implementation of orElse uses the same techniques as retry, except that
the thread must watch locations in both branches of the orElse: any update to any of the locations
causes the complete atomic block to be re-executed.

There is an important caveat in the implementation of orElse which was incorrect in the
original implementation of STM-Haskell. Suppose that the programmer writes this:

atomic {
try {
// X1

} orElse {
// X2

} }

If X1 invokes retry, then the tentative updates from X1 must be discarded before X2 is attempted.
However, the read-set for X1 must be retained and validated when X2 commits—and it must be
watched for updates if X2 invokes retry.The original implementation simply discarded the read set
along with the writes. That is incorrect because the left-to-right semantics in STM-Haskell require
that X1’s decision to invoke retry forms part of the atomic action.

4.6.3 IRREVOCABILITY
As discussed in Section 3.2, irrevocability provides a mechanism for integrating TM with some
non-transactional features by allowing a designated “unrestricted” [37], “irrevocable” [333] or “in-
evitable” [308] transaction to run without the possibility of being rolled back. STM systems imple-
ment irrevocability by requiring that a transaction acquires a single irrevocability token in order to

142 4. SOFTWARE TRANSACTIONAL MEMORY

become irrevocable. This can be implemented by an atomic CAS on a shared memory location to
indicate which thread, if any, is currently irrevocable.

Welc et al. introduced single-owner read locks (SORL) to McRT-STM to control the data
accesses made by a transaction while it is irrevocable. At most, one thread can hold an SORL on a
given object. Holding the SORL prevents concurrent threads from acquiring the pessimistic write
lock on the object. However, unlike the write lock, the SORL does not signal a conflict to concurrent
readers. This can allow greater concurrency. The extension of versioned locks to support SORL is
designed carefully to avoid changing the fast-path operations in McRT-STM [333].

To become irrevocable, a transaction must (i) acquire the irrevocability token, (ii) acquire the
SORLs for all its ordinary read-set entries, and (iii) validate that its read-set is still consistent. From
that point onwards, the transaction is guaranteed not to experience any conflicts. While executing,
an irrevocable transaction must acquire the SORL for each location before it reads from it. In this
approach, correctness relies on the fact that all operations which may conflict with an irrevocable
transaction will be performed via STM.

Spear et al. investigated a range of alternative approaches that trade off the possibility for
concurrency alongside an irrevocable transaction, versus the amount of instrumentation needed when
irrevocable [308]. In that framework, a global lock-based mode supports irrevocability without any
instrumentation of the irrevocable transaction—this enables, for instance, an irrevocable transaction
to perform non-transactional uninstrumented operations such as system calls. However, the global
lock-based mode does not allow any concurrency between an irrevocable transaction and any normal
transactions. Conversely, an SORL-like mode allows complete concurrency between the irrevocable
transaction and other transactions,but it requires that irrevocable reads and writes must update shared
metadata (either SORLs or a Bloom filter). A third mode allows read-only transactions to commit in
parallel with an irrevocable transaction, but it requires non-irrevocable writer transactions to block
at their commit point. The various implementations of this last mode include mechanisms that
avoid instrumentation of irrevocable reads, as well as mechanisms that require metadata inspection
on irrevocable reads but not metadata updates; the mechanisms all require eager acquisition of
locations, but sometimes they could do so without an atomic operation.

4.7 DISTRIBUTED STM SYSTEMS
The idea of transactions is often applied to distributed systems, using techniques such as two-phase
commit to ensure atomicity between a set of components in the presence of machine failures. It
is therefore natural to examine whether the ideas of TM might be applied as part of a distributed
programming model and to investigate implementation techniques for distributed STM systems.

4.7.1 STM FOR CLUSTERS
Manassiev et al. describe the first distributed STM system [205], targeting clusters of worksta-
tions, and building on the underlying Treadmarks software distributed shared-memory system (S-
DSM) [72]. The S-DSM system provides low-level page-based synchronization between processes

4.7. DISTRIBUTED STM SYSTEMS 143

running on distinct machines. In general, contemporary S-DSM systems implement a release-
consistency memory model [11], in which updates are propagated at synchronization points. A
race-free program sees a sequentially consistent view of memory across all computers.

Manassiev’s paper observes that the mechanisms of an S-DSM system can easily be adapted
to implement TM. The key differences are that transactions provide a mechanism to specify the
execution interval over which memory updates are buffered on a machine before being propagated,
and that transactions provide a different semantics for resolving conflicting memory references. A
transaction’s changes are obtained at a sub-page level by comparing the contents of a transactionally-
modified page against the contents of a clean copy. When a transaction commits, the TM sends
a change list to other computers which record but do not apply, the changes. Once all computers
acknowledge receipt of the change list, the transaction can commit. On a given computer, if the
change list updates a page being modified by an active transaction, then the transaction is aborted.
If the page is not being modified by a transaction, the changes are applied on demand, the page
is subsequently referenced to avoid delaying the committing transaction. Multi-versioning allows a
read-only transaction to continue executing with an outdated version of a page, even after receiving
an update.

Kotselidis et al. investigated a somewhat similar approach at the level of objects within a
Java Virtual Machine [179; 180]. They developed a distributed form of DSTM using object-level
conflict detection and version management between transactions, and commit-time broadcast of
transactions’ read/write-sets. When a node receives a broadcast, it compares the read/write-sets with
the accesses of its own local transactions, selects whether to abort its local work, or to request that
the broadcaster aborts.

4.7.2 STM-BASED MIDDLEWARE
In a series of papers, Cachopo and Rito-Silva [45; 46], Romano et al. [267], Carvalho et al. [51] and
Couceiro et al. [71] describe the use of a multi-versioned STM system to manage the in-memory
state of a distributed web application middleware. The system is used in the implementation of
FénixEDU, a campus activity management system used in several Portuguese universities.

A domain modeling language is used to describe the objects stored in the system and the
relationships between them. This model is used to derive code to make the objects persistent. The
objects are replicated across a cluster of machines, and transactions are dispatched to replicas under
the control of a load balancer. Upon commit, the write set of a transaction is sent to other replicas
using an ordered atomic broadcast service. This allows commit/abort decisions to be made locally,
given knowledge of the transaction’s read/write-sets and of the write-sets of transactions earlier in
the serial order.

The use of multi-versioned objects means that read-only transactions can always commit
without needing to communicate between replicas.Read-only transactions vastly outnumber updates
in the FénixEDU workload.

144 4. SOFTWARE TRANSACTIONAL MEMORY

4.7.3 STM FOR PGAS LANGUAGES
An alternative setting for distributed STM systems are partitioned global address space (PGAS)
languages, in which portions of an application’s heap reside in separate physical address spaces (as
opposed to distributed STM systems based on replicating the heap across a set of address spaces).

Bocchino et al. designed Cluster-STM for use across systems that might scale to thousands
of nodes [41]. In this large-scale setting, eliminating communication is critical for performance, and
so Cluster-STM employs techniques to reduce the cases where communication is required, and to
aggregate communication when it is necessary. For instance, operations on STM metadata can be
piggy-backed on requests to fetch the data itself.

A key design decision is to split a transaction’s descriptor across the nodes on which data is
accessed, rather than holding the descriptor on the node on which a transaction is initiated. This
co-locates the STM metadata with the fragments of all of the descriptors that are accessing it,
thereby reducing inter-node communication. Visible reading is used to avoid the need for additional
commit-time validation of each data item.

Dash and Demsky extend an object-based distributed STM with a pre-fetching mechanism
based on a static analysis to identify “paths” through a series of objects’ fields which are likely to be
followed by a thread [79].

4.8 STM TESTING AND CORRECTNESS
STM systems are complicated—both in terms of the concurrency-control algorithms that they use
and in terms of the low-level implementation techniques which are employed. Errors can creep in
at both of these levels, and so proofs of algorithmic correctness and techniques for testing imple-
mentations are both valuable.

Lourenço and Cunha [200] illustrated a range of problems that occurred when porting theTL2
STM system to a new platform and the techniques that they used to debug the system.Harmanci et al.
developed a domain-specific language (TMUNIT) for writing test cases that illustrate problematic
interleavings—e.g., examples like those of Section 2.2.3. Manovit et al. [206] used pseudo-random
testing techniques to exercise a TM implementation and then compared the behavior visible during
these runs with a formal specification of the intended semantics.

Guerraoui et al. showed that, for a class of STM algorithms with particular symmetry proper-
ties, exhaustive testing of 2-thread 2-location transactions is sufficient to identify important proper-
ties such as strict serializability, and obstruction freedom [118; 120]. This enables the use of model
checking, which is attractive because definitions of an STM algorithm can be kept reasonably close
to the source code (e.g., as in the models developed by O’Leary et al. for use with the SPIN model
checker [235]).

Cohen et al. used the TLA+ specification language to model a TM system and the TLC
model checker to test finite configurations of it [68]. In later work, Cohen et al. incorporated non-
transactional accesses and used the PVS theorem prover to obtain a mechanized proof of correctness
of a TCC-based system [69].

4.9. SUMMARY 145

Tasiran showed that a proof of serializability for a class of TM implementations can be
decomposed into proofs that the TM satisfies an “exclusive writes” property, a “valid reads” property,
and a “correct undo” property [315]. Based on this, he developed a model of the Bartok-STM system
using the Spec# language, and then he used automatic verification to demonstrate that it satisfied
these properties.

Doherty et al. defined a “weakest reasonable condition” correctness condition for TM and
developed techniques to facilitate formal and machine-checked proofs that TM implementations
satisfy the condition [89].

Hu and Hutton related the behavior of a high-level semantics for STM-Haskell to a model
of parts of the STM implementation on a lower-level abstract machine [161].

Moore and Grossman [226] and Abadi et al. [3; 6] provide operational semantics for languages
incorporating atomic actions and multiple lower-level models which incorporate aspects of TM
implementations—e.g., modeling interleaving between steps of different transactions and forms of
conflict detection and version management. For various classes of input programs, these lower-level
models are shown to produce equivalent results to the higher-level models.

4.9 SUMMARY
In this chapter, we have introduced techniques for software implementations of transactional mem-
ory, grouping systems into those with per-object version numbers (Section 4.2), those with a global
clock (Section 4.3), those which use only a small amount of global metadata (Section 4.4), and those
which are structured to allow nonblocking transactions (Section 4.5).

At a high level, there are apparent attractions and disadvantages of each approach; it is clear
that modern implementations of any of these forms of STM system substantially out-perform
early ones, although it is less clear how the relative performance of these mature implementations
compares. Inevitably, this will depend greatly on the workload and on the structure of the underlying
machine—e.g., whether or not the hardware threads share a common cache, whether or not it is
a multi-chip system, exactly what memory model is provided by the hardware and exactly what
programming model is supported by the STM system and the programming constructs built over
it.

147

C H A P T E R 5

Hardware-Supported
Transactional Memory

In this chapter, we introduce the main techniques that have been proposed for hardware implemen-
tations of transactional memory. Although STM systems are very flexible, HTM systems can offer
several key advantages over them:

• HTM systems can typically execute applications with lower overheads than STM systems.
Therefore, they are less reliant than STM systems on compiler optimizations to achieve per-
formance.

• HTM systems can have better power and energy profiles.

• HTM systems can be less invasive in an existing execution environment: e.g., some HTM sys-
tems treat all memory accesses within a transaction as implicitly transactional, accommodating
transaction-safe third-party libraries.

• HTM systems can provide strong isolation without requiring changes to non-transactional
memory accesses.

• HTM systems are well suited for systems languages such as C/C++ that operate without
dynamic compilation, garbage collection, and so on.

In Section 5.1, we introduce key components of a typical HTM system. We also discuss how
these components are implemented using conventional hardware mechanisms. As in the previous
chapter’s discussion of STM systems, the majority of this chapter is then structured around a series
of different kinds of HTM design. The first of these, in Section 5.2, are HTM systems based on
conventional mechanisms in which a processor’s hardware structures support access tracking and
version management, and existing cache coherence protocols detect data conflicts. We conclude the
section with a discussion of hardware challenges and the software considerations that they introduce.

Section 5.3 discusses alternative mechanisms that have been introduced to circumvent some
of the limitations and challenges of conventional HTM systems—e.g., to reduce implementation
complexity by decoupling various HTM functions from a processor’s hardware structures.We look, in
particular, at systems such as LogTM that use software-managed logs to hold updates [227], systems
such as Bulk that use Bloom-filter signatures for conflict detection [53], systems such as TCC that
decouple conflict checks from cache coherence protocols [132], and systems such as FlexTM that
allow lazy conflict detection via changes to an existing cache coherence protocol [290; 291].

148 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

In Section 5.4, we discuss HTMs specifically designed to support unbounded transactions—
i.e., transactions that may access an arbitrary amount of data or run for an arbitrary amount of
time. These systems typically aim to maintain the performance profiles and characteristics of a
conventional HTM while removing limits on the transactions that they can run. The proposals for
unbounded HTMs vary in the degree to which they combine hardware and software components;
a primary motivation for these proposals is to simplify the impact on the software tool-chains and
libraries by abstracting TM management from software (similar to how a processor’s virtual memory
system hides memory management from application software). These goals make such unbounded
HTM systems more complex than conventional HTM systems.

A new class of proposals has emerged that suggests exposing hardware mechanisms directly
to an STM, rather than executing the transaction directly in hardware. These proposals, discussed
in Section 5.5, use the hardware mechanisms to accelerate a SW transaction instead of directly
executing code transactionally.

Finally, in Section 5.6, we look at a number of enhancements and extensions which can be
applied to many of these different HTM systems. We focus primarily on mechanisms to support
nesting in hardware and mechanisms for integrating non-transactional operations (e.g., IO) and
system actions.

5.1 BASIC MECHANISMS FOR CONVENTIONAL HTMS

HTMs must perform similar tasks to STMs: they must identify memory locations for transactional
accesses, manage the read-sets and write-sets of the transactions, detect and resolve data conflicts,
manage architectural register state, and commit or abort transactions.This section discusses the basic
mechanisms employed by conventional HTM systems to implement these tasks.

5.1.1 IDENTIFYING TRANSACTIONAL LOCATIONS
The first step for an HTM is to identify transactional memory accesses.This is done via extensions to
the instruction set. Based on these extensions, HTMs may broadly be classified into two categories:
explicitly transactional and implicitly transactional:

Explicitly transactional HTMs provide software with new memory instructions to indi-
cate which memory accesses should be made transactionally (e.g., load_transactional and
store_transactional), and they may also provide instructions that start and commit transactions
(e.g., begin_transaction and end_transaction). Other memory locations accessed within the
transaction through ordinary memory instructions do not participate in any transactional memory
protocol.

Implicitly transactional HTMs on the other hand only require software to specify the
boundaries of a transaction, typically demarcated by instructions like begin_transaction and
end_transaction. They do not require software to identify each individual transactional memory
access; all memory accesses within the boundaries are transactional.

5.1. BASIC MECHANISMS FOR CONVENTIONAL HTMS 149

Explicitly identifying transactional accesses provides programmers with increased flexibility
and may aid in reducing the size of a transaction’s read-set and write-set. Explicit interfaces also
naturally allow transactional and non-transactional accesses to intermix. However, as with most
STMs, using an explicit interface can require multiple versions of libraries—one for use inside
transactions and one for use outside. Consequently, explicit interfaces can limit the reuse of legacy
software libraries inside HW transactions. Therefore, such HTMs are more suitable to construct
lock-free data structures where the transactions are fairly small and limited in scope, and software
reuse is not a priority. Conventional examples of explicit HTMs include the Herlihy and Moss
HTM [148], Oklahoma Update [309], and the Advanced Synchronization Facility [61] proposals.

Implicit identification of transactional locations restricts instruction changes to the bound-
aries of a transaction. Therefore, these HTM systems can enable reuse of existing software libraries,
and they typically do not require multiple code versions to be compiled. However, implicit inter-
faces provide limited controllability over transactional memory locations. Recent proposals extend
implicitly transactional HTMs with a capability to identify non-transactional memory locations,
thereby bridging the flexibility gap with explicitly transactional HTMs. Examples of implicit HTM
systems include Speculative Lock Elision [248], the Rock HTM [82], and the Azul HTM mecha-
nisms [66]. Most modern HTM proposals follow an implicitly transactional model (including most
of the proposals discussed in this chapter).

While both HTM models support mixing transactional and non-transactional operations
within a transaction, this can introduce specification complexity and memory ordering challenges—
especially where the addresses involved may overlap.

5.1.2 TRACKING READ-SETS AND MANAGING WRITE-SETS
As with STM systems, an HTM must track a transaction’s read-set and must buffer the transaction’s
write-set. HTMs have a distinct advantage over STMs in this respect: modern hardware has mech-
anisms such has caches and buffers already in place to track memory accesses. HTMs can extend
these mechanisms to manage their reads and writes without the overheads typically associated with
STM systems.

Nearly all modern processors have a hardware cache to exploit spatial and temporal locality
of data accesses. Processors look up this cache using a memory address and, if this address is present
in the cache, the processor sources data from the cache instead of from main memory. Data access
is a performance-critical aspect of processors and so hardware designers optimize caches to provide
low-latency access to data. The data cache serves as a natural place to track a transaction’s read-set
because all memory reads involve cache look-ups.

The early HTM proposal from Herlihy and Moss [148] duplicated the data cache, adding a
separate transactional cache to track the transaction’s read and write sets. Adding a new transactional
cache in parallel with an ordinary data cache adds significant complexity to modern microprocessors
as it introduces an additional structure from which data may be sourced. It is challenging to add this
extra logic to an optimized performance-critical data path. Consequently, extending the existing data

150 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

cache to track read-sets has therefore become more popular (e.g., this approach is taken in systems
such as SLE [248], Rock HTM [82], and Azul’s HTM system [66]).

Most proposals based on cache extensions add an additional bit, the read bit, to each line in the
data cache. A transactional read operation sets the bit, identifying the cache line as being part of the
transaction’s read-set. This is a fairly straightforward extension to a conventional data cache design.
Such designs also support the capability to clear all the read bits in the data cache instantaneously.

Hardware caches enable HTMs to achieve low overhead read-set tracking; however, they also
constrain the granularity of conflict detection to that of a cache line. Additional access bits may be
added to reduce the granularity for tracking.

Hardware caches can also be extended to track a transaction’s write-set.This extension requires
the addition of a speculatively written state for the addresses involved (e.g., [34; 38; 66; 247]). Since
data caches are on the access path for processors, the latest transactional updates are automatically
forwarded to subsequent read operations within the transaction; no special searching is required to
locate the latest update. However, if the data cache is used to track the write-set, then care is required
to ensure that an only copy of a line is not lost—e.g., in systems where caches allow processors to
directly write to a location in the cache without updating main memory. A requirement is that the
now-dirty cache line must eventually be copied into main memory before it is overwritten by a
transaction’s tentative updates. If we did not do this, we would lose the only copy of the cache line
following an abort.

To avoid any modifications to the data cache, some HTM proposals add dedicated buffers to
track read-sets and to buffer write-sets (Oklahoma Update [309] and the Advanced Synchronization
Facility [61] are two examples). Hybrid models are also possible; e.g., the SLE proposal and Rock
HTM both use the data cache to track the read-set while using the store buffer to track the write-set.
Using dedicated buffers may be sufficient if the HW transaction is expected to operate on only a
handful of memory locations.

Zilles and Rajwar studied the effectiveness of a data cache for tracking read-sets and write-
sets [348]. They considered an HTM design with a 32KB 4-way set associative data cache with
64-byte cache lines and found that such an HTM could frequently support transactions up to 30,000
instructions that operate on hundreds of cache lines; that was fairly large compared to common
perceptions. However, in this kind of system, a transaction must be aborted whenever an overflow
occurs. Such overflows occur due to set associativity conflicts. Overflows can further be mitigated
using a victim cache. A single victim cache increases the data cache utilization for transactions by
16% (increasing utilization to 42%).

A few proposals exist that do not provide a cache line granularity and instead provide hardware
support for objects, a software construct. Khan et al. [169] integrate transaction management with
the object translation buffer used in a processor with an object-based model of execution [334; 335]
instead of a conventional cache line model.

5.1. BASIC MECHANISMS FOR CONVENTIONAL HTMS 151

5.1.3 DETECTING DATA CONFLICTS
Just as with STM systems,HTMs must detect data conflicts.This typically requires checking whether
the read-sets and write-sets for concurrently executing transactions overlap and conflict. Here again,
HTM systems have an advantage over STM systems: HTMs that use local buffers to track read-sets
and write-sets can use cache coherence mechanisms to detect data conflicts. In this section, we first
provide a brief overview of common cache coherence approaches, and then demonstrate how HTMs
can build on these coherence protocols to implement conflict detection.

Caching in a multiprocessor system results in multiple copies of a memory location being
present in different caches. Hardware cache coherence provides mechanisms to locate all cached
copies of a memory location and to keep all such cached copies up-to-date. While numerous cache
coherence proposals exist, two common alternatives are snoop-based and directory-based.

A read operation requires locating the up-to-date cached copy. In a snoop based system, if
a processor needs to locate the latest value of a memory address, it broadcasts the request to all
other caches. Conversely, a directory-based coherence protocol maintains a directory entry for each
memory location, and this entry records where all the copies of a location reside. Many alternatives
and hybrids exist, but all require some mechanism to locate all cached copies.

A write operation to a cache must keep all cached copies up-to-date. This usually involves
invalidating stale (out-of-date) copies or (less commonly) updating those copies with the newly
written value. If two processors simultaneously issue a write to the same location with different
values, cache coherence protocols ensure that all processors observe the two writes in the same order,
with the same value persisting in all copies. In invalidation-based cache coherence protocols, the
cache with the dirty copy of a line (i.e., the cache that has modified it with respect to memory) is
responsible for servicing read requests from other processors which require access to the line.

To support cache coherence, each cache line in a cache has an associated cache state. Sweazey
and Smith [310] provide a MOESI classification which forms the basis for nearly all coherence
protocols. The MOESI classification is based on the various states a cache supports, and the terms
arise from the names of the cache states. The invalid state (I) means the address is not present in the
cache. The shared state (S) means the address is present in the data cache and it may also be present
in other data caches, hence the shared nature of the state. Because of the shared nature, if a processor
needs to update the location, it must request write permissions from other data caches. A processor
cannot update an S state cache line by itself. In contrast, for the exclusive state (E), an address is
exclusively present in the data cache and is not present in any other data cache. A processor can
typically update the E state cache line directly without asking for permission. When it does so, the
processor changes the state of the cache line to the modified state (M). This is the latest copy of the
cache line and is only present in this cache. This data cache is responsible for servicing a subsequent
request to this line. The E and S states share one common feature: in both cases, the cache line
is clean, and the latest copy of the cache line also resides elsewhere, either in memory or another
cache.The MESI states are the most common states in commercial multiprocessors. However, some
systems also support the owned state (O). In the O state, the line is dirty but is also possibly shared

152 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

with other caches. Since the line is dirty, this data cache owns the line and is responsible for providing
this data when other processors request it. However, since it is shared, the processor cannot write
the line without requesting write permission from other caches.

While the above mechanisms may seem elaborate and complex, nearly all modern micropro-
cessors support them. HTMs can utilize these existing MOESI protocols to detect conflicts: any
write request from another processor to a line in the M, E, S, or O state that has been read trans-
actionally is a data conflict—another processor is attempting to write to a line that has been read
in a transaction. Similarly, any read request from another processor to a transactionally-written line
in the M state is also a data conflict. In both these cases, the underlying cache coherence protocol
automatically provides mechanisms to identify data conflicts.

5.1.4 RESOLVING DATA CONFLICTS
Once a data conflict has been detected, it must be resolved. Nearly all conventional HTM proposals
perform eager conflict detection (Section 2.1.3), aborting the transaction on the processor that
receives the conflicting request, and transferring control to software following such an abort. This
approach is simplest from the point of view of a hardware implementation. A software handler
then executes and may decide to reexecute the transaction or to perform some kind of contention
management. Notification of the causes of conflicts can be a valuable tool in debugging performance
problems in software using TM: most HTM proposals provide a new architecture register for this
purpose.

Selecting the ideal hardware contention management technique remains an open research
problem, similar to contention management in STM systems. Research has shown the importance
of effective conflict resolution—for instance, Shriraman and Dwarkadas’s work on the FlexTM
system [290] showed that eager conflict detection requires the careful use of contention management
in order to remain effective under high contention; we return to FlexTM in Section 5.3.4.

5.1.5 MANAGING ARCHITECTURAL REGISTER STATE
So far, we have discussed tracking and managing state in memory. However, in addition to memory
state, software also has associated register state that is architecturally visible.

Collectively, these architectural registers and memory combine to form a processor’s precise
state. From the point of view of software, a single thread in a program has a sequential execution
model [296].A program counter identifies the instruction that the processor is to fetch from memory;
the processor starts executing the instruction; the instruction may access memory and may operate
on registers in which data may be stored. When the instruction’s execution completes, the program
counter is updated to identify the next instruction to execute.The register state at this point becomes
part of the processor’s precise state for the retired instruction. This sequence also occurs within an
HTM transaction. When a transaction aborts, the register state therefore must also be restored to a
known precise state, typically corresponding to just before the start of the transaction.

5.1. BASIC MECHANISMS FOR CONVENTIONAL HTMS 153

Some HTM systems rely on software to perform such a recovery while other HTM systems
build on existing hardware mechanisms to recover architectural register state. One straightforward
approach for hardware register recovery entails creating a shadow copy of the architectural registers
at the start of a transaction. This can be maintained in an architectural register file (ARF). This
operation can often be performed in a single cycle. An alternative approach can be possible in
processors that already employ speculative execution to achieve parallelism and high performance.
These processors rename the architectural registers into an intermediate name to allow multiple
consumers and writers of these register names to execute in parallel, while maintaining the correct
data dependencies and program order. The intermediate name is often part of a larger pool of
registers, also referred to as physical registers to contrast them with architectural registers. A special
table, called the register alias table (RAT), tracks the mapping between the architectural registers and
physical registers at any given time. For these processors to support register recovery in an HTM,
the register mechanisms must be enhanced.

Software managed register recovery can be appropriate if the target transactions are simple
and small—e.g., operating on a few data items and not calling into unknown functions. In such
scenarios, static analysis can be used to identify registers to save and recover; this analysis becomes
more complex with longer transactions, leading to larger save/recover footprints, and consequential
overheads. Hardware supported register recovery tends to perform better in such transactions.

Hybrid design are also possible—for instance, relying on hardware to recover the contents
of the stack-pointer, frame-pointer, or callee-save registers, and relying on software to recover the
contents of the remainder of the register set.

5.1.6 COMMITTING AND ABORTING HTM TRANSACTIONS
Committing a HW transaction requires making all transactional updates visible to other processors
instantaneously. In turn, this requires obtaining the appropriate permissions for all locations accessed
by the transaction and then ensuring that the local state for these locations transitions to a committed
state without being interrupted.

For HTMs that use a local hardware buffer such as a store buffer, this requires obtaining
write permissions for all the transactional addresses, blocking any subsequent requests from other
processors, and then draining the store buffer into the data cache. Even though the drain is not
instantaneous, it is of finite duration, other processors cannot observe any intermediate state.

HTMs that use the data cache to buffer transactional stores require a new cache state array
design. Blundell et al. describe one approach incorporating flash-clear and conditional-flash-clear
facilities (Figure 5.1).This design provides a cache cell where read and write sets can be operated upon
instantaneously: when the clear signal is asserted, both the read and written bits are pulled down.
When conditional_clear is asserted, the valid bit is pulled down if the speculatively-written bit
is high.

In such designs, the commit and abort operations can also be performed in a cycle. However,
cache accesses are on the critical path in modern microprocessors and adding logic into state array

154 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

Speculatively read bit
clear

bit
word line word line word line

bit bit bit bit bit

conditional_clear
Speculatively written bit Valid bit

Figure 5.1: Adapted from Blundell et al. [38], the figure shows an example SRAM cell augmented with
a flash-clear and a conditional-clear capability.

cells introduces timing risk and complexity. Nevertheless, reusing existing structures and data paths
is highly desirable.

5.2 CONVENTIONAL HTM PROPOSALS

The first set of HTM designs we look at extend conventional microarchitecture mechanisms to
incorporate transactions—they use hardware structures to track accesses, they use buffers or caches
to hold tentative state, and they use a conventional cache coherence protocol to detect conflicts.This
approach supports transactions of modest size (typically hundreds of cache lines) and modest dura-
tion (tens of thousands of instructions). These designs also rely on alternative software mechanisms
if a transaction exceeds local cache buffering or its scheduling quanta.

We start by considering conventional HTM proposals where explicit transactional memory
accesses are required (Section 5.2.1). We then consider proposals where memory accesses within
a transaction are implicitly transactional (Section 5.2.2). Next, we examine hybrid systems that
combine an HTM system for some transactions with an STM system for others—e.g., switch-
ing to software for long-running transactions, or those that experience frequent conflicts, or those
that use features not supported by a given HTM (Section 5.2.3). Finally, with these examples in
mind, we discuss the trade-offs in the design and specification of the interfaces to HTM systems
(Section 5.2.4).

5.2.1 EXPLICITLY TRANSACTIONAL HTMS
We start by considering four forms of explicitly transactional HTM system—i.e., designs in which
new instructions are used to identify which memory accesses should be performed transactionally.
Memory locations accessed through normal load and store instructions do not participate in the
transactional memory protocol, even if these accesses occur during a transaction.

5.2. CONVENTIONAL HTM PROPOSALS 155

These HTMs provide programmers fine control over hardware resources of an HTM and
often suit programming models geared towards the construction of lock-free data structures.

We start with an influential proposal from Jensen et al. [165]. While the proposal provided
tracking for only a single address, it may be considered the first optimistic synchronization primitive
based on cache coherence mechanisms and laid the foundations for future conventional HTM pro-
posals. The paper observed that a processor could use the cache coherence protocol to optimistically
monitor a memory location for conflicts and conditionally perform operations if the location did not
experience a conflict.This observation was later generalized by Herlihy and Moss and the Oklahoma
Update proposals.

Jensen et al.’s Optimistic Synchronization. The proposal included a reservation register and pro-
vided three new instructions to the programmer: sync_load for reading a memory location (and
initializing the reservation register), sync_store for writing a memory location if the reservation
was still valid, and sync_clear to explicitly terminate the speculation. A coherence conflict to the
reservation register would result in a reservation loss and this was communicated through a condition
code.

A sync_load operation starts monitoring a given location, and a subsequent sync_store
succeeds only if no conflict has occurred. The store does not need to refer to the same data address
as the load, thereby allowing programmers to monitor one location and write another. For example,
if the algorithm computes only one data item from a set of data, a programmer convention can
establish one data item to define exclusive access over the entire data set.

Jensen et al.’s paper influenced synchronization mechanisms in numerous commercial micro-
processors; MIPS, Alpha, and PowerPC-based processors implemented variants of the optimistic
synchronization proposal [70; 166; 293].

Herlihy and Moss HTM. Herlihy and Moss coined the term transactional memory and introduced
three key features for an HTM system: special instructions to identify transactional memory loca-
tions, a transactional cache to track the read and write sets of the transaction, and extensions to a
conventional cache coherence protocol to detect data conflicts.

Programmers use three new instructions to explicitly identify transactional accesses:
load-transactional, store-transactional, and load-transactional-exclusive. The
latter provides a way to identify read accesses for which a subsequent write was likely. Programmers
can explicitly end transactions using a commit or abort instruction.

The following code sequence shows the use of Herlihy and Moss’s instructions to insert an
element into a doubly linked list (taken from [148]). While this usage requires a certain level of
programmer expertise, it also provides a flexible interface to identify addresses to track and buffer.

156 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

// Usage of new instructions to construct data structure
typedef struct list_elem {
struct list_elem *next;
struct list_elem *prev;
int value;

} entry;

entry *Head, *Tail;

void Enqueue(entry* new) {
entry *old_tail;
unsigned backoff = BACKOFF_MIN;
unsigned wait;
new->next = new->prev = NULL;
while (TRUE){
old_tail = (entry*) LOAD_TRANSACTIONAL_EXCLUSIVE(Tail);
// ensure transaction still valid
if (VALIDATE()) {
STORE_TRANSACTIONAL(&new->prev, old_tail);
if (old_tail == NULL) {
STORE_TRANSACTIONAL(&Head, new);

} else {
STORE_TRANSACTIONAL(&old_tail->next, new);
// store pointer transactionally

}
STORE_TRANSACTIONAL(&Tail, new);
if (COMMIT()) // try to commit
return;

}
wait = random() % (01 << backoff);
while (wait--);
if (backoff < BACKOFF_MAX)
backoff++;

}
}

The proposal (Figure 5.2) incorporates a dedicated fully-associative transactional cache, in
parallel to an existing data cache. The additional cache tracks a transaction’s accesses and buffers
its tentative updates. Herlihy and Moss proposed exposing the size of the transactional cache to
programmers, thereby allowing code to be written with a guarantee that transactions of a given size
can execute in hardware.

ATACTIVEhardware flag tracks whether the processor has an active transaction and aTSTATUS
hardware flag tracks whether the processor has received an abort condition. The proposal does not
include an explicit instruction to start a transaction; instead, a transaction implicitly started on the
first transactional instruction executed while the TACTIVE flag is clear.

5.2. CONVENTIONAL HTM PROPOSALS 157

L1 cache

Processor

Transactional
TagTag Transactional

Data

Fully Associative Transactional Cache

+ coherence protocol support (

TACTIVE

TSTATUS

Cache
State

new bus cycles)

Figure 5.2: Herlihy and Moss’s dedicated transactional cache.

Adding a new cache in the data path for loads and stores requires special mechanisms to
ensure the correct architectural state is available. When a transactional access is performed, two
entries for the address are allocated—one with a commit tag (storing the original data value) and one
with an abort tag (storing the new data value). On a successful commit, the entry with the commit
tag would be discarded. On aborts, the entry with the abort tag would be discarded. Maintaining two
entries allows the transactional cache to retain an up-to-date copy of a memory location irrespective
of whether a transaction commits or aborts. To allow transactional state to spill over from the
transactional cache, the authors suggest the use of a “LimitLESS” directory scheme [56], in which
software can emulate a large directory.This allows using hardware for the common case and software
for the exceptional case.

An ownership-based protocol detects conflicts by matching incoming coherence requests
against the transactional cache in parallel with the data cache. If a conflict is detected, then a
TSTATUS flag is set to indicate that an abort condition has occurred. A transaction that experiences a
data conflict does not abort immediately; instead, it continues to execute, thus admitting inconsistent
reads. To ensure that a transaction does not see an inconsistent view of memory (Section 2.2.2), the
proposal includes a validate instruction which lets a transaction test the status flag. Software

158 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

must perform validation, recover register state on aborts and ensure forward progress (e.g., using
contention management, of the kind described in Section 2.3).

Herlihy and Moss also provide conflict resolution where a processor could selectively refuse
giving up ownership (through the use of NACK responses).This improves performance in the presence
of conflicts and reduces livelock situations.

Oklahoma Update. Concurrent with Herlihy and Moss’ proposal, Stone et al. proposed the multi-
word Oklahoma Update [309] mechanism. As with Herlihy and Moss’ system, Oklahoma Update
was intended for writing scalable shared-memory data structures by allowing short critical sections
to be replaced by multi-word atomic updates.

In contrast to Herlihy and Moss’ transactional cache, Oklahoma Update extended Jensen
et al.’s proposal to include multiple reservation registers (up to 8), thereby providing a form
of HTM-like multi-word atomic update. It introduced new instructions read-and-reserve,
store-contingent, and write-if-reserved to manipulate the reservation registers. These
reservation registers also served as storage for the tentatively buffered data and were exposed to
the cache coherence protocol to enable conflict detection.

The Oklahoma Update checked for and resolved data conflicts at commit time in two phases.
In the first phase, the processor requests write permission for locations in reservation registers that
did not have these permissions. Deadlocks may arise during the permissions acquisition phase. To
avoid deadlocks, the hardware obtains write permissions in ascending order of address [67]. If the
incoming request address is larger than the least reserved address for which the processor does not
have write permissions, the processor releases its reservation. If the incoming request address is
smaller than the least reserved address for which the processor does not have write permission, the
processor defers the request in a buffer and services it later. This prevented livelock but did not
provide starvation-freedom or wait-freedom. Once all permissions have been obtained, the second
phase starts and the processor commits the data values. During this phase, the processor does not
abort and is uninterruptible. The two-phase implementation was similar to two-phase locking from
database transaction-processing systems [32]. The processor services the deferred external requests
on commits and aborts, servicing the first request to a given address and then forcing a retry of the
remaining requestors queued to the same address.

Advanced Synchronization Facility. Recently, the Advanced Synchronization Facility (ASF) pro-
posal [61] from Advanced Micro Devices takes a similar approach to the explicit HTM systems
discussed so far. It introduces a SPECULATE instruction to begin a transaction, along with a COMMIT
instruction to mark the end. Control returns implicitly to the SPECULATE instruction if the specu-
lative region aborts, setting the processor flags to indicate that this has occurred. Simple flattened
nesting is supported; speculation continues until the outermost COMMIT occurs. ASF proposes the
use of a LOCK prefix to be added to memory accesses that should be performed transactionally. In the
implementation proposal, ASF proposes the use of dedicated registers, similar to Oklahoma Update,
to perform a multi-word compare-and-swap-like operation.

5.2. CONVENTIONAL HTM PROPOSALS 159

Neither the Herlihy and Moss proposal nor the Oklahoma Update proposal perform register
recovery in hardware but rely on software to recover register state. The ASF proposal recovers
the stack pointer but relies on software to recover the remaining registers. This software-centric
approach for register recovery is motivated by the target usage model. Since these proposals are
geared towards fairly small-sized transactions that target lock-free data construction and require
explicit identification of transactional locations, they already require a certain level of programmer
expertise and code modification. Requiring programmers to also take care of architectural state
recovery would seem to be a minor incremental burden.

5.2.2 IMPLICITLY TRANSACTIONAL HTM SYSTEMS
In implicitly transactional HTMs, a programmer uses new instructions to identify the boundaries
of a transaction, and all memory accesses performed within those boundaries are considered to be
transactional. In this kind of model, the programmer does not have to explicitly identify transactional
memory accesses.

Speculative Lock Elision. Speculative Lock Elision (SLE) [248; 249] is an implicitly transactional
HTM design proposed for a modern out-of-order processor.The SLE proposal extends a processor’s
existing hardware mechanisms to perform access tracking and version management (using the exist-
ing data caches and write buffers for doing so). Unlike Herlihy and Moss’ HTM, the SLE proposal
re-uses the speculative execution engine’s mechanisms to roll back register state, rather than rely-
ing on software. In addition, SLE identifies transactional accesses based on instruction boundaries
instead of individual memory locations; within a transaction, all accesses are transactional.

SLE uses the data cache to track transactional read-set by extending each cache line with an
access bit.The SLE implementation uses the store buffer to hold updates performed transactionally.
Aborts require the store buffer’s tentative updates to be discarded. Commits require making the
store buffer’s updates visible instantaneously. The hardware issues exclusive ownership requests for
the addresses in the store buffer but without making the tentative updates visible. SLE also sets
the access bit along with the M state when a tentative store accesses the data cache. This enables
conflict checks against stores. SLE cannot initiate the commit sequence until all such requests have
been granted. Once all required coherence permissions are obtained, the tentative updates must be
made visible atomically. SLE stalls incoming snoop requests from other threads while it is draining
tentative updates from its store buffer into the data cache. This ensures all updates are made visible
instantaneously. This is guaranteed to complete in bounded time and without global coordination.

Different variants of SLE have examined approaches for recovering register state in an HTM
system. One option was to restrict the transactional state to that maintained by the speculative ex-
ecution engine (e.g., the reorder buffer size [296]). This allowed reusing the existing mechanisms
for misspeculation recovery but also limited the size of transactional regions. In the register check-
point approach, either the architectural register file would need to be saved (through a flash copy
mechanism) or enhancements made to the physical register file management mechanism to ensure

160 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

the physical registers that were architectural at the start of the region are not released and remain
available for recovery.

The SLE software model is quite different from the Herlihy and Moss HTM. Instead of
providing a new programming interface, SLE re-uses the existing lock-based programming model.

The key observation introduced by SLE was that a processor does not actually have to acquire
a lock, but it need only to monitor that it remains available. The processor executes the critical
section optimistically as if it is lock-free: two threads contending for the same lock could execute
and commit in parallel without communication, so long as their executions were data-independent.
It takes advantage of a key property of a typical lock variable: a lock-release’s write undoes the
changes of the lock-acquire’s write. By eliding both of these operations, but monitoring the lock
variable for data conflicts, the lock remains free and critical sections can execute concurrently.

The processor starts SLE by predicting that a given atomic read-modify-write operation is
part of a lock-acquire. A predictor and confidence estimator determines candidates for lock elision
by inspecting the synchronization instructions used to construct locks. The processor issues the
read of this read–modify–write operation as an ordinary load, and it records the load’s address and
the resulting data value. The processor also records the data for the write of the read-modify-write
operation, but it does not make this write operation visible to other processors, and it does not request
write permission for the cache line holding it. This has two effects: (i) it leaves the lock variable
in an “unlocked” state and the cache line in shared state, allowing other processors to see the lock
as available, and (ii) the write value allows detection of the matching lock release by watching for
a store by a corresponding unlock operation. This provides program-order semantics: subsequent
accesses to the lock variable from the processor performing the elision will return the last written
value in program order.

This approach allows SLE to be compatible with existing programming models without
requiring new instructions to be used (indeed, the implementation retains binary compatibility
with existing software). However, SLE requires the program’s implementations of locks to follow a
particular pattern that SLE can predict. If optimistic execution cannot continue (e.g., due to lack of
cache resources or IO operations), the buffered write data of the atomic read-modify-write is made
visible to the coherence protocol without triggering a misspeculation. If the coherence protocol
orders this request without any intervening data conflicts to either the lock or the speculatively
accessed data, then the execution is committed. Here, the execution transitions from a lock elision
mode into an acquired lock mode without triggering a misspeculation.

In this model, a data conflict would cause execution to re-start from the instruction identified
to start the critical section, except elision would not be attempted. This way, the exact same program
sequence could be executed both with and without SLE.

While the SLE proposal used prediction to identify transactional regions, this required soft-
ware to follow a specific pattern and limited software flexibility. Using new instructions or software
annotations treated as hints may circumvent this limitation [247].

5.2. CONVENTIONAL HTM PROPOSALS 161

In SLE, conflict resolution was rudimentary, and the transaction receiving a conflicting request
would always abort. Transactional Lock Removal [249] extended SLE to use timestamp-based fair
conflict resolution to provide transactional semantics and starvation freedom, using Lamport’s logical
clock construction [186] and Rosenkrantz et al.’s wound-wait algorithm [268]. In the algorithm, a
transaction with higher priority never waits for a transaction with lower priority. A conflict forces
the lower priority transaction to restart or wait. The algorithm provides starvation freedom, and
guarantees that at least one transaction from each set of conflicting transactions does not abort.This
hardware support provides significant performance gains in the presence of high contention, even
compared with the best software queued locking

Rock HTM. Rock HTM is an implicitly transactional HTM designed for a modern proces-
sor from Sun Microsystems [58]. The Rock HTM’s instruction set interface consists of a chkpt
<fail-address> instruction, where the fail-address specifies an alternate target instruction
address for the processor to resume execution following an abort [82]; all operations between the
chkpt instruction and the subsequent commit instruction are transactional.

Similar to SLE, Rock HTM also uses the data cache to track the read set of a transaction and
used the processor’s store buffer to buffer transactional writes. However, Rock HTM requires the
level two (L2) cache to track all store addresses inside the transaction. When the processor executes
the commit instruction, its L2 cache locks all the cache lines corresponding to the tracked store
addresses. The stores then drain the store buffer and update the cache. The last store to each line
releases the lock on that line. This locking of the cache lines prevents conflicting accesses during the
commit sequence.

The Rock HTM implementation exploits a flash copy mechanism to save the architectural
register state. Konstadinidis et al. provide the implementation details of this mechanism [172]. The
register file is a combination of a static memory-cell portion (to reduce area) and an active register-
file portion (for speed). Checkpoints are stored in the static portion, which is implemented using
a 4-column SRAM array. The active portion maintains the register file used for execution (4-write
and 7-read ports for a multithreaded design). The checkpointed register state can be restored into
the active portion in a single cycle. Depending on the usage, a write to a register location can
independently update the active portion as well as the checkpointed portion. For HTM usage, the
checkpointed portion is restored immediately into the active portion. A similar register checkpoint
capability has also been employed in an in-order processor [80].

The Rock HTM provides a cps register which holds a bitmap that identifies reasons for a
transaction failing.These include resource overflows, transient events (such as interrupts), coherence
conflicts, and processor exceptions.Microarchitecture limitations in the HTM implementation mean
that various events cause transactional aborts—e.g., TLB misses, register-window save/restore
instructions, a divide instruction, and certain forms of control transfer. Aborts caused by these events
were quite problematic in practice, requiring code to be aware of the constraints on its execution. A
key lesson from the Rock HTM is to ensure an HTM design does not abort in a manner that is
hard to predict and reason about.

162 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

Compared with, say, Herlihy and Moss HTM, Rock HTM places fewer demands on the
architectural specification because transactional execution is not guaranteed to succeed, and hence
a software fall-back path must always exist (entered by branching to the software handler that was
registered with the chkpt instruction). For use with lock elision, the fall-back can be as simple as
re-executing the same code path directly.

The Rock HTM adopts a slightly different approach than SLE to lock elision. It exploits
the same principle as SLE regarding the lock variable and the need to read the location inside the
hardware transaction. If the lock is free, speculation can continue. If it is held, the HTM would
abort execution and spin. By reading the lock variable, the HTM adds it to the transaction’s read-
set, and so, if another thread writes to the lock, the HTM would detect the conflict and abort. A
key difference between the SLE model and the Rock HTM model is how the lock variable itself is
treated. Under SLE, if the lock variable is explicitly read in the transaction, it returns a locked value
(the same as in execution without SLE). In the Rock HTM model, if the lock variable is read in the
transaction, the read returns a free value (a value different from what it would be if lock elision had
not been attempted). The following example shows the usage:

txn_begin handler-addr;
if (lock) { txn_abort;}

// body of critical section
Y = X + 5;

txn_end;

Note the contrast with the SLE model. Here, two new instructions are added to replace the
LOCK/UNLOCK pair, the lock is explicitly tested as part of the critical section, instead of implic-
itly as part of the LOCK instruction, and a software handler must be provided in case speculation fails.
The body of the critical section remains the same as with a lock-based critical section.

Azul HTM. The Azul HTM system [66] is also an implicitly transactional HTM that uses the
data cache to track accesses and buffer transactional state. However, it relies on software to perform
register recovery.

Large Transactional Memory (LTM). While the conventional HTMs so far abort when a trans-
actional line is evicted from the cache or the store buffer is full, Ananian et al. [15] proposed an
extension where evicted transactional lines in an HTM would be moved by hardware into a dedicated
area in local memory without aborting. Their HTM system, called Large Transactional Memory
(LTM, Figure 5.3) allocates a special uncached region in local memory to buffer transaction state
that spills from the cache.This region is maintained as a hash table. Each cache set has an associated
overflow bit (O bit). This bit is set when a transactional cache line (tracked using a T bit) is evicted
and moved into the hash table. During this process, the processor responds to incoming snoops with
a negative acknowledgment (NACK). The processor does not service incoming snoops until it has
checked both the cache and the memory hash table for a conflict.

5.2. CONVENTIONAL HTM PROPOSALS 163

O
T

L1 cache

Processor

Register
Checkpoint Begin PC

Overflow base register

+ coherence protocol support (NACK support)

O

way of cache

Uncached DRAM (overflow storage)

Set Overflow Handler
HW machinery

Figure 5.3: LTM design to overflow cache lines into DRAM.

When a request from another processor accesses a cache set with its overflow bit set but
does not find a match for its request’s tag, a hardware state machine walks the hash table to locate
the line with a matching tag. If a processor’s request hits in the cache and the O bit is not set, the
cache treats the reference as an ordinary cache hit. If the processor request misses in the cache and
the O bit is not set, the cache treats this request as an ordinary cache miss. If the O bit is set, even
if the request does not match a tag in the cache, the line may be in the hash table in memory. The
processor has to walk the hash table in memory. If the walk finds the tag in the hash table, the walker
swaps the entry in the cache set with the entry in the hash table. Otherwise, the walker treats this as a
conventional miss. If a processor executing a transaction receives a snoop request that conflicts with
a transactional line (the line’s T bit is set), then the transaction is aborted. In LTM, any incoming
snoops that hit a set with the O bit set but do not match the tag interrupt the processor and trigger a
walk of the hash table. All these actions occur completely in hardware with no software knowledge

164 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

or involvement. The area in DRAM can be viewed as an extension of the data cache. In LTM, two
independent programs that do not share any data and are in their own virtual address spaces may
interfere with each other. Because a transaction in one program can continually interrupt another
transaction in another program by virtue of simply running on the same system, the system does not
offer performance isolation [347].

Ananian et al. describe a register recovery implementation based on a physical register file [15].
In this approach, a new xbegin instruction identifies the start of a transaction and causes a snapshot
to be taken of the register alias table (RAT). The RAT maintains mapping information between
architectural and physical registers. Then, when the xbegin instruction retires, the RAT snapshot
is retained. To ensure the physical registers named in this snapshot are not released, a new S-bit is
added to each physical register, indicating whether or not the register is part of an HTM snapshot.
If the S bit is set, the physical register is added to a register-reserved list instead of a conventional
free-list. When the instruction committing the transaction retires, the active snapshot’s S bits are
cleared and the register-reserved list drains into the register-free list. On aborts, the RAT snapshot
is used to recover the register state.

Access tracking and conflict detection techniques have been implemented within a cache
directory by Titos et al. [316]. Ordinarily, a directory records which processors have cached copies of
a given line.To detect transactional conflicts, the directory must also be aware of whether or not each
processor is executing transactionally, and, if so, which lines are part of the read-set and write-set.
In Titos et al.’s design, this requires a processor to either flush its cache on starting a transaction, or
for transactions to report their cache hits to the directory.

5.2.3 HYBRID TMS: INTEGRATING HTMS AND STMS
In hybrid TM models, the HTM is used to provide good performance, while an STM serves as a
backup to handle situations where the HTM could not execute the transaction successfully—e.g.,
for transactions which require features that are not supported by a given HTM implementation (e.g.,
pre-emption, or IO). This approach may reduce the pressure on HTM implementations to provide
such features. In hybrids, however, care is needed to ensure that the resulting system’s semantics
are acceptable: for instance, strong isolation is lost if an HTM that provides it is combined with an
STM that does not.

These hybrid models require the HW and SW transactions to be able to co-exist, often
through arranging that they monitor common memory locations (similar to the way in which locks
are monitored when using HTM for lock elision). Example techniques include monitoring the
status of a given transaction (e.g., a transaction descriptor’s status word), whether or not any SW
transaction is executing (e.g., an overflow count), or details of the particular memory locations being
managed by software (e.g., a set of ownership records). There are trade offs involving the number
of additional locations that must be accessed by HW transactions, the possibility of false conflicts
between HW and SW transactions, and the number of separate copies of code that must be compiled
(e.g., whether a single copy can be retained, whether separate HW and SW copies are needed).

5.2. CONVENTIONAL HTM PROPOSALS 165

In the discussions below,the Rock HTM implementation is considered as a canonical reference
point for HTM systems.

Lie’s Hybrid TM. Lie proposed one of the first hybrid TM systems [194], using it as a way to
support unbounded transactions with a simple HTM. In Lie’s design, the HTM transaction’s code
is extended to include checks to detect conflicts with SW transactions. The STM itself is an object-
based system implemented in Java, somewhat similar to Herlihy et al.’s DSTM system (Section 4.5).
In Lie’s design, if an STM transaction writes an object, it replaces the original value with a special
FLAG value and updates the object in a separate buffer. Hardware transactions use this value to detect
conflicts.

When a non-transactional read encounters FLAG, it aborts the transaction that was modifying
the object, restores the field’s value from the most recently committed transaction’s record, and re-
reads the location (taking into account the possibility that the location actually should hold FLAG).
A non-transactional write aborts all transactions reading and writing the object and directly updates
the field in the object. If the program actually intends to write FLAG, then the write is treated as a
short transaction to ensure proper handling.

HyTM based on the Rock HTM. Damron et al. [78] proposed a subsequent hybrid TM system,
similar to Lie’s but using a line-based STM as a fall-back. In Damron et al.’s design, transactions
execute either using an HTM, or as SW transactions using an ownership-table-based STM. Since
the HTM uses processor buffers for access tracking and version management, detecting conflicts
due to SW transactions is handled through the conventional coherence protocol. However, special
care is required to ensure the HTM does not violate isolation of SW transactions. Specifically, HW
transactions need to check the STM’s ownership-table metadata for any addresses that they access;
the HW transaction aborts if the ownership table indicates the presence of a conflicting software
transaction.

A code example is shown below. This is a transformation from the HTM example above
(from [78]):

tx_begin handler-addr
if (!canHardwareRead(&X)) { txn_abort; }
tmp = X
if (!canHardwareWrite(&Y)) { txn_abort; }
Y = tmp + 5
txn_end

The canHardwareRead and canHardwareWrite are functions provided by the HyTM library:

bool canHardwareRead(a) {
return (OREC_TABLE[h(a)].o_mode != WRITE);

}

bool canHardwareWrite(a) {
return (OREC_TABLE[h(a)].o_mode != UNOWNED);

}

166 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

As we can see, there is no lock associated with the code sequence. Therefore, the HTM code path
requires checks against an STM data structure to ensure correct interaction. While this approach
requires only a basic HTM for the STM to co-exist, it adds additional lookups into the HTM code
path thereby inflating the potential read-sets and adding overhead. Baugh et al. study the impact of
this and show that this behavior can, at times, seriously affect performance.

Baugh et al. studied contention management in the context of Hybrid HTM systems and
made some key findings. They found that it was important to have a good contention management
policy in hardware. Performance was always better if conflicts never caused a fail-over to software
compared to failing-over following some fixed number of aborts or by avoiding HW transactions
to abort except when absolutely necessary. This would typically require some form of contention
management support; the paper implements an age-ordered scheme where a younger transaction
would abort and re-execute. This result also confirms the observation of the TLR paper [250].
The paper also found the benefit of avoiding falling over to STM simply for conflicts since STM
transactions with their overhead would extend the duration thereby increasing contention. Schemes
that immediately re-execute conflicting HW transactions as SW transactions can cause a cascading
effect resulting in all HW transactions into software thus hurting performance even more (an
observation also made of the Rock HTM system [82]).

Phased TM. Lev et al. [193] proposed a further form of hybrid design known as phased transactional
memory (PhTM). Instead of requiring hardware transactions to check for conflicts with concurrent
software transactions, PhTM prevents HW and SW transactions from executing concurrently. The
PhTM system maintains a counter of currently-executing SW transactions. Every HW transaction
checks this counter, and if non-zero, the HW transaction aborts itself. Since the counter is also read
inside the HW transaction, any subsequent modifications to this counter also trigger an abort. This
approach reduces overheads for HW transactions, but it results in increased aborts (as discussed
by Baugh et al. [28]): an overflow of even a single HW transaction aborts all other concurrently
executing HW transactions. To avoid remaining in SW mode, PhTM deploys another counter that
maintains the number of running transactions that failed due only to HW limitations. When this
counter is 0, PhTM shifts back to a HW phase by stalling the transaction on conflicts instead of
re-starting them in an SW mode.

Kumar’s Hybrid TM. Kumar et al. [183] proposed a hybridTM system similar to Lie’s that executes
a transaction in HW mode and then switches to an object-based STM.However, the hardware design
proposed is different from the earlier ones. Two new structures are added. A transactional buffer
records two versions for a line: the transactionally-updated value and the original value. A hardware
transaction state table has two bits per hardware thread. These bits record if the thread is executing
a transaction and if the transaction started in a software or hardware mode.

Each line in the cache has two bit-vectors recording reads and writes, one for each hardware
thread.The HTM uses these vectors to detect conflicts: conflicts between two hardware transactions

5.2. CONVENTIONAL HTM PROPOSALS 167

are resolved by aborting the transaction that receives the conflicting request. A conflict between a
hardware transaction and a non-transactional request aborts the transaction.

When a hardware transaction detects a conflict and aborts, the hardware invalidates all trans-
actionally written lines in the transactional buffer and clears all read and write vectors.The abort sets
an exception flag in the transaction state table but does not abort execution right away. The abort
is triggered and a software abort handler invoked when the transaction performs another memory
operation or tries to commit.

For the HTM system, Kumar et al. use an interface similar to conventional implicit designs
– begin/end/abort, and a special instruction to register the abort handler – but they extend this
to include non-transactional loads and stores. To support the SW transactions, they add additional
instructions (start a SW transaction, explicit load and stores similar to the explicit HTM systems).
The paper also extends the DSTM objects and uses the HTM hardware to monitor an object’s
locator’s state. This allows other transactions to abort the SW transaction.

NOrec Hybrid TM. Dalessandro et al. describe how the NOrec STM system (Section 4.4.2) can
be integrated with Rock-style HTM [77] to produce a design in which HW transactions need only
monitor a single location (in addition to their own data accesses).

NOrec’s existing global versioned lock is retained and used for synchronization between SW
transactions; in the hybrid design this is known as the main lock. In addition, a second versioned
lock is used to serialize SW transactions with HW transactions; this is known as the software lock.

A SW transaction executes as normal except that, at commit time, it uses a 2-word HW
transaction to acquire the software lock alongside the main lock (leaving odd values in both). After
writeback, it uses normal writes to release the software lock and then the main lock (restoring both
to even values).

A HW transaction starts by reading the main lock and spinning until it is available. Imme-
diately before commit, a HW transaction reads and increments the main lock by 2. This update to
the main lock causes any concurrent SW transaction to be re-validated (but, due to NOrec’s use of
value-based validation, the update does not necessarily cause the SW transaction to be aborted).

The fact that a HW transaction reads from the main lock ensures that a HW transaction does
not start concurrently with write-backs from a SW transaction (the atomicity of the HW transaction
forces the HW transaction to abort if a SW transaction subsequently commits). By separating the
software lock from the main lock, the hybrid NOrec design reduces the window of opportunity for
conflicts to occur because of two HW transactions accesses to the software lock. The use of value-
based validation enables short-running HW transactions to commit without forcing non-conflicting
long-running SW transactions to be aborted.

The hybrid NOrec design illustrates how a limited-size HTM can be useful in implementing
parts of an STM system, in addition to running transactions that are written by an application
programmer.

168 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

5.2.4 SOFTWARE AND DESIGN CONSIDERATIONS
HTM Software Abstraction. So far we have discussed HTMs that rely on conventional hardware
mechanisms. While reusing hardware existing mechanisms is attractive, it also creates an abstraction
challenge. Hardware resources are finite, and their implementation is typically abstracted away from
the software through the instruction set architecture (ISA). The ISA shields programmers from
implementation artifacts and provides a consistent behavior across processor families, serving as a
contract between the hardware and software—e.g., it shields the programmer from details such as
cache sizes and geometry, cache coherence mechanisms, speculative execution, multiprogramming,
context switch intervals and thread scheduling. This approach allows a hardware implementation
of a fixed ISA to vary—from relatively simple microprocessors to highly complex high performance
microprocessors.

To understand this more clearly, consider a load instruction. From an application program’s
perspective, this is an ordinary load to a given virtual memory address. However, behind this simple
instruction interface, a series of complex operations are being performed by the hardware and system
software. The hardware calculates the proper address (depending on the addressing mode of the
instruction), checks to ensure the application has sufficient permissions to access and operate on
the address, and determines the actual translation of the virtual memory address to where it sits
in physical memory. In the absence of a valid translation, it invokes system software to create a
translation. Once the hardware has a translated address, it then performs the operation to find where
in the memory system the location currently resides, and it reads the location, while ensuring the
value returned is coherent and consistent. Of course, modern processors are designed such that these
operations are low latency and a load operation typically completes in a few cycles in the common
cases. However, none of these intermediate steps is actually visible to the application programmer.
This is the abstraction the ISA provides; one can imagine the software complexity and overhead if
the application programmer was responsible for performing all these operations.

While this kind of abstraction is fundamental, it introduces interesting challenges for HTM
systems, especially since HTM systems try to implement a programmer-visible TM software model
using mechanisms that typically are part of the implementation. This often requires a software
component to a conventional HTM system to form an additional abstraction layer. This software
layer sits above the ISA, similar to an operating system or a language runtime system. However, such
an approach limits the benefits of the HW mechanisms to only when the transaction works within
the resource limitations imposed by the hardware (e.g., the cache size limiting access tracking) or
underlying execution environment (e.g., the scheduling quantum beyond which one thread is de-
scheduled and another thread uses the same hardware resources). Numerous extensions discussed in
the next sections attempt to improve the quality of this software abstraction.

Progress Guarantees. The HTMs discussed so far fall into two categories with regards to forward
progress: ones that guarantee a minimum resource size available for a transaction to make forward
progress (Herlihy and Moss, Oklahoma Update, and ASF) and others that do not provide any
guarantee (Rock HTM, and SLE).

5.2. CONVENTIONAL HTM PROPOSALS 169

However, where guarantees are available, they typically relate to transactions that run in
isolation. This raises an interesting question of what such guarantees really mean. If the guarantee is
merely that of sufficient hardware buffers, software must still provide mechanisms to ensure forward
progress. For example, an external interrupt may always occur in the middle of an HTM transaction,
or another thread may execute in a pathological pattern that always triggers aborts by writing to a
cache line that is read by a given HW transaction.

In contrast, in current processors, a synchronization instruction such as a compare and swap
is guaranteed to complete, regardless of the level of contention or rate of interrupts. Processors
implement these instructions in a manner to make them non interruptible. They do so by simply
locking down the memory address in a local buffer, operating on it, and then releasing it. This is
possible because operating on and locking a single memory location does not create a deadlock, there
is no circular dependence possible with other processors. However, HTMs provide the capability to
operate on multiple memory locations; ensuring atomicity on multiple locations requires hardware
to lock down multiple locations, and resolving deadlocks in a multiprocessor system would require
a complex protocol. It is unclear whether a hardware system can provide the same forward progress
guarantees of existing synchronization primitives, such as a locked compare and swap, to an instruc-
tion set that supports atomic updates on multiple locations. It is an open question whether software
can use instructions with weak forms of guarantees without providing an alternate path that does
not rely on these instructions.

Diestelhorst et al. discuss the challenges of implementing the AMD ASF proposal on an out-
of-order x86 core simulator [87], and the approaches they took to guaranteeing eventual forward
progress for transactions that run without contention and that access at-most 4 memory locations.

Hardware Complexity Trade-offs. Extensions to support HTM can add further complexity to
critical, high-complexity aspects of modern processors; as we discuss in the next section, this has led
to alternative implementations that rely less on modifications to conventional processor structures.

Given the numerous open research questions with the TM programming model and the
challenges it poses to existing software tool-chains and libraries, it is yet unclear what the most suited
hardware support may be.To reduce this risk, Hill et al. suggest deconstructing TM mechanisms into
distinct and interchangeable components instead of a monolithic implementation [152]. In addition
to aiding hardware refinement, this approach allows usages beyond the TM model, such as reliability,
security, performance, and correctness. While such a deconstruction is attractive, it can introduce
architecture specification and validation challenges.Hardware vendors try to minimize the state space
of an instruction specification to provide a well defined contract to software and to make validation
tractable. Deconstruction requires individual components to maintain the contract, irrespective of
software usage and interactions with other software and hardware features. For example, if conflict
detection is made a self contained component, the rules of its use must be well defined, including
situations where multiple pieces of software may be expecting to use the same hardware, without
being aware of each other.

170 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

The HTMs discussed in this chapter vary greatly in their hardware requirements and their
complexity. This is most often a direct function of the intended software model. Models that aim to
minimize impact on tools, support legacy software libraries, and reduce the extent of software analysis
and compiler optimizations often require greater hardware support than models where software re-
writing and re-compilation are acceptable, compiler optimizations are effective, and legacy software
is less of a concern. It is an open research question where hardware support eventually lands in this
wide spectrum.

5.3 ALTERNATIVE MECHANISMS FOR HTMS

The HTM systems discussed so far extend a processor’s hardware structures to track accesses and
perform version management.This, however, introduces complexity into an already complex design.
Further, using processor structures places a limit on the transaction sizes.

This section discusses some of the alternative implementations proposed.Section 5.3.1 focuses
on HTM designs such as LogTM [227] where version management is through the use of a software-
resident log instead of hardware structures. Section 5.3.2 discusses signatures in systems such as
Bulk [53] that compactly represent read-sets and write-sets in a transaction instead of using the
data cache. Section 5.3.3 and Section 5.3.4 discusses HTMs that do not use conventional cache
coherence protocols for conflict checks, e.g., TCC [132] and FlexTM [290; 291], which can both
support lazy conflict detection.

5.3.1 SOFTWARE-RESIDENT LOGS FOR VERSION MANAGEMENT
Moore et al. [227] introduced the use of software-resident logs for version management in an
HTM. Their proposal of LogTM used a software-resident log instead of hardware buffers. During
a transaction’s execution, hardware uses this log to record the older values of the memory location
being over-written inside the transaction. On a commit, this log is discarded and on an abort, a
software handler executes, and restores the original values into memory by walking the log. In this
model, hardware does not have any notion of speculative writes; all writes update memory, whether
they occur inside or outside a transaction. It is the responsibility of the LogTM coherence protocol
enhancements to ensure other threads or transactions do not observe any speculative writes.

The LogTM implementation optimizes commit operations: by updating memory directly
during transactions, it did not need to perform any copy operations during commits. This is similar
to STM systems that use eager version management (Section 4.2).

Figure 5.4 shows the LogTM hardware. LogTM still uses the data cache to track transactional
accesses. It extends each cache line with read (R) and write (W) bits. The R-bit tracks whether this
line has been read within the transaction and the W -bit tracks whether this line has been written
in the transaction. Since access tracking is linked to the data cache, LogTM does not support
transactions that experience a context switch. Each thread has its own software log allocated in
virtual memory. LogTM provides a system software interface to initialize a thread’s transactional

5.3. ALTERNATIVE MECHANISMS FOR HTMS 171

W

L1 cache

Processor

Register
Checkpoint

L2 cache

Log Base

Log Pointer

TM Count

Begin PC

Handler PC

Timestamp Cycle? Overflow

R

WR

+ coherence protocol support (Sticky Statesupport)

Figure 5.4: LogTM hardware organization.

state, log space, and per-thread conflict handlers, and to perform rollback and aborts. The LogTM
system communicates the bounds of the per-thread software-managed log to hardware.

In LogTM, every write in the transaction may add to the software log. To ensure this occurs
with high performance, LogTM provides hardware support for a processor to add entries directly
into the executing thread’s log without invoking any software. When a store operation occurs inside
a transaction, the LogTM hardware appends the previous value of the cache line being overwritten
by the store and its virtual address to the thread’s log. The W -bit is set to avoid repeated logging
operations. A single-entry micro-TLB is used to pre-translate the log’s virtual address to a physical
address that can be used directly by the processor.

When a transaction aborts, control transfers to a software handler (running non-preemtibly).
This handler then walks the log in reverse and restores memory state. When a transaction commits,
the pointer into the log is reset so that the transaction’s entries are discarded. LogTM maintains the
software log even if the transaction fits in the local cache.

172 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

Moore et al. describe various optimizations to reduce logging overhead [227]. The hardware
could buffer the updates to the log and not actually write to memory unless it is necessary; the writes
to the log can be delayed until either an abort or an overflow. This would mean that if a transaction
commits without overflowing the cache, then LogTM would never write to the actual log. Lupon
et al. suggest a similar optimization where the store buffer performs version management (similar
to SLE and Rock HTM) and if the transaction exceeds the store buffer size, then the HTM uses a
LogTM-like software-resident log for version management [204].

Recording values in a software-managed log is attractive since it decouples versioning from
hardware, and it enables inspection of speculative state by software. While concerns remain about
the performance overheads of pure STM systems, the LogTM architecture obviates the need for
software handlers to execute during successful transactions by enabling hardware to operate directly
on the log. This has the effect of making the log a part of the processor architecture’s definition.

By decoupling version management from the data cache, LogTM opened up additional op-
portunities for access tracking. One approach (by Moore et al. [227]) discussed next exposes trans-
actional access tracking into the coherence protocol. Another approach by Blundell et al. extends
access tracking through the use of an additional tracking structure called the permissions cache [34].

Sticky Coherence State. In LogTM, a transactional line can escape the data cache without aborting
the transaction. This is achieved through the addition of a “sticky” coherence state. This sticky
state extends transactional access tracking into the coherence protocol. Even though a line may be
evicted, the evicting cache continues as the cache line’s owner. This way, transactions use existing
cache coherence mechanisms to detect conflicts when a transaction overflows its cache. When a
transactional cache line is evicted from the cache, the directory state is not updated and the cache
continues to be associated with the line; it becomes sticky. This is unlike a conventional protocol
where a writeback of a modified line results in the directory assuming ownership of the line.

Consider eviction scenarios for the M, S, O, and E cache-line states. Eviction of a
transactionally-written cache-line (M state) results in a transactional writeback instead of a con-
ventional writeback: (i) the directory entry state does not change, (ii) the processor remains the
owner of the line, and (iii) an overflow bit is set at the processor. When the directory receives a re-
quest for this line, it forwards the request to the owner. If the owner receives a request for a line that
is not present in the cache, and the owner has its overflow bit set, then the owner signals a potential
conflict by sending a negative acknowledgment (NACK) to the requester. The requester then invokes
a conflict handler; it does not interrupt the processor that responded to the request.

A protocol that supports silent evictions of clean-shared cache lines (S state) works without
special actions: the evicting processor will receive invalidation requests from the directory for the
cache line. If the protocol does not support silent evictions, then a sequence similar to that for the
M state ensures correct handling by preventing the directory from removing the processor from the
sharing vector.

A cache line in the owned O state means that the data value is not the same as in the main
memory, but the line is potentially shared. Here, the cache writes the line back to the directory and

5.3. ALTERNATIVE MECHANISMS FOR HTMS 173

transitions it to an S state. LogTM treats a silent E eviction as if the line was in M state.The processor
must interpret incoming requests unambiguously; it can no longer simply ignore requests that do
not match in the cache.This is because commit operations do not actively clean directory state; these
states are cleaned lazily. Suppose that processor P1 receives a request to an address not in its cache.
If P1 is not in a transaction and receives a request for a line in a sticky state, then the line must be
from an earlier transaction. If P1 is in a transaction, but its overflow count is zero, then the request
must also be from an earlier transaction. In both cases, P1 responds to the directory with a CLEAN
message.

The requester performs conflict resolution after receiving responses from other processors.
The requester sends a request to the directory. The directory responds and possibly forwards it to
one or more processors. Each processor then inspects its local cache state and responds with either an
ACK (no conflict) or a NACK (a conflict).The requester collects this information and then resolves the
conflict. Instead of the requester immediately aborting on receiving a NACK, it may reissue the request
if the conflicting processor completes its transaction. However, to ensure forward progress and avoid
unnecessary aborts, LogTM uses a distributed timestamp method, and it invokes a software conflict
handler if a possibility of a deadlock arises. Such a deadlock may arise because a transaction may be
simultaneously waiting for an older transaction and may force an older transaction to wait.

Since the access tracking is maintained by hardware (using the data cache in conjunction with
the cache coherence protocol), LogTM does not support transactions that experience pre-emption.

Permissions Cache. Blundell et al. [34] provide an alternative approach to extending access track-
ing in HTM systems that use software-resident logs for version management. They augment the
HTM with a permissions-only cache to hold information about evicted data. When a cache block is
evicted with its R-bit or W -bit set, then the address and read/write information is allocated in the
permissions-only cache. The permissions-only cache tracks the transaction’s access information but
not the data values. The new cache is accessed as part of external coherence requests.

Commits and aborts clear the new cache. The paper proposes an efficient implementation
using sector-cache techniques. Alternatively, the second level cache can be extended to support
permissions-only lines. Since the proposal allows transactionally-written lines to escape from the
data cache into the next levels of the memory system, it requires a mechanism to restore the
transactionally-written data when an abort occurs. Conflict checking with such blocks still occurs
via the permissions-only cache.

The paper also proposes an HTM extension to support overflows from the permissions-only
cache without aborting; however, only one such transaction is allowed at any time, and no other
thread is permitted to execute concurrently (either in a transaction or out of one). A process-wide
transaction-status word tracks whether or not an overflowing transaction is active. Since no other
thread is executing, this overflowing transaction cannot abort due to data conflicts.

174 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

5.3.2 SIGNATURES FOR ACCESS TRACKING
The HTM designs discussed so far still rely on a processor’s hardware structures for access tracking,
whether it is the data cache, an extra transactional or permissions cache, or special states in the
coherence protocols. An alternative approach is to use signatures to summarize a transaction’s data
accesses. Ceze et al.’s Bulk system [53] introduced the use of read and write signatures to track
the read and write sets of a transaction, specifically to avoid changing the cache design to track
transactional accesses.

In these signature-based approaches, each transaction maintains a read signature for its read-
set and a write signature for its write-set. The signatures themselves are fixed-size representations,
much smaller than a complete list of the reads and writes of a modestly-sized transaction. While
this reduces the state to track read/write sets, it also causes the signature to be conservative (i.e., a
signature might suggest that a transaction has accessed a location X, when in fact it has not).

A signature is implemented as a fixed size register. When a processor performs a transactional
read, the address is added to the read signature, and on a transactional write, the address is added
to the write signature. All HTM proposals based on signatures use some form of Bloom filters
(similar techniques have been explored in STM systems, as discussed in Section 4.4.1). However,
many variants have been investigated, and the design trade-offs for a hardware implementation are
different to those for a software implementation.

Sanchez et al. [276] discuss various designs, shown in Figure 5.5.They classify a “true” Bloom
signature as one based on a single Bloom filter. Such a true Bloom filter consists of an m-bit field
accessed with k independent hash functions (Figure 5.5(a)). The initial value is 0. To insert an
address, k hash functions are applied to the address to generate the k bits in the m-bit signature to
be set to 1. Similarly, to check whether an address intersects with the signature, the k hash functions
are applied and if any of the bits the functions point to is 0, then the address does not intersect. If
all bits the functions point to are 1, then either the address is a match or is a false positive.

Sanchez et al. point out that implementing k hash function signatures using an SRAM with
k read and write ports is area inefficient: the size of the SRAM cells needed increases quadratically
with the number of ports.They then describe a parallel Bloom filter implementation (Figure 5.5(b)).
This can perform similarly to a true Bloom filter but without the area inefficiency. Instead of k hash
functions, parallel Bloom filters have k bloom filters each with m/k-bit fields, each with a different
hash function. Inserting an address requires hashing it to set a bit in each of the k filters. This design
uses smaller single-ported SRAMs instead of larger multi-ported SRAMS.

Sanchez et al. also propose a new “cuckoo” Bloom signature. This combines elements of
cuckoo-hashing, which provides an exact representation of the signature’s contents when the number
of items in the signature is low, along with the use of Bloom filters to provide unbounded storage.

Bulk HTM. Ceze et al.’s design employed parallel Bloom signatures with bit-selection hashing.
The hardware supports additional operations to assist with conflict detection—e.g., to test whether
two signatures have any addresses in common, the hardware implements an intersection function.
Similarly, a signature-union combines the addresses from multiple signatures into a single signature.

5.3. ALTERNATIVE MECHANISMS FOR HTMS 175

Address

Address

wordlines

bitlines
Address Add

operation
Test

operation

(a) Design (b) Hardware implementation

0 0 0 0 01 1 1

h1 h2 hk...

....

h1 h2 hk...
h1

h2

hk

0 0 0 0 01 1 1....
k-ported

SRAM
of m bits

(a) True Bloom filters.

(a) Design

Address

k single - ported SRAMs of m/k bits

AddressAddress
Add

operation
Test

operation

(b) Hardware implementation

h1

0 0 0 0 0 01 1 1

h2 hk

.... ...

... ...

....

h1

0 0 0 0 0 01 1 1

h2 hk

.... ...

...

...
....

h1 h2 hk

(b) Parallel Bloom filters.

Figure 5.5: Alternative forms of Bloom filter (adapted from Sanchez et al. [276]).

This is used when address sets of nested transactions have to be combined. Hardware supports
testing an address for membership in a signature.This is used to allow the signature to coexist with a
conventional cache coherence protocol and to provide strong isolation if non-transactional read and
write operations from other processors conflict with the transaction. Figure 5.6 shows the typical
operations on signatures for the Bulk HTM proposal.

Since Bulk continues to use the data cache for version management (even though this is
transparent to the cache itself), significant complexity is introduced during commits and aborts to
handle the versioned data: the processor must either invalidate and discard transactional state, or
make this state visible atomically.To do so, it must identify which lines in the cache are transactional.

Bulk does not record access information in the cache lines themselves, and so this information
must be derived from the read/write-signatures. Determining the addresses from a signature is a
two-step process. First, the hardware extracts the cache sets corresponding to all the addresses in
the signature. Then, a membership function is applied to each valid address in the selected cache
sets. A decode operation on a signature extracts an exact bitmask corresponding with the sets in the

176 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

Figure 5.6: Bulk signature operations (adapted from Ceze et al. [53]).

cache. For each selected set in the bitmask, Bulk reads the addresses of the valid lines in the set and
applies the membership operation to each address.

To commit a transaction, Bulk HTM uses a global commit protocol and signature broadcasts.
Before a processor can commit, it arbitrates system-wide for commit permission. Once it obtains
permission, it broadcasts its write signature to other processors (unlike the address-based broadcasts
described in Section 5.3.3).When a processor receives the write signature, it performs an intersection
operation between its local read signature and the incoming write signature. This operation detects
whether or not a conflict could have occurred. If the receiving processor aborts, it uses its local write
signature to identify and invalidate speculatively-modified lines in its cache. To avoid extending
each cache line with a bit to track speculatively written lines, Bulk requires that if a set has a
speculatively modified cache line, then that set cannot have any nonspeculatively modified cache
line. This restriction prevents an invalidation of a nonspeculatively modified cache line in the set—
this could happen because a signature is an inexact representation of addresses and may alias to include
nonspeculatively modified cache lines.The signature, however, expands to an exact representation of
cache sets with speculatively modified cache lines. This signature expansion is shown in Figure 5.7.

If the receiving processor does not abort, any lines that were written to by the committing
processor must be invalidated. The write signature of the committing processor is used to identify
these lines. If a cache line receives an ordinary coherence invalidation, then the hardware performs

5.3. ALTERNATIVE MECHANISMS FOR HTMS 177

selected cache set

Tags
Index bits

Figure 5.7: Bulk signature expansion (adapted from Ceze et al. [53]).

a membership operation of the incoming address on the local signature to check for a data conflict.
Execution aborts if a match occurs.

Bulk supports conflict detection at word granularity without changing the granularity of the
cache coherence protocol. If word granularity is used for conflict detection, then Bulk must merge
updates made to different parts of a cache line on different processors—e.g., one processor that
is committing and another processor that receives the write signature. For this, Bulk uses special
hardware to identify a conservative bitmask of the words the receiving processor updated in the
cache line. It then reads the latest committed version of the cache line and merges the local updates
with the committed version. This way, it retains its updates while incorporating the updates of the
committing processor. Bulk does not require cache-line bit extensions for this.

In Bulk HTM, transactions are still limited to the size of the data cache and an alternate
mechanism is required to support larger transactions.

LogTM-SE. Yen et al.’s LogTM-SE [337] also uses signatures for access tracking and conflict
detection. Figure 5.8 shows the typical signature operations in LogTM-SE. LogTM-SE supports

178 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

(a) bit-select (BS) (b) double-bit-select (DBS) (c) coarse-bit-select(CBS)

bits bits

Address Address

block
offset

block
offset

block
offsetn n

2
bits2

n 0

n02n1
bits2n

1 n

n

d

Signature
Signature

Signature

Address

Figure 5.8: LogTM-SE signatures (adapted from Yen et al. [337]).

operations on signatures similar to Bulk: adding an address to a signature, checking whether an
address aliases with a signature,and clearing a signature’s “O” set.Unlike Bulk,LogTM-SE continues
to use the existing cache coherence protocol for conflict detection, rather than relying on separate
global broadcasts of signatures or tokens. Conflicts are detected by comparing the address in an
incoming coherence request against the local signatures. We discuss LogTM-SE in more detail later
in Section 5.4.1.

5.3.2.1 System Implications of Signatures
While signatures are attractive because they compress information tracking, they introduce numerous
subtle interactions and side effects.

Signatures can lead to performance pathologies that are not present in other TM systems.
First, signatures introduce a risk of false positives on conflict detection: there is a tension between the
size of the signature’s representation, the way it is constructed, and the occurrence of false positives.
In order to reduce the likelihood of these false positives, a number of researchers have investigated
mechanisms to avoid including accesses to thread-local data in signatures [277; 338]. Doing this
can reduce the number of addresses that are inserted into the signature and, consequently, reduce
the number of false positive conflicts that are produced.

The second performance problem with signatures is that since they are usually based on
physical addresses, false conflicts can occur between two processes’ signatures, even if their actual
address spaces are physically disjoint. This can lead to the risk of denial-of-service attacks in which
a malicious process could attempt to engineer conflicts with the transactions occurring in other,
unrelated processes. The addition of address-space identifiers can prevent this kind of interaction—
but it may also prevent the legitimate use of cross-process transactions.

The use of physical addresses can also require care if a page is relocated: any locations that the
signature holds for the old page must be identified, and the corresponding addresses must be added

5.3. ALTERNATIVE MECHANISMS FOR HTMS 179

for the new page mapping. (Of course, an HTM system may simply not support such re-mappings
within a running transaction).

5.3.3 CONFLICT DETECTION VIA UPDATE BROADCASTS
The HTMs discussed so far use a conventional cache coherence protocol to detect access conflicts.
This often means the conflict point is determined at the time the request is detected by the co-
herence protocol. Alternate proposals exist that decouple conflict checks from conventional cache
coherence protocols. In this section, we look at mechanisms that rely on global broadcasts of conflict
information. Then, in Section 5.3.4, we look at hardware mechanisms for deferring conflicts.

In update-broadcast systems, if a transaction reaches its commit point successfully, then it
notifies other processors of its write set. Conversely, if a processor receives a write-set notification
which conflicts with its own read-set, then the processor aborts its own transaction. This means
that conflicts are only detected against transactions that are committing. A key difference between
these HTMs and the ones discussed so far is these HTMs allow multiple concurrently executing
transactions to write the same address concurrently.This does not cause conflicts since conflict checks
(and write-backs) are deferred until commit time.

Knight’s System. Knight [171] proposed a hardware system with elements of this approach as far
back as 1986. The hardware system (Figure 5.9) focuses on speculative parallelization of a single-
threaded program into multiple threads and then executing the program on a multiprocessor. This
is different from typical HTM systems that focus on explicitly parallel threads, but similar to several
speculative parallelization proposals that leverage TM (e.g., [324]). In Knight’s design, a compiler
divides the program heuristically into a series of code blocks called transactions. The hardware
executes these transactions and enforces correct execution by detecting any memory dependence
violations between the threads. Knight’s proposed hardware used two caches: one to track potential
memory dependencies (access tracking), another to record the read-set and to buffer speculative
updates (version management).

When a processor is ready to commit its transaction, it would wait to receive a “commit token”,
indicating that all of the older transactions (in program order) have now committed. Upon receiving
the commit token, the processor broadcasts its cache updates (writes) to all other processors. Other
processors match the incoming writes to their own reads and writes (tracked in the dependency
cache). On a conflict, the processor aborts the transaction and restarts.

TCC. Hammond et al.’s [132] Transactional Coherence and Consistency (TCC) is similar to
Knight’s. As with Knight’s proposal, TCC requires the program to be divided in a series of
transactions—either a single threaded program is divided into a series of transactions, or a pro-
grammer may specify explicit transactions in a multithreaded environment.

Unlike traditional HTM systems, the TCC system does not perform conflict checking with
an ownership-based coherence protocol; instead, the accesses and changes are locally buffered with
no coherence requests. When a transaction is ready to commit, the processor arbitrates for a global

180 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

Depdency Cache

Processor

Broadcast network

Confirm Cache

Commit Block Number

System Wide Commit Control

Figure 5.9: Knight’s hardware organization.

commit token. Once the processor obtains the token, its transaction commits and the transaction’s
writes are broadcast to all other processors. All other processors compare the incoming writes to their
own transaction’s read sets. If a match occurs, the other processor aborts and reexecutes its transaction.
If the transaction exceeds local cache buffers, then TCC provides a non-speculative mode. In this
mode, the processor executing the transaction retains the global commit token to prevent any other
processor in the system from committing; this lets the transaction executes nonspeculatively directly
updating memory.

The TCC model unifies two known techniques: speculative parallelization of sequential pro-
grams (ordered transactions) and optimistic synchronization in parallel programs (unordered transac-
tions). While the concept is similar to Knight’s, the hardware systems are different (Figure 5.10).
TCC proposed numerous approaches to recover register state (suggesting the use of shadow check-
pointing, rename-table checkpointing, and a software scheme). TCC also uses hardware caches
extended with additional bits. TCC used write buffers to track speculative updates instead of the
caches.The R-bits in the cache maintain the read-set, and multiple bits per line mitigate the problem
of false sharing. The M-bits in the cache track the write set. The Rn-bits, one for each word/byte in
a cache line, are set if a store writes all parts of the word/byte. Subsequent loads to such words/bytes
do not need to set the R-bit because the processor previously generated the read data and therefore

5.3. ALTERNATIVE MECHANISMS FOR HTMS 181

L1 cache

Processor

Register
Checkpoint

L2 cache

R

Broadcast Network

Rn M

RRn M

Local Cache Hierarchy

Write
Buffer

CommitsSnoops

Sequence PhaseNode 0

System Wide
Commit Control

Sequence PhaseNode X

Commit Token Information

Node 0

Figure 5.10: TCC hardware organization.

cannot depend on another processor. TCC employs double buffering to prevent unnecessary stalls
while a processor waits for a prior transaction to commit. Double buffering provides extra write
buffers and extra set of read and modified bits for the caches.

Ceze et al.’s Bulk HTM (discussed earlier) also employs a similar broadcast approach, where
a transaction arbitrates for a global commit token prior to broadcasting its write signature.

The global broadcast serves as a bottleneck for large processor count systems. Chafi et al.
enhance the TCC system to create what they call Scalable-TCC [55], which avoids the global
broadcast but retains the commit-time conflict checks in a directory based memory system. A
commit operation requests a unique transaction identifier (TID) from a global co-ordinator.The TID
identifies the transaction’s position in a serial order. Each directory holds a “now serving” identifier
(NSTID) for the most recent transaction which has committed from that directory’s point of view.
For the directories in a transaction’s read set, the transaction sends a “probe” message to check that
the directory has served all of the earlier TIDs. For the directories in a transaction’s write set, the
transaction sends a “mark” message identifying the addresses involved, waiting until the transaction’s
TID is the directory’sNSTID.The transaction also multi-casts a “skip” message to directories in neither

182 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

set, so that these directories may advance their own NSTID values. Note that TIDs are assigned at
commit time, and so it is unnecessary for one processor to wait while another processor executes
user code.

Pugsley et al. investigate an alternative form of parallel commit in a TCC-like system [245].
Their design avoids the need for central TID allocation, and the need for all transactions to send
“skip” messages to directories whose data they have not accessed. Instead, they provide a form of
short-term locking of directories, allowing a transaction to “occupy” all of the directories it has
accessed. Order-based acquisition of directories, or timestamp mechanisms, can be used to avoid the
risk of deadlock in this operation. Once all of the necessary directories are occupied, invalidations
are sent for any readers of the locations being written by the transaction. The “occupied” bits can
then be cleared. In effect, this is a form of two-phase locking at a directory level.

Waliullah and Stenström [325] designed extensions to a TCC-like system to avoid the risk of
starvation when one processor continually commits transactions which conflict with longer trans-
actions being attempted by another processor. The basic idea is to maintain a “squash count” of the
number of times that each processor has lost a conflict while attempting its current transaction and
to defer an attempt to commit if the processor’s squash count is less than that of any other processor.

Broadcast approaches as discussed in this section are new mechanisms that either replace or
co-exist with cache coherence protocols. Cache coherence and memory consistency is one of the
most complex of hardware aspects to verify and validate, especially in high performance processors
that sustain high memory bandwidth and nonblocking caches.

5.3.4 DEFERRING CONFLICT DETECTION
In STM systems, researchers have explored how different conflict detection techniques can provide
robustness against several of the performance pathologies of Section 2.3. Intuitively, requiring that
one transaction aborts only because another transaction has committed successfully provides a useful
system-wide progress guarantee, even though it does not ensure that any individual transaction makes
progress.The challenge in applying these ideas in an HTM based on a conventional cache-coherence
protocol is that the underlying mechanisms are built around an assumption that each line has at most
one writer at any given time. As in STM systems with eager version management, this assumption
precludes multiple writers running speculatively.

The FlexTM and EazyHTM systems explore techniques to permit multiple speculative writ-
ers to the same location and to perform commit-time conflict detection (similar to the update-
broadcast systems discussed above):

FlexTM [290; 291] combines a number of separate features which, collectively, support a
mainly-hardware TM system. We return to several of its components in later sections. To sup-
port commit-time conflict detection it provides a “programmable data isolation” mechanism (PDI,
extended from earlier work [289]), and hardware-managed “conflict summary tables” (CSTs).

PDI is responsible for isolating the tentative work being done by a transaction. It provides
TLoad/TStore operations for performing transactional loads and stores, and the implementation

5.3. ALTERNATIVE MECHANISMS FOR HTMS 183

StateTag A

Processor Core

L1 D$Thread Id

Figure 5.11: FlexTM hardware organization (adapted from Shriraman et al. [291]).

extends a cache coherence protocol to allow multiple processors to have tentative transactional stores
to the same location at the same time, rather than allowing at most one writer. This is explored in
more depth later in Section 5.5.2.

184 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

CSTs are responsible for tracking the conflicts that each processor experiences. Each processor
has three CSTs: one to track write-write conflicts, one to track conflicts between local reads and
remote writes, and one to track conflicts between remote reads and local writes. Each CST holds
an entry for each of the other processors in the system. Entries in the CSTs are set eagerly, while
a transaction runs, and so the presence of a bit indicates a possible conflict, rather than a definite
conflict with a committed transaction.

To support eager conflict detection, software can register a conflict handler which is invoked
as soon as a CST bit is set. Consequently, if an eager transaction reaches the end of its execution,
then all of the CST entries must be clear and it can proceed to commit.

To support lazy conflict detection,a transaction examines its CSTs at commit time in a software
commit function. If a transaction running on processor P1 finds a CST entry for a transaction running
on processor P2 then P1 attempts to abort P2’s transaction by using an atomic-CAS on a status field
for P2’s transaction. If P1’s transaction successfully aborts any conflicting transaction, then P1 can
commit so long as its own status field does not indicate that it has been aborted.

In principle, this design admits the risk of two transactions aborting one another if they
attempt to commit conflicting updates concurrently. However, as in STM systems [300], this might
be expected to be unlikely, and more elaborate commit routines could implement a contention
management policy.

The EazyHTM system exploits similar observations in a directory-based pure-HTM sys-
tem [318]. Extensions to the coherence protocol are used to inform each of the processors that is
sharing a cache line of the presence of the others. Each processor maintains a “racers list” of other
processors with which its current transaction has experienced a conflict.The list at one processor, P1,
over-approximates the set of transactions which need to be aborted when P1’s transaction commits—
e.g., a conflict with processor P2 may have been resolved because P2’s transaction may have aborted
because of a separate conflict with a third processor. To filter out unnecessary aborts, each processor
maintains a “killers list” of which processors are currently permitted to abort its transaction. The
killers list is populated when a possible conflict is detected. It is cleared upon commit or abort, and
a processor ignores abort requests from processors which are not present in its killers list.

Approaches that decouple conflict checking from existing cache coherence protocols do so at
a significantly increased hardware complexity. While an attractive concept, providing software direct
control of cache coherence mechanisms dramatically increases hardware system validation efforts.

5.4 UNBOUNDED HTMS

So far, we have discussed HTM designs that focus on support for transactions that typically fit in
hardware buffers and that do not exceed their scheduling quanta. However, when such limits are
exceeded, these HTMs fall back to an alternative execution mode that either results in the loss of
transactional properties (e.g., acquiring locks, serializing execution) or involves invoking an STM.
Using an STM as a fall-back introduces the ecosystem challenges associated with STMs.

5.4. UNBOUNDED HTMS 185

Another class of HTMs, called Unbounded HTMs, propose HTM designs that can support
transactions that exceed hardware resources, whether they be storage or scheduling quanta. Their
primary goal is to abstract the TM implementation from software and make it non-invasive and
high performance, the same way virtual memory is abstracted from application software, and provide
a consistent and well defined behavior. These goals makes such HTM designs more complex than
the ones discussed earlier and more inflexible than their software counterparts.

Unbounded HTM proposals vary greatly in their scope and implementation complexity. We
start with LogTM-SE that combines signatures and software-resident logs to completely decou-
ple transactional state management from hardware. We then discuss a series of proposals that use
persistent metadata to achieve the de-coupling. This architecturally defined meta-data is either per
memory block or maintained in an alternative software space. Finally, we discuss proposals that
extend the page table mechanisms to perform access tracking.

5.4.1 COMBINING SIGNATURES AND SOFTWARE-RESIDENT LOGS
Yen et al.’s LogTM-SE [337] combines signatures to track accesses and detect conflicts, with a
LogTM-style software-managed log to manage versions (Figure 5.12). This approach avoids some
of the complexities associated with using signatures in Bulk: commits only require clearing the
signature and, as in LogTM, resetting the log pointer.

In contrast to the LogTM per-cache-line W -bit for filtering logging, LogTM-SE cannot
avoid writing a log entry if the address is already set in the signature. This is because signatures
permit false positives, and so it is unclear whether or not the particular address has already been
logged. Instead, LogTM-SE uses an array of recently-logged blocks as a log filter; this is simple
and effective in practice. Stores to addresses in the log filter are not recorded. The filter is based on
virtual addresses, and it is safe to clear it at any time.

Like LogTM, LogTM-SE uses a “sticky” coherence state to ensure evicted cache blocks
continue to receive coherence requests. If a block is evicted, then its directory state is not cleared if
it is present in a signature.

Signature-based conflict detection mechanisms can be extended to allow threads to be pre-
empted mid-way through a transaction or to be rescheduled onto a different processor. To handle
pre-empted threads,LogTM-SE employs a per-process summary signature.This summary signature
is maintained by the OS and records the union of the read/write-sets of any pre-empted threads’
suspended transactions. The summary signature must be checked for conflicts on every memory
access, and so it would typically be distributed to all processors running threads from the process
involved. To maintain the summary signature, if the OS deschedules a thread then it (i) merges the
thread’s signatures into the summary, (ii) interrupts other thread contexts running the process, and
(iii) installs the new signature into each of these contexts. The summary signature is not checked on
coherence requests but only on accesses. When the OS re-schedules a thread, it copies the thread’s
saved signatures from its log into the hardware read/write signatures.The summary signature itself is
not recomputed until the thread commits, to ensure blocks in sticky states remain isolated after thread

186 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

Figure 5.12: LogTM-SE hardware organization (adated from Yen et al. [337]).

5.4. UNBOUNDED HTMS 187

migration. Upon commit, LogTM-SE will then trap to the OS to provide an updated summary
signature to all threads.

Swift et al. extend this scheme and show how to include support for a virtual machine monitor
(VMM), in addition to an OS [311]. Using a VMM introduces several additional problems. First,
the VMM may migrate application threads transparently to the intermediate OS, losing processor-
resident state in the process.This problem can be addressed by making summary-signatures VMM-
private state, rather than having them be managed by the OS.The second problem is that the VMM
may virtualize the memory addresses used by the OS, adding a second layer of translation below
the OS’s view of physical memory, and the actual addresses used by the underlying hardware. This
prevents the OS from updating signatures if the VMM relocates a page in physical memory. Swift et
al. suggest addressing this problem by using summary signatures based on virtual addresses, rather
than physical.

5.4.2 USING PERSISTENT META-DATA
UTM. Ananian et al. [15] propose Unbounded Transactional Memory (UTM), an HTM scheme
based on per-block memory metadata to decouple transactional state maintenance and conflict
checking from hardware caches. UTM embodies two architectural extensions (Figure 5.13): a single
memory-resident data structure (XSTATE) to represent the entire state of all transactions in the
system and main-memory metadata extensions for each memory block in the system.

The XSTATE has a per-transaction commit record, and a linked list of log entry structures.
The commit record tracks the status of the transaction (pending, committed, or aborted state),
along with a timestamp which is used to resolve conflicts among transactions. Each log entry is
associated with a memory block read or written in the transaction, holding a pointer to the block in
memory, the old value of the block, and a pointer to the transaction’s commit record. These pointers
also form a linked list to all entries in the transaction log that refer to the same block. UTM uses the
XSTATE to record the original value of a memory location, in case it is needed for recovery. The OS
allocates the transaction log and two hardware control registers record the range for the currently
active threads.

The metadata extensions consist of the addition of a RW bit and a log pointer. If the RW bit is not
set, then no active transaction is operating on that memory block. If the bit is set, then the pointer
for the memory block points to the transaction log entry for that block. This check is performed by
the UTM system on all memory accesses. The access may result in a pointer traversal to locate the
transaction that owns this block.

The log pointer and the RW bit for each user memory block are stored in addressable physical
memory to allow the operating system to page this information. Every memory access operation
(both inside and outside a transaction) must check the pointer and bits to detect any conflict with
a transaction. Page tables also record information about the locations. Since, during a load or store
operation, an XSTATE traversal may result in numerous additional memory accesses, the processor
must either support the restart of a load or store operation in the middle of such a traversal, or

188 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

New value

Log Pointer R/W

0x8ab3ab00

Application Virtual Memory UTM extensions

PENDINGW

Old value

Block pointer

Reader list

Transaction log

UTM extensions
XSTATE for entire system

in virtual memory

Figure 5.13: UTM data structures.

the operating system must ensure that all pages required by an XSTATE traversal are simultaneously
resident. Hardware directly operates on these architectural extensions.

Conceptually, UTM does not require caches for functional correctness. However, it uses a
conventional cache-based HTM for performance; and invokes the UTM machinery only when
transactions overflow. The UTM data structures provide version management capabilities via hard-
ware logging into software.To ensure correct interaction between non-overflowed HW transactions
and overflowed UTM transactions, the HTM hardware must always check the log pointer and the
RW bit for an accessed memory block even if no transaction overflows. Since each memory block
has a pointer to the UTM transaction log, hardware can determine the state of each transaction
currently accessing that memory block, and commits and aborts require atomic operations only on
the transaction status in the log. However, determining all conflicting transactions requires a walk
of the log pointers. Care is required when transaction logs are reused.

OneTM. Blundell et al. [34] propose OneTM, an unbounded scheme similar in concept to UTM.
While UTM allows multiple overflowing transactions to concurrently execute, OneTM allows only
a single overflowing transaction but allows multiple normal HW transactions to execute in parallel
with the single overflowing transaction. This simplification enables simpler hardware changes than
UTM requires. OneTM also uses a logging scheme maintained in software for version management

5.4. UNBOUNDED HTMS 189

(as LogTM does) but does not need to maintain explicit transactional state like the XSTATE in UTM
since it supports only a single overflowing transaction.

Like UTM, OneTM also uses per-memory-block metadata. It also has per-memory-block
RW bits. However, instead of maintaining a pointer to a log, OneTM maintains a 14-bit transaction
identifier to track the overflowed transaction (OTID). As in UTM, the metadata extensions need
to be recorded with the page tables and on disk when paging. To ensure only one transaction
overflows, OneTM maintains a system-wide status word STSW that indicates the identity of the
current overflowed transaction (if any). These become part of the architecture. These additional 2
bytes of metadata must be queried on every memory access, as in UTM, thereby increasing the
payload.

Since the OneTM meta-data is simply an extension of a memory block, updating the meta-
data would intuitively require write permissions to the underlying memory. However, since reads
must also update the meta-data, such an operation would cause exclusive requests for reads, resulting
in concurrent HW transactions aborting even if they were performing only reads. To address this
issue, OneTM requires the meta-data updates to be performed if the cache has the line in an owned
state. This requires the coherence protocol to support a state where, among multiple caches that
share the line, at least one cache actually owns the cache line (as if it were in a dirty-shared O state).
If the cache line is in S state, the cache controller must request an O state prior to updating the
meta-data. This ensures a shared line’s metadata update does not require an exclusive ownership
request.

Another challenge is in clearing the metadata on commits and aborts. In UTM, since the
meta-data had a pointer to the transaction log, the current status was always known (ignoring the
corner case of log reuse). With OneTM, only the OTID is known. OneTM adopts a lazy approach
to clear the metadata. A committing overflowing transaction clears the overflow bit in the STSW.
This allows other transactions (which must always check this overflow bit) to ignore the metadata
if there is no overflowing transaction in the system. When a transaction enters an overflow state, it
also increments the OTID. This allows transactions to determine the validity of the metadata; an
increment of the OTID in the STSW forces the OTIDs in memory metadata to be stale. This does
introduce the issue of wrap arounds in OTIDs causing false conflicts; this is a performance issue
and these conflicts eventually resolve.

As in UTM, pre-emption during a transaction requires the operating system to save all per-
thread state, including the OTIDs and metadata.

Both UTM and OneTM rely on a conventional cache-based HTM to provide performance.
They extend this to invoke the metadata management on overflows, and they require the proces-
sor hardware to check the meta-data on all accesses. They, therefore, have the hardware cost and
complexity of both supporting an HTM and supporting the metadata extensions for the overflow
cases.

TokenTM. Bobba et al. take a fundamentally different approach to metadata management in To-
kenTM (Figure 5.14) [39]. Instead of using metadata only for overflows, their design uses metadata

190 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

as a fundamental unit of conflict tracking and detection at all times. This enables a seamless design
without special casing to distinguish overflowed from non-overflowed cases.

TokenTM does this by introducing the notion of transactional tokens captured in per-memory
block metadata, inspired by the idea of token-based coherence mechanisms [213]. The key idea is
to assign each memory block some number, T, of tokens. A transaction must acquire at least one
token to read the block and must have all tokens to write the block. TokenTM introduces concepts
of metastate fission and fusion to allow for concurrent updates. TokenTM uses these mechanisms as
its sole conflict-detection technique. Consequently, unlike the schemes discussed previously in this
section, it does not require a conventional HTM.

Conceptually, the token state for a given memory block can be represented in the form
〈c0, c1, . . . , ci〉 where ci is the count of tokens held by a thread i. If a transaction on thread i reads
the block, it requires at least one token in ci . To write the block, the thread must obtain all tokens:
it cannot write if any other ck (k �= i) is non-zero. While, conceptually, the metadata tracks a count
of tokens held by each thread for the given block, the TokenTM implementation represents the
metadata as a pair (sum, TID), where sum is the total number of tokens (out of T) acquired for
the block and if the sum is 1 or T , then TID corresponds to the owner. For example: 〈0, 0, 0, 0〉 is
represented as (0, −), 〈0, 0, 1, 0〉 is represented as (1, 2), 〈0, T , 0, 0〉 is represented as (T , 2), and
〈0, 1, 1, 1〉 is represented as (3, −1).

Since the TokenTM metadata implementation is a conservative summary of the actual meta-
data,TokenTM also records these tokens in memory (in a manner reminiscent to memory versioning
in LogTM). Each software thread maintains an in-memory list of (addr, num) pairs. Tokens there-
fore exist in two locations: as metadata bits per memory block and in the software log of each thread.
For performance reasons, hardware directly operates on this log to perform efficient low-overhead
appends to the log. Maintaining tokens in hardware enables fast conflict checks and maintaining
them in software allows for software conflict management.

TokenTM piggy backs all token metadata manipulation operations onto existing coherence
messages. If there is only a single cached copy of a given block then the owner of the data has
exclusive permission to update its metadata (just as they have permission to update the associated
data itself). The challenge occurs when a block is shared by more than one cache. The naïve solu-
tion of acquiring exclusive permission to update the metadata would introduce contention between
concurrent readers and render the S state ineffective; TokenTM uses metadata on every memory
access, and so the performance impact would be worse than with OneTM. To address this problem,
TokenTM introduces the concepts of metadata fission and fusion. TokenTM allows multiple trans-
actional readers to locally update their metadata in a local copy for shared lines. Metastate fission
occurs when a shared copy of a cache block is created. Metastate fusion occurs when shared copies are
merged following either a writeback or on an exclusive request. Transactional writers must request
exclusive access, meaning that the token metadata that they see will have already been fused.

On commits and aborts, metadata must be returned to the memory blocks. In the event of
an abort, this is done normally since the log is walked. However, on commits, these operations can

5.4. UNBOUNDED HTMS 191

State

State

Attr

Attr

Attr

Tag DataMemory Controller Memory Controller Shared L2
Cache Bank

TokenTM

TokenTM
State

Fast-Release

LogBase

CPU

ECC

TID

Private L1User
Registers

Registers
Checkpoint

Registers
Memory Controller Memory Controller

Memory Bank

Coherence
State

Tag Data

Data

R R
+

R’W W’Coherence
State

XactLevel
LogPtr TrapType

new}

Figure 5.14: TokenTM hardware organization (adapted from Bobba et al. [39]).

be a significant overhead. TokenTM introduces a fast-release mechanism which resets the token
log and requires additional L1 cache metabits that are flash cleared. TokenTM can also support
System-V style shared memory. As in UTM and OneTM, the operating system must be aware of
these extensions. This requires an instruction to free the R and W bits prior to scheduling a new
thread. Paging requires the VM system to clear metastates on initialization, save them on page out,
and restore them on page in. The OS must also manage the thread identifiers.

TokenTM stores 16 metabits per 64-byte memory block using ECC codes. The key idea is
to change the ECC schemes to group four words together to protect 256 data bits with SECDED
using 10 check bits.This makes a 22-bit code word available, which can represent 16 metabits with 6
check bits. Alternatively, explicitly reserving part of the physical memory for metabits like TokenTM
for 3% more area. Baugh et al. also propose an implementation utilizing ECC bits [28].

VTM. In contrast to systems with per-block metadata such as UTM, OneTM and TokenTM, Ra-
jwar et al.’s Virtual Transactional Memory (VTM) proposal [251] took a slightly different approach
for accessing and managing metadata. Instead of extending each memory block with metadata,
VTM maintains all the information for transactions that exceed hardware resources in a table in the
application’s virtual address space. VTM also records all tentative updates in the overflow structures
while leaving the original data in place. It also requires the processor to selectively interrupt load
and store operations and invoke microcode routines to check for conflicts against the overflowed
transactional state in the table.

Figure 5.15 shows the VTM system organization. VTM added a microcode/firmware capa-
bility in each processor to operate on the data structures, similar to hardware page walkers in today’s

192 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

Monitored
shared memory

locations

Loads/Stores at runtime
intercepted in presence

of overflow

L1 cache

Processor

L2 cache

XSW

Processor and Cache with support for
HW transactional memory

Overflow

XADT
walker

Standard coherence protocol

Invoke microcode/PAL code to
check conflicts, perform TM

metadata management

XADT bounds

XF bounds

Figure 5.15: VTM hardware organization.

processors. In the absence of any overflows, VTM executed transactions using HTM without in-
voking any VTM-related machinery or overhead. In the presence of overflows, the VTM machinery
on each processor would take appropriate actions without interfering with other processors.

The software data structure is similar in concept to the UTM overflow data structure. The
XADT maintains information for transactions which have either exceeded hardware caches or have
been suspended. The XADT is common to all transactions sharing the address space. Transactional
state can overflow into the XADT in two ways: a running transaction may evict individual transactional
cache lines or an entire transaction may be swapped out, evicting all its transactional cache lines.
Each time a transaction issues a memory operation that causes a cache miss and the XADT overflow
count signals an overflow in the application, it must check whether the operation conflicts with an
overflowed address. In addition, each thread has a transaction status word (similar to UTM and
OneTM). This transaction status word XSW is continually monitored by an executing thread.

Transactions that fit in the cache do not add state to the XADT, even if another transaction has
overflowed. Processors continually monitor a shared memory location that tracks whether the XADT
has overflowing transactions: XADT lookups are performed only if a transaction has overflowed.

5.4. UNBOUNDED HTMS 193

To accelerate the conflict check and avoid an XADT lookup, VTM used a software conflict filter, the
XADT filter (XF). The XF returned whether a conflict existed without requiring to look up the XADT.
The XF essentially replaces the per-memory-block metadata extensions. The XF is a software filter
(implemented as a counting Bloom-filter [33; 102]) that helps a transaction to determine whether
a conflict for an address exists. VTM uses this filter to determine quickly if a conflict for an address
exists and avoid an XADT lookup. Strong isolation ensures that the committed lines copied from the
XADT to memory are made visible to other non-transactional threads in a serializable manner. Other
threads (whether in a transaction or not) never observe a stale version of the logically committed but
not yet physically copied lines. Conflicts between nonoverflowing hardware transactions are resolved
using HTM mechanisms. For transactions that have overflowed, a processor requesting access to
such an address will detect the conflict when it looks up the XADT. This localizes conflict detection,
allows conflicts with swapped transactions to be detected, and avoids unnecessary interference with
other processors.

VTM implements a deferred-update TM system. It leaves the original data in place and
records new data in the XADT. When an overflow occurs, the VTM system moves the evicted address
into a new location in the XADT.The transaction state for the overflowing transaction is split between
caches and the XADT. In a deferred-update system, reads must return the last write in program order.
For performance, reads must quickly know which location to access for the buffered update. The
processor caches the mapping of the original virtual address to the new virtual address in a hardware
translation cache, theXADC.This cache speeds subsequent accesses to the overflowed line by recording
the new address of the buffered location.

VTM requires the virtual address of the evicted cache line to be available for moving it into
the XADT. When a context switch occurs, VTM moves transactional state from the hardware cache
to the XADT. This increases the context switch latency for such transactions.

When a transaction overflows, the Overflow monitored location changes to 1 and processor-
local VTM machinery gets involved. The processor running the overflowing transaction performs
overflow transaction state management.The assists add metadata information about the overflowing
address into the XADT. An XADT entry records the overflowed line’s virtual address, its clean and
tentative value (uncommitted state), and a pointer to the XSW of the transaction to which the entry
belongs. The other processors perform lookups against overflow state. A hardware walker, similar to
the page miss handler, performs the lookups.

Figure 5.16 shows the coexistence of overflowed software and hardware state. The left shows
the software-resident overflow state and the right shows the hardware-resident non-overflow state
for a transaction. The overflow entries have a pointer to the XSW, which allows other transactions to
discover information about a given transaction.The XF is a software filter (implemented as a counting
bloom-filter [33; 102]) that helps a transaction to determine whether a conflict for an address exists.
VTM uses this filter to determine quickly if a conflict for an address exists and avoid an XADT lookup.
In the example shown, virtual addresses G and F map to the same entry in XF and thus result in a
value 2 for that entry. Strong isolation ensures that the committed lines copied from the XADT to

194 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

L1 cache

XSW

1

1

1

1

A

B

D

C

Hardware Transactional Memory
owns A, B, C, D

TM metadata structures
in virtual memory (logical view)

E 1 &XSW1

F 1

G 1

&XSW1

&XSW1

VA V
New
Data XSW

1 2

E G, F

XADT

XF

Overflow
!= 0

Figure 5.16: VTM hardware and software modes.

memory are made visible to other non-transactional threads in a serializable manner. Other threads
(whether in a transaction or not) never observe a stale version of the logically committed but not yet
physically copied lines.

5.4.3 USING PAGE TABLE EXTENSIONS
IBM 801. An early example of using page-table extensions for transactions is the IBM 801 storage
manager [57; 246]. This system provided hardware support for locking in database transactions.
Specifically, the system associated a lock with every 128 bytes in each page under control of the
transaction locking mechanism. It extended the page table entries (PTE) and translation look-aside
buffers (TLB) to do so. If, during a transaction, a memory access did not find the associated lock in
the PTE in an expected state, the hardware would automatically invoke a software function. This
software function then performed the necessary transaction lock management.To accommodate this
mechanism,each segment register in the 801 architecture has an S protection bit. If the S bit was 0 the
conventional page protection is in effect. If the S bit was 1, the transaction locking mechanism was
applicable to the segment.Figure 5.17 shows the architectural extensions; all transaction management
is implemented in software, in response to invocations from the hardware.

5.4. UNBOUNDED HTMS 195

Cache

Processor

Transaction id

Segment id vpage chain

Page Table Entry for the 801

PP tid W Lock bits

Used for translation Used for protection and
locking

TLB extended with
tid, W, and lock bits

Figure 5.17: The 801 transaction locking extensions.

This implicit invocation of transaction management functions by hardware was analogous
to the implicit invocation of page fault handlers by hardware to implement virtual memory. The
designers of the 801 storage manager argue that removing the need to insert library calls directly
into software simplifies software development and engineering—e.g., requiring explicit transaction
management function calls wherever the program references transaction data presents difficulties for
multiple languages. In addition, the called functions need use-specific parameters, thus complicating
software engineering.

The original system was described in the context of a uniprocessor implementation accessing
files on disk. Conceptually, however, the ideas are equally applicable to a multiprocessor implemen-
tation and data held in memory.

The software component of the 801 system maintains information about locks in a separate
software structure called the lock table.Each entry in the lock table, called a lockword,has fields similar
to those in the PTE. A lockword is allocated when a transaction first accesses a page following a
commit, and it is freed on the next commit. Two lists are maintained to allow fast accesses to this
table. One list is indexed by a transaction ID, to identify all lockword entries belonging to that
transaction. Commit operations use this list to find all the locks held by the committing transaction
in all pages. The second list is indexed by the segment id and the virtual page within the segment.
The lock-fault handler uses these lists to find all locks of any transaction in the referenced page,
to detect conflicts, and to remember locks granted or released. The hardware triggers a lock-fault
interrupt if the locks in the PTE for a page are not those of the current transaction, and control
transfers to the lock-fault handler. The handler searches the lock table and makes the transaction
wait if there are conflicting locks, or grants and adds the requested lock in the table. The lock table

196 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

itself is held in pageable memory and is accessed in a critical section. The table itself is similar to the
ownership tables in many word-based software transactional memory systems (Section 4.5.3).

PTM. Chuang et al.’s unbounded page-based transactional memory (PTM) [62] provides exten-
sions to a processor’s virtual memory mechanisms to allow transactional data to be evicted from a
cache.The design assumes that short transactions are handled by an ordinary bounded-sized HTM,
and so it focuses specifically on techniques for use as a fall-back in the case of overflow—e.g., context
switches, processor exceptions, and the management of inter-process shared memory.

The crux of the idea is for the hardware to maintain a shadow page for each physical page that
holds transactional data that has been evicted from a cache. A shadow page table (SPT) maps each
original physical page onto the address of its associated shadow page. (The physical space itself is
allocated on demand, and a similar table records mappings for pages that have been evicted from
physical memory). In addition, each transaction has a list of transaction access vectors (TAVs) which
identifies the SPT entries that it has accessed, and a per-cache-block bitmap, within those pages, of
the locations in its read-set and write-set. These per-cache-block bitmaps enable conflict detection
to be managed on a fine granularity, even though versioning is managed on a per-page basis.

Although the SPT andTAVs are conceptually held in main memory, extensions to the memory
controller are responsible for caching and aggregating information from these structures so that it
is not usually necessary to walk them directly.

A simpler Copy-PTM variant ensures that, for each physical page, the shadow page holds
a snapshot of the current non-speculative data, while speculative updates are made eagerly to the
original copy of the page. This means that, upon commit or roll-back, it is necessary to update one
or other of these pages.

A more complex Select-PTM variant relaxes this condition and maintains a per-cache-block
bitmap to record which of the two pages holds the non-speculative copy of the block.This avoids the
need to copy data on commit or roll-back (the bitmap can be adjusted instead), but it can introduce
additional work to merge the contents of the two pages if physical memory is scarce.

XTM. Chung et al. examined design considerations for unbounded TMs, and they proposed a
page-based eXtended Transactional Memory (XTM) system [64]. In the basic design, a transaction
has two execution modes: all in hardware or all in software. An overflow exception is triggered when
a transaction cannot be executed in hardware, and it is then aborted and re-executed in software
mode.The software mode uses page faults to trap the first transactional access to each page by a given
transaction, creating additional copies on-demand in virtual memory. For reads, a single private copy
of the page is created. For writes, an additional snapshot page is created to hold a clean copy of the
page’s pre-transaction state.

The snapshot page is used for commit-time conflict detection: if it differs from the contents
of the original page, then a conflict is signaled. If all of the snapshot pages are validated, then
the contents of the private pages are copied back to the original locations. A sparsely-populated
per-transaction page-table provides the physical location of the private pages. The software-mode

5.5. EXPOSING HARDWARE MECHANISMS TO STMS 197

commit can be made atomic by using a TCC-style global commit token or by using TLB-shootdown
to ensure that the committer has exclusive access to the pages involved.

Chung et al. also describe extensions to allow a hardware-mode transaction to gradually
overflow to virtual memory (rather than needing to be aborted) and a cache line-level variant based
on tracking read/write access sets at a sub-page granularity.

5.5 EXPOSING HARDWARE MECHANISMS TO STMS
We have so far discussed HTM designs where the hardware attempts to execute the transaction. In
this section, we discuss a final class of TM systems where the individual HTM hardware mechanisms
are exposed directly to the STM. In these systems, the STM utilizes the HW mechanisms to improve
its performance.

5.5.1 ACCELERATING SHORT TRANSACTIONS AND FILTERING
REDUNDANT READS

One set of techniques for hardware-accelerated STM systems is to use hardware to perform conflict
detection for short cache-resident transactions and to provide a form of conservative filtering to
avoid repeated STM work if a longer transaction reads from the same location more than once.

Saha et al. [275], Marathe et al. [211], and Shriraman et al. [292] all propose adding additional
bits per cache line and exposing these as part of the architecture. At a high level, this is reminiscent
of the use of cache-based W -bits to filter repeated logging in LogTM (Section 5.3.1) and the use
of software-implemented filters in Bartok-STM (Section 4.2.1).

Saha’s proposal focuses on accelerating invisible-read STM systems by extending each cache
line in the first level data cache with 4 mark bits: one mark bit per 16 byte block in a 64-byte cache
line. Software uses a new load instruction to set the mark bit as part of the load operation. The
proposal provides new instructions to test and clear the mark bits for a specified address and to clear
the mark bits for all addresses in the data cache. The mark bits are cleared when the line is evicted
or receives a coherence invalidation. A new software-readable saturating counter, the mark counter,
tracks the number of such evictions and invalidations. This enables software to identify addresses to
monitor and determine when monitoring was lost. If the mark counter is zero, then software could
be sure no other thread attempted to write the locations that were marked and thereby skip the
validation phase. In effect, this achieves the behavior of visible readers, without the software cost of
managing shared metadata.

As in Herlihy and Moss’ HTM, a loss of monitoring does not automatically result in a trans-
action abort; a transaction could continue executing with inconsistent data until software performed
an explicit validation sequence. In an optimization, this form of TM could skip the read barrier
code completely and only resort to read barrier logging if a marked line was evicted. Saha et al. also
suggested the use of mark bits to filter write barrier operations.

The Alert On Update (AOU) proposal [211; 292] uses similar bits to those proposed by Saha
et al.. Each cache line was extended with a bit and software could set the bits as part of a new form

198 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

of load instruction, and they could clear the bits for specific addresses (or for all addresses in the
data cache). However, in a key difference from Saha et al.’s design, the AOU approach provides a
synchronous abort capability, instead of relying on software to poll for loss of monitoring, AOU
triggers a software event when the loss of monitoring occurred. This requires software to register an
alert handler using a new instruction. When the monitoring is lost (due to eviction or invalidation),
the alert handler is invoked. AOU also provides the capability to mask alerts from being delivered
(similar to disabling/enabling interrupts).The asynchronous abort capability enables AOU to detect
abort conditions as they occur and prevents the STM from continuing to execute with inconsistent
data.This mechanism could also be used to monitor status metadata in an STM, allowing immediate
notification of conflicts.The proposal requires additional architectural registers to record the handlers
and other miscellaneous information.

Harris et al. introduce a dynamic filtering (dyfl) mechanism which could be used to avoid
repeated read-barrier operations in an STM system [140]. Unlike the previous proposals in this
section,dyfl aims to be decoupled from the cache, maintaining a separate table of recently-executed
barrier operations. Table entries are explicitly added and queried by the STM, and the table is
explicitly flushed at the end of each transaction. The table is not modified in response to coherence
traffic, and it does not aim to accelerate commit operations. However, the design aims to support a
series of additional applications beyond STM—e.g., read and write barriers for garbage collection.

5.5.2 SOFTWARE CONTROLLED CACHE COHERENCE
Both Saha et al.’s proposal and AOU leave the existing cache coherence protocols unchanged.
They, therefore, result in conflicts occurring when the coherence protocol makes conflicting requests
(irrespective of when the conflict would actually be detected by an STM system).

To decouple conflict detection completely from the cache coherence protocol, the RTM [211;
289] and FlexTM [290;291] systems also proposed Programmable Data Isolation (PDI).As outlined
in Section 5.3.4, with PDI, software has explicit control over when an address in the data cache
participates in the cache coherence protocol. Software uses two new instructions,TLoad and TStore,
for doing so.TStore operations use the data cache to buffer transactional writes (and use lower levels
of memory to save old copies of the line, the same way as most HTM systems) but tag the line in
such a way that it does not participate in cache coherence. This incoherence allows lazy detection of
read/write and write/write conflicts. PDI introduces two new stable states to the cache coherence
protocol: TI and TMI (goes to M on commits and I on aborts). T implies threatened and is a new
indication provided to a TLoad operation that the line may be in TMI state somewhere in the system
and therefore may be a potential conflicting writer. Similarly M, E, and S state lines that are tagged by
TLoad operations transition toTI when written by other processors, but continue to be readable even
though they are incoherent. Software has to ensure correctness by handling incoherence properly.
Commit operations are done through a CAS-commit instruction. PDI requires extensive support
in the cache coherence protocol to support incoherence. The hardware itself does not provide any

5.5. EXPOSING HARDWARE MECHANISMS TO STMS 199

transactional execution properties—it is up to the associated STM to use the hardware mechanisms
correctly.

5.5.3 EXPOSED SIGNATURES TO STMS
SigTM [48] proposes a hardware acceleration based on signatures instead of software-maintained
read/write sets or the data cache. SigTM uses hardware signatures to track read- and write-sets and
perform conflict detection. However, software continues to implement all remaining actions such
as access identification and version management. Software version management implies a write-set
must also be maintained in software to allow recovery.

SigTM has three key relevant actions: SigTMtxStart (take a checkpoint and enable read-
set signature lookups for exclusive coherence requests), SigTMWriteBarrier (add address into the
write-set signature and update the software write-set), and SigTMreadBarrier (check if the address
is in the software write-set; if not, add into the read-set). If an exclusive coherence request hits the
read set signatures, a conflict is signaled and the transaction aborts. Aborts result in a signature reset.
Write-sets are not looked up until the commit stage—this allows for write-write concurrency.

The commit sequence is as follows. First, coherence lookups are enabled in the write-set
signatures for all incoming coherence requests. Then, the write-set is scanned and exclusive access
requests are issued for every address in the set using a new fetchex (fetch-exclusive) instruction.
Any request that hits a write-set is NACKed. As a result, a fetchex instruction may time out and
invoke a software handler. Next SigTM scans the write set and updates memory. Performing lookups
to read-set signatures results in the transaction with visible reads, thereby avoiding the inconsistent
read problems with invisible read STMs. Since the read set is exposed to all coherence protocol
requests, the STM can naturally achieve strong isolation.

Decoupling access tracking from caches introduces complications in dealing with lines that
have been evicted: the processor may not receive subsequent coherence requests and therefore will
be unable to perform lookups to its signature. This is a situation similarly faced with LogTM,
LogTM-SE and FlexTM. SigTM assumes a broadcast protocol where all processors see all requests,
irrespective of whether their cache hierarchy has a copy of the block. However, this is not how many
modern multicore systems are implemented because they often use their cache hierarchies as filters
to reduce the coherence traffic that they must see. Regardless, using signatures requires them to be
exposed to all traffic to ensure no address lookup is missed.

These signatures are software-readable and can be updated. They face similar challenges
to those faced by LogTM-SE when it comes to thread de-scheduling, thread migration, conflict
checking during suspension, and page remapping. Approaches similar to LogTM-SE may be used
to address these challenges.

A key distinction between SigTM and the earlier hardware-accelerated STMs is that SigTM
cannot execute without hardware support for signatures whereas hardware-accelerated STMs and
most Hybrid TMs can execute completely in software without hardware support. This is, however,
primarily due to the goal of SigTM to achieve low overhead strong isolation.

200 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

5.5.4 EXPOSING METADATA TO STMS
Baugh et al. [28] propose exposing memory metadata explicitly to software. This enables an STM
in a hybrid system to use this metadata for conflict checking and to achieve strong isolation. The
paper proposes the concept of a User Fault On (UFO) mechanism for each block in the memory
system using new bits called UFO bits. These bits serve to protect access to the block.

When a SW transaction operates on a memory location, it sets the appropriate read and/or
write UFO bits to write-protect values read or read/write-protect values that they write. While
executing a SW transaction, a thread disables detection of these protection violations for its own
accesses. Consequently, threads using SW transactions can access memory as normal (using STM for
their synchronization),but threads accessing the locations nontransactionally or via HW transactions
will receive protection violations.This allows a SW transaction to achieve strong isolation with respect
to other HW transactions and non-transactional accesses without requiring the hardware to check
the STM metadata.

Baugh et al. describe an example STM implementation using an ownership table. To provide
strong isolation, requires installing memory protection for the transactionally cached blocks whenever
the otable entries are created/upgraded. A fault-on-write bit is installed on the USTM read barriers
and a fault-on-read and fault-on-write is installed on USTM write barriers. USTM transactions
themselves disable UFO faults. Operations to the USTM structures and UFO bits use a lock to
ensure no data races.The operations add minimal overhead to the underlying STM. When a conflict
does occur (i.e., the HTM or an ordinary transaction accesses the cache and finds an incompatible
UFO bit set), then the faulting thread vectors to a fault handler that was registered by the STM.

Since the UFO bits are required to be coherent, they may result in aborting the HW transac-
tions even on reads. However, the paper does not find this to be a major issue.While this is a different
observation from the TokenTM proposal, the use of metadata is distinct.The UFO proposal utilizes
these metadata only when a software transaction is executing whereas TokenTM uses them all the
time.

Figure 5.18 describes a proposed UFO implementation. UFO adds two bits of information
to every cache block of data, extending to all levels of the virtual memory hierarchy. Multithreaded
processors where multiple threads share the same data cache require only one set of UFO bits.
Existing cache coherence ensures these UFO bits are consistent across all caches.

The paper proposes an implementation utilizing ECC bits. The idea is to encode ECC at a
larger granularity (similar to TokenTM) and reuse the resulting free ECC bits.This requires support
in the memory controllers to re-encode ECC and to interpret the remaining ECC bits as UFO bits.
The operating system must save and restore these UFO bits when physical pages swap to and from
disk.

5.6. EXTENDING HTM: NESTING, IO, AND SYNCHRONIZATION 201

R WD V
D V R W

TAG
TAG

DATA
DATA

MEMORY
CONTROLLER

MAIN
MEMORY

PAGE DATA

PAGE OUT

PAGE IN

STATUS UFO

PHYSICAL
MEMORY

CACHE

VIRTUAL
MEMORY

V
V

D V

W
W

WR
R

R W

TAG
TAG

D
D

D

TAG
DATA

DATA
DATA

Figure 5.18: UFO metadata implementation (adapted from Baugh et al. [28]).

5.6 EXTENDING HTM: NESTING, IO, AND
SYNCHRONIZATION

In this section, we examine a number of extensions to HTM systems, focusing on three particular
directions: supporting different forms of nesting between transactions, supporting IO operations
within transactions, and supporting synchronization between transactions running on different pro-
cessors. The mechanisms used for these three extensions are often related to one another, and so we
consider the extensions as a whole, rather than treating each separately.

Moravan et al. [228] and McDonald et al. [215] developed mechanisms to accommodate closed
nesting and open nesting in HTM.Both techniques conceptually divide a transactions read/write sets
into a series of segments for each nesting level. Closed nesting is supported by allowing the innermost
segment to be aborted without aborting the complete transaction. Open nesting is supported by
allowing the innermost segment to be committed directly to memory.

In systems using cache-based R/W -bits for tracking accesses, one approach is to replicate
these bits and provide separate pairs for each nesting level [215; 228]. McDonald et al. propose a
second implementation in which tentative state is held in different lines in the same cache set, as

202 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

sketched by Moss and Hosking [229]. Flattening can be used to optimistically implement closed
nesting once these bits are exhausted, or hardware-software hybrids can be used.

Similarly, Bulk supports a closed-nested model. A separate read and write signature is main-
tained for each nested level. Incoming write signatures and addresses are checked for conflicts (via
intersection or membership) with each of these nested signatures. If any intersection is found, then
execution rolls back to the beginning of the aborting transaction. When the outer transaction com-
mits, then a union of all the write signatures is broadcast to other processors for conflict detection.
Bulk can track multiple read and write-sets for the nesting levels without requiring per-nesting level
cache bits. The paper suggests moving signatures into a memory location if more nesting levels are
required than are provided by the processor.

In addition to ordinary nesting, Moravan et al.’s design allows a transaction to register commit
actions and compensating actions and to execute escape actions during which memory accesses are made
directly (with conflict detection disabled). These actions are intended for low-level interfacing, e.g.,
for use in wrappers around system calls performing IO. McDonald et al.’s design provides facilities
for two-phase commit (2PC) using commit-time callbacks and for software violation-notification
handlers to be invoked when a conflict occurs.To simplify the implementation of 2PC, the hardware
effectively votes last, so that it can immediately commit or roll-back its updates.

As in software implementations, programmer care is required to ensure that nesting and non-
transactional operations are used in a disciplined way. Particular care is needed if locations might
be shared between a parent and an open-nested child—and hardware implementations can add the
complexity that such sharing may need to be determined at a per-cache-line granularity, rather than
in terms of precise addresses. McDonald et al. [215] introduce rules for safe use of these operations.

Lev and Maessen proposed an alternative “split transaction” technique for implementing nest-
ing in hardware, along with extensions such as commit actions and 2PC [190]. Lev and Maessen’s
approach assumes only simple non-nesting transactions in the hardware, and it builds richer se-
mantics for transactions over this by tracking explicit read and write-sets in software. In effect, each
hardware transaction provides an atomic update to these read and write-sets. For instance, on enter-
ing a closed nested transaction, a new hardware transaction is started which re-reads the enclosing
transaction’s read set (so that conflicts are detected on it) before updating the read and write sets with
the enclosed transaction’s memory accesses. Commits are performed by writing back the contents of
the write set. This approach is flexible, and it avoids the need to support nesting explicitly in hard-
ware. However, it does incur the cost of maintaining read and write-sets in main memory, it requires
software to be compiled to operate on these sets, and it does not (in itself) support transactions that
are longer than those supported by the underlying HTM.

Baugh and Zilles [346] introduced a pause operation, allowing a section of code to ex-
ecute non-transactionally while a transaction remains active on the current processor. The non-
transactional code is intended to manage thread-local information (e.g., a thread-local allocator),
invoke system calls in a controlled way, manage lists of abort-handlers and commit-handlers, and
so on. In addition, Baugh and Zilles describe a mechanism to allow a thread running a hardware

5.7. SUMMARY 203

transaction to block, using a retry-like operation, in which the thread links itself to data structures
whose updates should trigger it to be woken (as in the software implementation in Section 4.6.2),
before requesting that the OS reduce the thread’s priority to the minimum possible; its transaction
will be aborted (and the thread woken) when a conflicting update is made. A similar mechanism
can be used to allow a thread running one transaction TA to block until a conflicting transaction TB
has completed: TA updates a per-transaction metadata record for TB, and a new form of processor
exception is raised to notify the OS scheduler. When TB commits, it proceeds to request that the
thread running TA be rescheduled. The use of transactions helps avoid race conditions in managing
these operations.

Hofmann et al. argue that a small number of hardware primitives can be used in place of
direct support for open nesting (or for unbounded transactions) [158; 159]. They describe their
experience using an HTM system to implement synchronization in the Linux kernel, extending
a bounded-size HTM with support for non-transactional operations, for blocking, and for non-
transaction interaction with contention management.Their design for non-transactional operations
is similar to Baugh and Zilles’s pause operations, except that while Hofmann et al. do not allow these
operations to access transactional data, they do allow them to use transactions themselves. Blocking
is performed by an xwait operation, which waits for an address to hold a specific value before adding
the address to the transaction’s read set. This allows a transaction to probe an address (e.g., a status
field, or a lock’s implementation), without inducing a conflict. Finally, an xcas operation is used in
non-transactional code that is integrated with contention-management. This is used to avoid some
of the pathologies discussed by Volos et al. [321] in managing shared transactional-non-transactional
data structures.

5.7 SUMMARY

We have discussed the main directions explored in the design and implementation of HTM systems.
As we have seen, the HTM design is often directly impacted by the targeted software model and
expectations of performance and software ecosystem impact. HTMs that aim to minimize soft-
ware impact require more complex mechanisms than hardware geared primarily toward accelerating
STMs. This is analogous to hardware support for virtual memory where significant effort went into
providing high performance and transparency to application software.

Hardware support has unique challenges not faced by software systems. Any hardware support
becomes legacy when it ships, and it often must be supported going forward. This places great focus
on correct and concise instruction set definitions, and ensuring the behavior is well defined in the
presence of arbitrary software usages and interactions with other features such as virtualization,
varied system software, and other competing usage models. This also directly affects validation and
verification costs. Hardware design goes through a rigorous verification and validation process, and
open-ended instruction set definitions greatly increase these costs. Modern microprocessors are
highly complex designs that are efficient in processing a continuous stream of instructions with
high throughput and parallelism; the actual execution flow through the pipelines often is different

204 5. HARDWARE-SUPPORTED TRANSACTIONAL MEMORY

from the software view (which only observes the retirement order). New instruction set extensions
to support TM must lend themselves to seamless integration into such processors; operations that
interrupt execution flow can negatively impact performance. Further, cache coherence and memory
ordering implementations are very complex, and significant effort goes into their validation. These
challenges are especially true with extensions that provide software direct control over individual
hardware mechanisms.

Unbounded HTMs that rely on metadata require such support to be architectural, much in
the same way virtual memory page tables are architectural. Such support is expensive and expansive
since it requires both hardware and system software changes. Further, it becomes important to
get the definition correct, otherwise it becomes a legacy burden. While such HTM systems can
significantly reduce the larger software ecosystem impact, they require complex changes to hardware
implementations.

TM is still an open research topic, and it is as yet unclear what the right hardware model would
be. This is also affected by the realities of software deployment, the extent of software analysis and
recompilation expected and accepted, and the expectation of legacy support. As the field matures,
clear directions may emerge. Nevertheless, research into HTMs has developed a rich set of options
and alternatives to provide TM support. An ongoing research question is exactly where the boundary
should be placed between functionality provided by a hardware implementation ofTM and a software
system.

205

C H A P T E R 6

Conclusions
Transactional memory (TM) is a popular research topic.The advent of multicore computers and the
absence of an effective and simple programming model for parallel software have encouraged a belief
(or hope) that transactions are an appropriate mechanism for structuring concurrent computation
and facilitating parallel programming. The underpinning of this belief is the success of transactions
as the fundamental programming abstraction for databases, rather than practical experience applying
transactions to general parallel programming problems. Confirmation of this belief can come only
with experience. The research community has started exploring the semantics and implementation
of transactional memory, to understand how this abstraction can integrate into existing practice, to
gain experience programming with transactions, and to build implementations that perform well.

This book surveys the published research in this area, as of early 2010. As is normal with
research, each effort solves a specific problem and starts from specific, though often narrow, assump-
tions about how and where a problem arises. Software transactional memory (STM) papers offer
a very different perspective and start from very different assumptions than hardware transactional
memory (HTM) papers. Nevertheless, there are common themes and problems that run through all
of this research. In this survey, we have tried to extract the key ideas from each paper and to describe
a paper’s contribution in a uniform context. In addition, we have tried to unify the terminology,
which naturally differs among papers from the database, computer architecture, and programming
language communities.

Looking across the papers in this book, a number of common themes emerge.
First, transactional memory is a new programming abstraction. The idea evolved from initial

proposals for libraries and instructions to perform atomic multiword updates to modern language
constructs such as atomic{ }, which allow arbitrary code to execute transactions and which often
allow transactions to execute arbitrary code. Moreover, researchers have elaborated the basic concept
of a transaction with mechanisms from conditional critical sections such as retry and mechanisms
to compose transactions such as orElse. These language features lift a programmer above the
low-level mechanisms that implement TM, much as objects and methods build on subroutine call
instructions and stacks.

Control over the semantics and evolution of programming abstractions belongs in large mea-
sure to programming language designers and implementers.They need to invent new constructs and
precisely define their semantics; integrate transactional features into existing languages; implement
the language, compiler, and run-time support for transactions; and work with library and applica-
tion developers to ensure that transactions coexist and eventually support the rich environment of
modern programming environments.

206 6. CONCLUSIONS

This level of abstraction is what we loosely refer to as the semantic layer of transactional
memory. Programmers will think at this level and write their applications with these abstractions.
A key challenge is to ensure that these constructs smoothly coexist with legacy code written, and
perhaps even compiled, long before TM. This code is valuable, and for the most part, it will not
be rewritten. Building a system entirely around transactions is a long-term endeavor. Transactions
must coexist with non-transactional code for a long time. It is also important that transactional
memory systems provide features and programming conventions suitable for multiple languages and
compilers, so a construct written in one language and compiled with one compiler interoperates with
code written in other languages and compiled with other compilers. A further challenge is to learn
how to program with transactions and to teach the large community of programmers, students, and
professors a new programming abstraction.

The second theme is that, high-performance software implementations of transactional mem-
ory will play an important role in the evolution of transactional memory, even as hardware support
becomes available. STM offers several compelling advantages. Because of their malleability, STM
systems are well suited to understanding, measuring, and developing new programming abstractions
and experimenting with new ideas. Until we measure and simulate “real” systems and applications
built around transactions, it will be difficult to make the engineering trade offs necessary to build
complex HTM support into processors. Changing a processor architecture has costs in engineering,
design, and validation. Further, instruction-set extensions need to be supported for an extended
period, often the lifetime of an architecture.

Moreover, since STM systems run on legacy hardware, they provide a crucial bridge that
allows programmers to write applications using TM long before hardware support or HTM systems
are widely available. If STM systems do not achieve an acceptable and usable level of performance,
most programmers will wait until computers with HTM support are widely available before re-
vamping their applications and changing their programming practice to take advantage of the new
programming model.

STM and HTM complement each other more than they compete. It is easy to view these
two types of implementations as competitors since they both solve the same problem by providing
operations to implement transactional memory. Moreover, the respective research areas approach
problems from opposite sides of the hardware–software interface and often appear to be moving in
opposite directions. However, each technique has strengths that complement the weaknesses of the
other. Together they are likely to lead to an effective TM system that neither could achieve on its
own.

A key advantage of STM systems is their flexibility and ability to adapt readily to new algo-
rithms, heuristics, mechanisms, and constructs. The systems are still small and simple (though they
are often integrated into more complex platforms, such as Java or .NET runtime systems), which
allows easy experimentation and rapid evolution. In addition, manipulating TM state in software
facilitates integration with garbage collection, permits long-running, effectively unbounded transac-
tions, and allows rich transaction nesting semantics, sophisticated contention management policies,

207

natural exceptions handling, etc. The tight integration of STMs with languages and applications
allows cross-module optimization, by programmers and compilers, to reduce the cost of a transaction.

STMs also have limitations. When STMs manipulate metadata to track read and write-
sets and provision for roll-back, they execute additional instructions, which increases the overhead
in the memory system and instruction execution. Executing additional instructions also increases
power consumption. Languages such as C/C++ offer few safety guarantees, and thus they constrain
compiler analysis and limit STM implementation choices in ways that may lead to lower performance
or difficult-to-find bugs. STMs also face difficult challenges in dealing with legacy code, third-party
libraries, and calls to functions compiled outside of the STM.

HTM systems have different areas of strength. A key characteristic of most HTM systems is
that they are decoupled from an application. This allows an HTM to avoid the code bloat necessary
for STMs. Consequently, HTM systems can execute some transactions (those that fit hardware
buffers) with no more performance or instruction execution overhead than that caused by sequential
execution. In addition, most HTM systems support strong isolation. Furthermore, HTM systems
are well suited to low-level systems code, whose fixed data layouts and unrestricted pointers constrain
STM systems. HTM systems can also accommodate transactions that invoke legacy libraries, third-
party libraries, and functions not specially compiled for TM.

However, HTM systems have limitations. Hardware buffering is limited, which forces HTM
systems to take special action when a transaction overflows hardware limits. Some HTM systems
spill state into lower levels of the memory hierarchy, while others use STM techniques and spill
to or log to software-resident TM metadata structures. Since hardware partially implements the
mechanisms, it does not always offer the complete flexibility of an STM system. Early HTM
systems implemented contention management in hardware, which required simple policies. Recent
HTM systems have moved contention management into software. Finally, HTM systems have no
visibility into an application. Optimization belongs to a compiler and is possible only through the
narrow window of instruction variants.

While STMs and HTM systems both have advantages and limitations, the strength of an
STM is often a limitation in an HTM, and an HTM often excels at tasks STMs find difficult to
perform efficiently. We see four obvious ways in which these two fields can come together.

The first possibility is that as experience building and optimizing STM systems grows, consen-
sus may emerge on instruction set extensions and hardware mechanisms to accelerate STM systems.
Obvious areas are the high cost of tracking read, write, and undo sets and detecting conflicts be-
tween transactions. Such support must be general enough to aid a wide variety of STM systems.
Many of the hardware mechanisms identified in recent proposals (Section 5.2.3) retain much of the
complexity of a typical HTM but provide finer control over the hardware. The challenge here is
to design mechanisms that integrate into complex, modern processors and provide architecturally
scalable performance over time. Other approaches are necessary to give STM the same transparency
that HTM can achieve for strong isolation, legacy code, third-party libraries, and perhaps for unsafe
code.

208 6. CONCLUSIONS

The second possibility is for the hardware community to continue to develop self-contained
HTM systems, which rely on software to handle overflows of hardware structures and to implement
policy decisions. This approach preserves the speed and transparency of HTM, but it may not have
the flexibility of a software system, unless the interfaces are well designed. Experimentation with
STM systems may help to divide the responsibilities appropriately between software and hardware
and to identify policies that perform well in a wide variety of situations and that can be efficiently
supported by hardware. The challenges are to ensure that aspects of the TM system that are not
yet well understood are not cast into hardware prematurely and to ensure that the system can be
integrated into a rich and evolving software environment.

The third approach is to combine the strengths of the two approaches into a hybrid hardware–
software TM system that offers low overhead, good transparency, and flexible policy. The contribu-
tions of the STM community can include software definition of the metadata structures and their
operations, software implementation of policy, and close integration into compilers and run-time.
The HTM community can contribute strong isolation, support for legacy software, TM-unaware
code, and low-performance penalties and overheads.

The final possibility is that both forms of TM may be appropriate for different kinds of
usage: HTM systems supporting 2–4-location atomic updates are valuable for building low-level
libraries, operating systems code, and language runtime systems. However, instead of using these
short transactions to implement atomic blocks in a high-level programming language, they might
just be used to build parts of the CommitTx implementation, or they might be used in combination
with additional hardware support for atomic blocks. Furthermore, even if compile-time optimiza-
tions and hardware acceleration allow atomic blocks’ performance to be acceptable for high-level
programmers, it may still be valuable to have streamlined support for short transactions entirely in
hardware so that these features are available for use in settings where a full STM implementation is
unsuitable (e.g., some low-level systems code).

TM holds promise for simplifying the development of parallel software as compared to con-
ventional lock-based approaches. It is yet unclear how successful it will be. Success depends on
surmounting a number of difficult and interesting technical challenges, starting with providing a
pervasive, efficient, well-performing, flexible, and seamless transactional memory system that can be
integrated into existing execution environments. It is not clear what such a system would look like,
but this book describes a fountain of research that may provide some of the ideas.

209

Bibliography

[1] Martín Abadi, Andrew Birrell,Tim Harris, Johnson Hsieh, and Michael Isard. Dynamic sep-
aration for transactional memory. Technical Report MSR-TR-2008-43, Microsoft Research,
March 2008. 40, 95

[2] Martín Abadi, Andrew Birrell, Tim Harris, Johnson Hsieh, and Michael Isard. Im-
plementation and use of transactional memory with dynamic separation. In CC ’09:
Proc. International Conference on Compiler Construction, pages 63–77, March 2009.
DOI: 10.1007/978-3-642-00722-4_6 40, 95

[3] Martín Abadi, Andrew Birrell, Tim Harris, and Michael Isard. Semantics of transactional
memory and automatic mutual exclusion. In POPL ’08: Proc. 35th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 63–74, January 2008.
DOI: 10.1145/1328438.1328449 23, 31, 38, 40, 41, 68, 77, 145

[4] Martín Abadi and Tim Harris. Perspectives on transactional memory (invited paper). In
CONCUR ’09: Proc. 20th Confernece on Concurrency Theory, September 2009. 23

[5] Martín Abadi,Tim Harris, and Mojtaba Mehrara. Transactional memory with strong atomic-
ity using off-the-shelf memory protection hardware. In PPoPP ’09: Proc. 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 185–196, February 2009.
DOI: 10.1145/1504176.1504203 35, 71, 107, 109

[6] Martín Abadi, Tim Harris, and Katherine Moore. A model of dynamic separation for trans-
actional memory. In CONCUR ’08: Proc. 19th Confernece on Concurrency Theory, pages 6–20,
August 2008. DOI: 10.1007/978-3-540-85361-9_5 23, 95, 145

[7] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murphy, Bratin Saha, and
Tatiana Shpeisman. Compiler and runtime support for efficient software transactional mem-
ory. In PLDI ’06: Proc. 2006 ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 26–37, June 2006. DOI: 10.1145/1133981.1133985 73, 102, 109

[8] Ali-Reza Adl-Tabatabai, Victor Luchangco, Virendra J. Marathe, Mark Moir, Ravi
Narayanaswamy, Yang Ni, Dan Nussbaum, Xinmin Tian, Adam Welc, and Peng Wu. Excep-
tions and transactions in C++. In HotPar ’09: Proc. 1st Workshop on Hot Topics in Parallelism,
March 2009. 62, 75, 80

[9] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: a tutorial.
IEEE Computer, 29(12):66–76, December 1996. DOI: 10.1109/2.546611 103

http://dx.doi.org/10.1007/978-3-642-00722-4_6
http://dx.doi.org/10.1145/1328438.1328449
http://dx.doi.org/10.1145/1504176.1504203
http://dx.doi.org/10.1007/978-3-540-85361-9_5
http://dx.doi.org/10.1145/1133981.1133985
http://dx.doi.org/10.1109/2.546611

210 BIBLIOGRAPHY

[10] Sarita V. Adve and Mark D. Hill. Weak ordering – a new definition. In ISCA ’90:
Proc. 17th Annual International Symposium on Computer Architecture, pages 2–14, May 1990.
DOI: 10.1145/325164.325100 39

[11] S.V. Adve and J.K. Aggarwal. A unified formalization of four shared-memory
models. IEEE Transactions on Parallel and Distributed Systems, 4(6):613–624, 1993.
DOI: 10.1109/71.242161 143

[12] Ole Agesen, David Detlefs, Alex Garthwaite, Ross Knippel, Y. S. Ramakrishna, and Derek
White. An efficient meta-lock for implementing ubiquitous synchronization. In OOPSLA ’99:
Proc. 14th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 207–222, November 1999. DOI: 10.1145/320384.320402 106

[13] Kunal Agrawal, Jeremy T. Fineman, and Jim Sukha. Nested parallelism in transactional
memory. In PPoPP ’08: Proc. 13th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 163–174, February 2008. An earlier version appeared at
TRANSACT ’07. DOI: 10.1145/1345206.1345232 44

[14] Kunal Agrawal, I-Ting Angelina Lee, and Jim Sukha. Safe open-nested transactions through
ownership. In PPoPP ’09: Proc. 14th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 151–162, February 2009. DOI: 10.1145/1378533.1378553 57

[15] C. Scott Ananian, Krste Asanović, Bradley C. Kuszmaul, Charles E. Leiserson, and
Sean Lie. Unbounded transactional memory. In HPCA ’05: Proc. 11th International
Symposium on High-Performance Computer Architecture, pages 316–327, February 2005.
DOI: 10.1109/HPCA.2005.41 162, 164, 187

[16] Nikos Anastopoulos, Konstantinos Nikas, Georgios Goumas, and Nectarios Koziris.
Early experiences on accelerating Dijkstra’s algorithm using transactional memory. In
MTAAP ’09: Proc 3rd Workshop on Multithreaded Architectures and Applications, May 2009.
DOI: 10.1109/IPDPS.2009.5161103 91

[17] Mohammad Ansari, Kim Jarvis, Christos Kotselidis, Mikel Luján, Chris Kirkham, and Ian
Watson. Profiling transactional memory applications. In PDP ’09: Proc. 17th Euromicro
International Conference on Parallel, Distributed, and Network-based Processing, pages 11–20,
February 2009. DOI: 10.1109/PDP.2009.35 90

[18] Mohammad Ansari, Christos Kotselidis, Kim Jarvis, Mikel Luján, Chris Kirkham, and Ian
Watson. Advanced concurrency control for transactional memory using transaction com-
mit rate. In EUROPAR ’08: Proc. 14th European Conference on Parallel Processing, pages
719–728, August 2008. Springer-Verlag Lecture Notes in Computer Science volume 5168.
DOI: 10.1007/978-3-540-85451-7_77 54

http://dx.doi.org/10.1145/325164.325100
http://dx.doi.org/10.1109/71.242161
http://dx.doi.org/10.1145/320384.320402
http://dx.doi.org/10.1145/1345206.1345232
http://dx.doi.org/10.1145/1378533.1378553
http://dx.doi.org/10.1109/HPCA.2005.41
http://dx.doi.org/10.1109/IPDPS.2009.5161103
http://dx.doi.org/10.1109/PDP.2009.35
http://dx.doi.org/10.1007/978-3-540-85451-7_77

BIBLIOGRAPHY 211

[19] Mohammad Ansari, Christos Kotselidis, Kim Jarvis, Mikel Lujan, Chris Kirkham, and
Ian Watson. Experiences using adaptive concurrency in transactional memory with
Lee’s routing algorithm (poster). In PPoPP ’08: Proc. 13th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pages 261–262, February 2008.
DOI: 10.1145/1345206.1345246 54

[20] Mohammad Ansari, Christos Kotselidis, Mikel Luján, Chris Kirkham, and Ian Watson.
Investigating contention management for complex transactional memory benchmarks. In
MULTIPROG ’09: Proc. 2nd Workshop on Programmability Issues for Multi-Core Computers,
January 2009. 54

[21] Mohammad Ansari, Mikel Luján, Christos Kotselidis, Kim Jarvis, Chris Kirkham, and Ian
Watson. Steal-on-abort: improving transactional memory performance through dynamic
transaction reordering. In HIPEAC ’09: Proc. 4th International Conference on High Performance
and Embedded Architectures and Compilers, pages 4–18, January 2009. Springer-Verlag Lecture
Notes in Computer Science volume 5409. DOI: 10.1007/978-3-540-92990-1_3 54

[22] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for multi-
programmed multiprocessors. In SPAA ’98: Proc. 10th Symposium on Parallel Algorithms and
Architectures, pages 119–129, June 1998. DOI: 10.1145/277651.277678 2

[23] Hagit Attiya, Eshcar Hillel, and Alessia Milani. Inherent limitations on disjoint-access
parallel implementations of transactional memory. In SPAA ’09: Proc. 21st Symposium on
Parallelism in Algorithms and Architectures, pages 69–78, August 2009. An earlier version
appeared at TRANSACT ’09. DOI: 10.1145/1583991.1584015 48

[24] Hillel Avni and Nir Shavit. Maintaining consistent transactional states without a global
clock. In SIROCCO ’08: Proc.15th International Colloquium on Structural Information and
Communication Complexity, pages 131–140, June 2008. Springer-Verlag Lecture Notes in
Computer Science volume 5058. DOI: 10.1007/978-3-540-69355-0_12 122

[25] Woongki Baek,Chi Cao Minh,MartinTrautmann,Christos Kozyrakis, and Kunle Olukotun.
The OpenTM transactional application programming interface. In PACT ’07: Proc. 16th
International Conference on Parallel Architecture and Compilation Techniques, pages 376–387,
September 2007. DOI: 10.1109/PACT.2007.74 44

[26] Tongxin Bai, Xipeng Shen, Chengliang Zhang, William N. Scherer III, Chen Ding, and
Michael L. Scott. A key-based adaptive transactional memory executor. In NSF Next Gen-
eration Software Program Workshop, held in conjunction with IPDPS, 2007. Also available
as TR 909, Department of Computer Science, University of Rochester, December 2006.
DOI: 10.1109/IPDPS.2007.370498 53

[27] Alexandro Baldassin and Sebastian Burckhardt. Lightweight software transactions for games.
In HotPar ’09: Proc. 1st Workshop on Hot Topics in Parallelism, March 2009. 92

http://dx.doi.org/10.1145/1345206.1345246
http://dx.doi.org/10.1007/978-3-540-92990-1_3
http://dx.doi.org/10.1145/277651.277678
http://dx.doi.org/10.1145/1583991.1584015
http://dx.doi.org/10.1007/978-3-540-69355-0_12
http://dx.doi.org/10.1109/PACT.2007.74
http://dx.doi.org/10.1109/IPDPS.2007.370498

212 BIBLIOGRAPHY

[28] Lee Baugh, Naveen Neelakantam, and Craig Zilles. Using hardware memory protection to
build a high-performance, strongly atomic hybrid transactional memory. In ISCA ’08: Proc.
35th Annual International Symposium on Computer Architecture, pages 115–126, June 2008.
DOI: 10.1145/1394608.1382132 71, 107, 166, 191, 200, 201

[29] Lee Baugh and Craig Zilles. An analysis of I/O and syscalls in critical sections and their
implications for transactional memory. In TRANSACT ’07: 2nd Workshop on Transactional
Computing, August 2007. DOI: 10.1109/ISPASS.2008.4510738 88

[30] Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. Grace: safe multithreaded
programming for C/C++. In OOPSLA ’09: Porc. 24th ACM SIGPLAN Conference on
Object-Oriented Programming Systems Languages and Applications, pages 81–96, October 2009.
DOI: 10.1145/1640089.1640096 55, 99, 128

[31] Philip A.Bernstein.Transaction processing monitors. Communications of the ACM,33(11):75–
86, 1990. DOI: 10.1145/92755.92767 5, 88

[32] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987. 158

[33] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communica-
tions of the ACM, 13(7):422–426, 1970. DOI: 10.1145/362686.362692 107, 124, 193

[34] Colin Blundell, Joe Devietti, E. Christopher Lewis, and Milo M. K. Martin. Making the fast
case common and the uncommon case simple in unbounded transactional memory. SIGARCH
Computer Architecture News, 35(2):24–34, 2007. DOI: 10.1145/1273440.1250667 150, 172,
173, 188

[35] Colin Blundell, E. Christopher Lewis, and Milo M. K. Martin. Deconstructing transac-
tions: The subtleties of atomicity. In WDDD ’05: Proc. 4th Annual Workshop on Duplicating,
Deconstructing, and Debunking, June 2005. 30, 31, 64

[36] Colin Blundell, E. Christopher Lewis, and Milo M. K. Martin. Subtleties of transac-
tional memory atomicity semantics. Computer Architecture Letters, 5(2), November 2006.
DOI: 10.1109/L-CA.2006.18 30, 31, 64

[37] Colin Blundell, E. Christopher Lewis, and Milo M. K. Martin. Unrestricted transactional
memory: Supporting I/O and system calls within transactions. Technical Report CIS-06-09,
Department of Computer and Information Science, University of Pennsylvania, April 2006.
21, 81, 87, 141

[38] Colin Blundell, Milo M.K. Martin, and Thomas F. Wenisch. InvisiFence: performance-
transparent memory ordering in conventional multiprocessors. In ISCA ’09: Proc. 36th
annual International Symposium on Computer Architecture, pages 233–244, July 2009.
DOI: 10.1145/1555754.1555785 150, 154

http://dx.doi.org/10.1145/1394608.1382132
http://dx.doi.org/10.1109/ISPASS.2008.4510738
http://dx.doi.org/10.1145/1640089.1640096
http://dx.doi.org/10.1145/92755.92767
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1145/1273440.1250667
http://dx.doi.org/10.1109/L-CA.2006.18
http://dx.doi.org/10.1145/1555754.1555785

BIBLIOGRAPHY 213

[39] Jayaram Bobba, Neelam Goyal, Mark D. Hill, Michael M. Swift, and David A. Wood. To-
kenTM: Efficient execution of large transactions with hardware transactional memory. In
ISCA ’08: Proc. 35th Annual International Symposium on Computer Architecture, pages 127–138,
June 2008. 189, 191

[40] Jayaram Bobba, Kevin E. Moore, Luke Yen, Haris Volos, Mark D. Hill, Michael M. Swift, and
David A. Wood. Performance pathologies in hardware transactional memory. In ISCA ’07:
Proc. 34th Annual International Symposium on Computer Architecture, pages 81–91, June 2007.
DOI: 10.1145/1250662.1250674 14, 50

[41] Robert L. Bocchino, Vikram S. Adve, and Bradford L. Chamberlain. Software transac-
tional memory for large scale clusters. In PPoPP ’08: Proc. 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pages 247–258, February 2008.
DOI: 10.1145/1345206.1345242 144

[42] Hans-J. Boehm. Transactional memory should be an implementation technique, not a pro-
gramming interface. In HotPar ’09: Proc. 1st Workshop on Hot Topics in Parallelism, March
2009. 96

[43] Hans-J. Boehm and Sarita V. Adve. Foundations of the C++ concurrency memory model.
In PLDI ’08: Proc. 2008 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 68–78, June 2008. DOI: 10.1145/1375581.1375591 36, 65, 103

[44] Nathan G. Bronson, Christos Kozyrakis, and Kunle Olukotun. Feedback-directed barrier
optimization in a strongly isolated STM. In POPL ’09: Proc. 36th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 213–225, January 2009.
DOI: 10.1145/1480881.1480909 71

[45] João Cachopo and António Rito-Silva. Versioned boxes as the basis for memory transactions.
In SCOOL ’05: Proc. OOPSLA Workshop on Synchronization and Concurrency in Object-Oriented
Languages, October 2005. DOI: 10.1016/j.scico.2006.05.009 14, 143

[46] João Cachopo and António Rito-Silva. Combining software transactional memory
with a domain modeling language to simplify web application development. In
ICWE ’06: Proc. 6th International Conference on Web Engineering, pages 297–304, July 2006.
DOI: 10.1145/1145581.1145640 143

[47] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. STAMP:
Stanford transactional applications for multi-processing. In IISWC ’08: Proceedings
of The IEEE International Symposium on Workload Characterization, September 2008.
DOI: 10.1109/IISWC.2008.4636089 91

http://dx.doi.org/10.1145/1250662.1250674
http://dx.doi.org/10.1145/1345206.1345242
http://dx.doi.org/10.1145/1375581.1375591
http://dx.doi.org/10.1145/1480881.1480909
http://dx.doi.org/10.1016/j.scico.2006.05.009
http://dx.doi.org/10.1145/1145581.1145640
http://dx.doi.org/10.1109/IISWC.2008.4636089

214 BIBLIOGRAPHY

[48] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald, Nathan
Bronson, Jared Casper, Christos Kozyrakis, and Kunle Olukotun. An effective hy-
brid transactional memory system with strong isolation guarantees. In ISCA ’07: Proc.
34th Annual International Symposium on Computer Architecture, pages 69–80, June 2007.
DOI: 10.1145/1250662.1250673 199

[49] Brian D. Carlstrom, JaeWoong Chung, Hassan Chafi, Austen McDonald, Chi Cao Minh,
Lance Hammond, Christos Kozyrakis, and Kunle Olukotun. Transactional execution of Java
programs. In SCOOL ’05: Proc. OOPSLA Workshop on Synchronization and Concurrency in
Object-Oriented Languages, October 2005. 86

[50] Brian D. Carlstrom, Austen McDonald, Hassan Chafi, JaeWoong Chung, Chi Cao Minh,
Christos Kozyrakis, and Kunle Olukotun. The Atomos transactional programming language.
In PLDI ’06: Proc. 2006 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 1–13, June 2006. DOI: 10.1145/1133981.1133983 62, 74, 75, 81, 88

[51] Nuno Carvalho, João Cachopo, Luís Rodrigues, and António Rito-Silva. Versioned trans-
actional shared memory for the FénixEDU web application. In SDDDM ’08: Proc.
2nd Workshop on Dependable Distributed Data Management, pages 15–18, March 2008.
DOI: 10.1145/1435523.1435526 143

[52] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng Wu, Stefanie Chiras,
and Siddhartha Chatterjee. Software transactional memory:why is it only a research toy? Com-
munications of the ACM, 51(11):40–46, November 2008. DOI: 10.1145/1400214.1400228 10

[53] Luis Ceze, James Tuck, Calin Cascaval, and Josep Torrellas. Bulk disambiguation of spec-
ulative threads in multiprocessors. In ISCA ’06: Proc. 33rd Annual International Symposium
on Computer Architecture, pages 227–238, June 2006. DOI: 10.1109/ISCA.2006.13 147, 170,
174, 176, 177

[54] Hassan Chafi, Chi Cao Minh, Austen McDonald, Brian D. Carlstrom, JaeWoong Chung,
Lance Hammond, Christos Kozyrakis, and Kunle Olukotun. TAPE: A transactional ap-
plication profiling environment. In ICS ’05: Proc. 19th Annual International Conference on
Supercomputing, pages 199–208, June 2005. DOI: 10.1145/1088149.1088176 90

[55] Hassan Chafi,Jared Casper,Brian D.Carlstrom,Austen McDonald,Chi Cao Minh,Woongki
Baek, Christos Kozyrakis, and Kunle Olukotun. A scalable, non-blocking approach to trans-
actional memory. In HPCA ’07: Proc. 13th International Symposium on High-Performance Com-
puter Architecture, pages 97–108, February 2007. DOI: 10.1109/HPCA.2007.346189 181

[56] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS directories: a scalable
cache coherence scheme. In ASPLOS ’91: Proc. 4th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pages 224–234, April 1991.
DOI: 10.1145/106972.106995 157

http://dx.doi.org/10.1145/1250662.1250673
http://dx.doi.org/10.1145/1133981.1133983
http://dx.doi.org/10.1145/1435523.1435526
http://dx.doi.org/10.1145/1400214.1400228
http://dx.doi.org/10.1109/ISCA.2006.13
http://dx.doi.org/10.1145/1088149.1088176
http://dx.doi.org/10.1109/HPCA.2007.346189
http://dx.doi.org/10.1145/106972.106995

BIBLIOGRAPHY 215

[57] Albert Chang and Mark F. Mergen. 801 storage: architecture and programming.
In TOCS: ACM Transactions on Computer Systems, volume 6, pages 28–50, 1988.
DOI: 10.1145/35037.42270 194

[58] Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karlsson, Anders Landin,
Sherman Yip, Håkan Zeffer, and Marc Tremblay. Rock: A high-performance Sparc CMT
processor. IEEE Micro, 29(2):6–16, 2009. DOI: 10.1109/MM.2009.34 161

[59] Sigmund Cherem,Trishul Chilimbi, and Sumit Gulwani. Inferring locks for atomic sections.
In PLDI ’08: Proc. 2008 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 304–315, June 2008. DOI: 10.1145/1375581.1375619 9, 65

[60] Colin E. Cherry. Some experiments on the recognition of speech, with one and with two ears.
Journal of the Acoustical Society of America, 25(5):975–979, 1953. DOI: 10.1121/1.1907229 2

[61] Dave Christie, Jae-Woong Chung,Stephan Diestelhorst,Michael Hohmuth,Martin Pohlack,
Christof Fetzer, Martin Nowack, Torvald Riegel, Pascal Felber, Patrick Marlier, and Etienne
Riviere. Evaluation of AMD’s advanced synchronization facility within a complete transac-
tional memory stack. In EuroSys ’10: Proc. 5th ACM European Conference on Computer Systems,
April 2010. DOI: 10.1145/1755913.1755918 13, 14, 149, 150, 158

[62] Weihaw Chuang,Satish Narayanasamy,Ganesh Venkatesh, Jack Sampson,Michael Van Bies-
brouck, Gilles Pokam, Brad Calder, and Osvaldo Colavin. Unbounded page-based transac-
tional memory. In ASPLOS ’06: Proc. 12th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pages 347–358, October 2006.
DOI: 10.1145/1168857.1168901 196

[63] JaeWoong Chung, Chi Cao Minh, Brian D. Carlstrom, and Christos Kozyrakis. Parallelizing
SPECjbb2000 with transactional memory. In Proc. Workshop on Transactional Workloads, June
2006. 57

[64] JaeWoong Chung, Chi Cao Minh, Austen McDonald, Travis Skare, Hassan Chafi, Brian D.
Carlstrom, Christos Kozyrakis, and Kunle Olukotun. Tradeoffs in transactional mem-
ory virtualization. In ASPLOS ’06: Proc. 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 371–381, October 2006.
DOI: 10.1145/1168857.1168903 196

[65] JaeWoong Chung, Hassan Chafi, Chi Cao Minh, Austen McDonald, Brian D. Carlstrom,
Christos Kozyrakis, and Kunle Olukotun. The common case transactional behavior of mul-
tithreaded programs. In HPCA ’06: Proc. 12th International Symposium on High-Performance
Computer Architecture, pages 266–277, February 2006. DOI: 10.1109/HPCA.2006.1598135
90

http://dx.doi.org/10.1145/35037.42270
http://dx.doi.org/10.1109/MM.2009.34
http://dx.doi.org/10.1145/1375581.1375619
http://dx.doi.org/10.1121/1.1907229
http://dx.doi.org/10.1145/1755913.1755918
http://dx.doi.org/10.1145/1168857.1168901
http://dx.doi.org/10.1145/1168857.1168903
http://dx.doi.org/10.1109/HPCA.2006.1598135

216 BIBLIOGRAPHY

[66] Cliff Click. HTM will not save the world, May 2010. Presentation at TMW10 workshop,
http://sss.cs.purdue.edu/projects/tm/tmw2010/Schedule.html. 149, 150, 162

[67] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks. ACM Computing Surveys,
3(2):67–78, 1971. DOI: 10.1145/356586.356588 158

[68] Ariel Cohen, John W. O’Leary, Amir Pnueli, Mark R. Tuttle, and Lenore D. Zuck. Ver-
ifying correctness of transactional memories. In FMCAD ’07: Proc. 7th International
Conference on Formal Methods in Computer-Aided Design, pages 37–44, November 2007.
DOI: 10.1109/FAMCAD.2007.40 144

[69] Ariel Cohen, Amir Pnueli, and Lenore Zuck. Verification of transactional memories that sup-
port non-transactional memory accesses. In TRANSACT ’08: 3rd Workshop on Transactional
Computing, February 2008. 144

[70] Compaq. Alpha architecture handbook. October 1998. Version 4. 35, 155

[71] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues. D2STM: Dependable distributed
software transactional memory. In PRDC ’09: Proc. 15th Pacific Rim International Symposium
on Dependable Computing, November 2009. DOI: 10.1109/PRDC.2009.55 143

[72] A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, and W. Zwaenepoel. Soft-
ware versus hardware shared-memory implementation: a case study. In ISCA ’94: Proc.
21st Annual International Symposium on Computer Architecture, pages 106–117, April 1994.
DOI: 10.1145/192007.192021 142

[73] Lawrence Crowl, Yossi Lev, Victor Luchangco, Mark Moir, and Dan Nussbaum. Integrating
transactional memory into C++. In TRANSACT ’07: 2nd Workshop on Transactional Comput-
ing, August 2007. 62

[74] Dave Cunningham, Khilan Gudka, and Susan Eisenbach. Keep off the grass: locking the
right path for atomicity. In CC ’08: Proc. International Conference on Compiler Construction,
pages 276–290, March 2008. DOI: 10.1007/978-3-540-78791-4_19 9, 65

[75] Luke Dalessandro, Virendra J. Marathe, Michael F. Spear, and Michael L. Scott. Capabilities
and limitations of library-based software transactional memory in C++. In TRANSACT ’07:
2nd Workshop on Transactional Computing, August 2007. 94

[76] Luke Dalessandro and Michael L. Scott. Strong isolation is a weak idea. In TRANSACT ’09:
4th Workshop on Transactional Computing, February 2009. 38, 41

[77] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. NOrec: Streamlining STM by
abolishing ownership records. In PPoPP ’10: Proc.15th ACM Symposium on Principles and Prac-
tice of Parallel Programming, pages 67–78, January 2010. DOI: 10.1145/1693453.1693464 15,
55, 102, 124, 126, 167

http://sss.cs.purdue.edu/projects/tm/tmw2010/Schedule.html
http://dx.doi.org/10.1145/356586.356588
http://dx.doi.org/10.1109/FAMCAD.2007.40
http://dx.doi.org/10.1109/PRDC.2009.55
http://dx.doi.org/10.1145/192007.192021
http://dx.doi.org/10.1007/978-3-540-78791-4_19
http://dx.doi.org/10.1145/1693453.1693464

BIBLIOGRAPHY 217

[78] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir, and Dan
Nussbaum. Hybrid transactional memory. In ASPLOS ’06: Proc. 12th International Conference
on Architectural Support for Programming Languages and Operating Systems, pages 336–346,
October 2006. DOI: 10.1145/1168857.1168900 15, 165

[79] Alokika Dash and Brian Demsky. Software transactional distributed shared memory (poster).
In PPoPP ’09: Proc. 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 297–298, February 2009. DOI: 10.1145/1504176.1504223 144

[80] James C. Dehnert, Brian K. Grant, John P. Banning, Richard Johnson, Thomas Kistler,
Alexander Klaiber, and Jim Mattson. The Transmeta code morphing software: using specu-
lation, recovery, and adaptive retranslation to address real-life challenges. In CGO ’03: Proc.
International Symposium on Code Generation and Optimization, pages 15–24, March 2003.
DOI: 10.1109/CGO.2003.1191529 161

[81] David Detlefs and Lingli Zhang. Transacting pointer-based accesses in an object-based
software transactional memory system. In TRANSACT ’09: 4th Workshop on Transactional
Computing, February 2009. 68, 83, 105

[82] Dave Dice,Yossi Lev, Mark Moir, and Daniel Nussbaum. Early experience with a commercial
hardware transactional memory implementation. In ASPLOS ’09: Proc. 14th International
Conference on Architectural Support for Programming Languages and Operating Systems, pages
157–168, March 2009. DOI: 10.1145/1508244.1508263 14, 149, 150, 161, 166

[83] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In DISC ’06: Proc. 20th In-
ternational Symposium on Distributed Computing, pages 194–208, September 2006. Springer-
Verlag Lecture Notes in Computer Science volume 4167. DOI: 10.1007/11864219_14 13,
15, 29, 47, 102, 105, 116, 122

[84] Dave Dice and Nir Shavit. Understanding tradeoffs in software transactional memory. In
CGO ’07: Proc. International Symposium on Code Generation and Optimization, pages 21–33,
March 2007. DOI: 10.1109/CGO.2007.38 116

[85] David Dice and Nir Shavit. What really makes transactions faster? In TRANSACT ’06: 1st
Workshop on Languages, Compilers, and Hardware Support for Transactional Computing, June
2006. 47, 108, 116

[86] David Dice and Nir Shavit. TLRW: return of the read-write lock. In TRANSACT ’09: 4th
Workshop on Transactional Computing, February 2009. 10, 137

[87] Stephan Diestelhorst,Martin Pohlack,Michael Hohmuth,Dave Christie, Jae-Woong Chung,
and Luke Yen. Implementing AMD’s Advanced Synchronization Facility in an out-of-order
x86 core. In TRANSACT ’10: 5th Workshop on Transactional Computing, April 2010. 169

http://dx.doi.org/10.1145/1168857.1168900
http://dx.doi.org/10.1145/1504176.1504223
http://dx.doi.org/10.1109/CGO.2003.1191529
http://dx.doi.org/10.1145/1508244.1508263
http://dx.doi.org/10.1007/11864219_14
http://dx.doi.org/10.1109/CGO.2007.38

218 BIBLIOGRAPHY

[88] Chen Ding, Xipeng Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and Chengliang Zhang.
Software behavior oriented parallelization. In PLDI ’07: Proc. 2007 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 223–234, June 2007.
DOI: 10.1145/1250734.1250760 xiii, 55, 99, 128

[89] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. Towards formally
specifying and verifying transactional memory. In Refinement Workshop 2009, November
2009. 23, 145

[90] Shlomi Dolev, Danny Hendler, and Adi Suissa. CAR-STM: scheduling-based collision
avoidance and resolution for software transactional memory. In PODC ’08: Proc. 27th
ACM Symposium on Principles of Distributed Computing, pages 125–134, August 2008.
DOI: 10.1145/1400751.1400769 53

[91] Kevin Donnelly and Matthew Fluet. Transactional events. In ICFP ’06: Proc. 11th ACM
SIGPLAN International Conference on Functional Programming, pages 124–135, September
2006. DOI: 10.1145/1159803.1159821 92

[92] Aleksandar Dragojević, Pascal Felber, Vincent Gramoli, and Rachid Guerraoui. Why STM
can be more than a research toy. Technical Report LPD-REPORT-2009-003, LPD (Dis-
tributed Programming Laboratory), EPFL, 2009. 10

[93] Aleksandar Dragojević, Rachid Guerraoui, and Michał Kapałka. Stretching transactional
memory. In PLDI ’09: Proc. 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 155–165, June 2009. DOI: 10.1145/1542476.1542494 15,
52, 123

[94] Aleksandar Dragojević, Rachid Guerraoui, Anmol V. Singh, and Vasu Singh. Prevent-
ing versus curing: avoiding conflicts in transactional memories. In PODC ’09: Proc.
28th ACM Symposium on Principles of Distributed Computing, pages 7–16, August 2009.
DOI: 10.1145/1582716.1582725 54

[95] Polina Dudnik and Michael Swift. Condition variables and transactional memory: problem
or opportunity? In TRANSACT ’09: 4th Workshop on Transactional Computing, February 2009.
86

[96] Laura Effinger-Dean, Matthew Kehrt, and Dan Grossman. Transactional events for ML.
In ICFP ’08: Proc. 13th ACM SIGPLAN International Conference on Functional Programming,
pages 103–114, September 2008. DOI: 10.1145/1411204.1411222 92

[97] Faith Ellen,Yossi Lev,Victor Luchangco, and Mark Moir. SNZI: scalable nonzero indicators.
In PODC ’07: Proc. 26th ACM Symposium on Principles of Distributed Computing, pages 13–22,
August 2007. DOI: 10.1145/1281100.1281106 115, 140

http://dx.doi.org/10.1145/1250734.1250760
http://dx.doi.org/10.1145/1400751.1400769
http://dx.doi.org/10.1145/1159803.1159821
http://dx.doi.org/10.1145/1542476.1542494
http://dx.doi.org/10.1145/1582716.1582725
http://dx.doi.org/10.1145/1411204.1411222
http://dx.doi.org/10.1145/1281100.1281106

BIBLIOGRAPHY 219

[98] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: a race and transaction-aware
Java runtime. In PLDI ’07: Proc. 2007 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 245–255, June 2007. DOI: 10.1145/1250734.1250762 90

[99] Robert Ennals. Efficient software transactional memory. Technical Report IRC-TR-05-051,
Intel Research Cambridge Tech Report, January 2005. 47, 116

[100] Robert Ennals. Software transactional memory should not be obstruction-free. Technical
Report IRC-TR-06-052, Intel Research Cambridge Tech Report, January 2006. 47

[101] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of consistency and
predicate locks in a database system. Communications of the ACM, 19(11):624–633, 1976.
DOI: 10.1145/360363.360369 62

[102] Li Fan, Pei Cao, Jussara M. Almeida, and Andrei Z. Broder. Summary cache: a scalable
wide-area web cache sharing protocol. IEEE/ACM Transactions on Networking, 8(3):281–
293, 2000. DOI: 10.1109/90.851975 193

[103] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic performance tuning of word-
based software transactional memory. In PPoPP ’08: Proc. 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pages 237–246, February 2008.
DOI: 10.1145/1345206.1345241 107, 119, 120

[104] Pascal Felber, Vincent Gramoli, and Rachid Guerraoui. Elastic transactions. In
DISC ’09: Proc. 23rd International Symposium on Distributed Computing, September 2009.
DOI: 10.1007/978-3-642-04355-0_12 56

[105] Keir Fraser. Practical lock freedom. PhD thesis, Cambridge University Computer Laboratory,
2003. Also available as Technical Report UCAM-CL-TR-579. 55, 56, 70, 82, 131, 137

[106] Keir Fraser and Tim Harris. Concurrent programming without locks. TOCS: ACM Trans-
actions on Computer Systems, 25(2), May 2007. DOI: 10.1145/1233307.1233309 17, 131

[107] Vladimir Gajinov, Ferad Zyulkyarov, Osman S. Unsal, Adrián Cristal, Eduard Ayguadé, Tim
Harris, and Mateo Valero. QuakeTM: parallelizing a complex sequential application using
transactional memory. In ICS ’09: Proc. 23rd International Conference on Supercomputing, pages
126–135, June 2009. DOI: 10.1145/1542275.1542298 43, 92

[108] Justin Gottschlich and Daniel A. Connors. DracoSTM: a practical C++ approach to software
transactional memory. In LCSD ’07: Proc.2007 ACM SIGPLAN Symposium on Library-Centric
Software Design, October 2007. DOI: 10.1145/1512762.1512768 94

[109] Justin Gottschlich and Daniel A. Connors. Extending contention managers for user-defined
priority-based transactions. In EPHAM ’08: Workshop on Exploiting Parallelism with Trans-
actional Memory and other Hardware Assisted Methods, April 2008. 53

http://dx.doi.org/10.1145/1250734.1250762
http://dx.doi.org/10.1145/360363.360369
http://dx.doi.org/10.1109/90.851975
http://dx.doi.org/10.1145/1345206.1345241
http://dx.doi.org/10.1007/978-3-642-04355-0_12
http://dx.doi.org/10.1145/1233307.1233309
http://dx.doi.org/10.1145/1542275.1542298
http://dx.doi.org/10.1145/1512762.1512768

220 BIBLIOGRAPHY

[110] Justin E.Gottschlich, Jeremy G.Siek, and Daniel A.Connors. C++ move semantics for excep-
tion safety and optimization in software transactional memory libraries. In ICOOOLPS ’08:
Proc. 3rd International Workshop on Implementation, Compilation, Optimization of Object-
Oriented Languages, Programs and Systems. July 2008. 94

[111] Justin E. Gottschlich, Jeremy G. Siek, Manish Vachharajani, Dwight Y. Winkler, and
Daniel A. Connors. An efficient lock-aware transactional memory implementation.
In ICOOOLPS ’09: Proc. 4th workshop on the Implementation, Compilation, Optimiza-
tion of Object-Oriented Languages and Programming Systems, pages 10–17, July 2009.
DOI: 10.1145/1565824.1565826 85

[112] Justin E. Gottschlich, Manish Vachharajani, and Siek G. Jeremy. An efficient software trans-
actional memory using commit-time invalidation. In CGO ’10: Proc. International Symposium
on Code Generation and Optimization, apr 2010. DOI: 10.1145/1772954.1772970 125

[113] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993. 5

[114] Dan Grossman. The transactional memory / garbage collection analogy. In OOPSLA ’07:
Proc. 22nd ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (Essays), pages 695–706, October 2007. DOI: 10.1145/1297027.1297080 64

[115] Dan Grossman, Jeremy Manson, and William Pugh. What do high-level memory models
mean for transactions? In MSPC ’06: Proc. 2006 Workshop on Memory System Performance and
Correctness, October 2006. DOI: 10.1145/1178597.1178609 23, 31, 38, 136

[116] A. S. Grove. Only the paranoid survive. Doubleday, 1996. 1

[117] Rachid Guerraoui. Transactional Memory: The Theory. Morgan & Claypool. Synthesis
Lectures on Distributed Computing Theory (to appear). xiii

[118] Rachid Guerraoui, Thomas Henzinger, and Vasu Singh. Completeness and nondetermin-
ism in model checking transactional memories. In CONCUR ’08: Proc. 19th Confernece on
Concurrency Theory, pages 21–35, August 2008. DOI: 10.1007/978-3-540-85361-9_6 144

[119] Rachid Guerraoui, Thomas Henzinger, and Vasu Singh. Permissiveness in transactional
memories. In DISC ’08: Proc. 22nd International Symposium on Distributed Computing, pages
305–319, September 2008. Springer-Verlag Lecture Notes in Computer Science volume
5218. DOI: 10.1007/978-3-540-87779-0_21 23, 48

[120] Rachid Guerraoui, Thomas A. Henzinger, Barbara Jobstmann, and Vasu Singh. Model
checking transactional memories. In PLDI ’08: Proc. 2008 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pages 372–382, June 2008.
DOI: 10.1145/1375581.1375626 144

http://dx.doi.org/10.1145/1565824.1565826
http://dx.doi.org/10.1145/1772954.1772970
http://dx.doi.org/10.1145/1297027.1297080
http://dx.doi.org/10.1145/1178597.1178609
http://dx.doi.org/10.1007/978-3-540-85361-9_6
http://dx.doi.org/10.1007/978-3-540-87779-0_21
http://dx.doi.org/10.1145/1375581.1375626

BIBLIOGRAPHY 221

[121] Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. Software transactional memory
on relaxed memory models. In CAV ’09: Proc. 21st International Conference on Computer Aided
Verification, 2009. DOI: 10.1007/978-3-642-02658-4_26 103

[122] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Polymorphic contention man-
agement. In DISC ’05: Proc. 19th International Symposium on Distributed Computing, pages
303–323. LNCS, Springer, September 2005. DOI: 10.1007/11561927_23 51, 131

[123] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Toward a theory of trans-
actional contention managers. In PODC ’05: Proc. 24th Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, pages 258–264, July 2005.
DOI: 10.1145/1073814.1073863 48, 49, 51

[124] Rachid Guerraoui and Michał Kapałka. On obstruction-free transactions. In SPAA ’08: Proc.
20th Annual Symposium on Parallelism in Algorithms and Architectures, pages 304–313, June
2008. DOI: 10.1145/1378533.1378587 48

[125] Rachid Guerraoui and Michał Kapałka. On the correctness of transactional memory. In
PPoPP ’08: Proc. 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pages 175–184, February 2008. DOI: 10.1145/1345206.1345233 23, 29

[126] Rachid Guerraoui and Michał Kapałka. The semantics of progress in lock-based transactional
memory. In POPL ’09: Proc. 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 404–415, January 2009. DOI: 10.1145/1480881.1480931
23

[127] Rachid Guerraoui, Michał Kapałka, and Jan Vitek. STMBench7: A benchmark for software
transactional memory. In EuroSys ’07: Proc. 2nd ACM European Conference on Computer
Systems, pages 315–324, March 2007. DOI: 10.1145/1272998.1273029 90

[128] Nicholas Haines, Darrell Kindred, J. Gregory Morrisett, Scott M. Nettles, and Jeannette M.
Wing. Composing first-class transactions. TOPLAS: ACM Transactions on Programming
Languages and Systems, 16(6):1719–1736, 1994. DOI: 10.1145/197320.197346 42

[129] Richard L. Halpert, Christopher J. F. Pickett, and Clark Verbrugge. Component-based
lock allocation. In PACT ’07: Proc. 16th International Conference on Parallel Architecture and
Compilation Techniques, pages 353–364, September 2007. DOI: 10.1109/PACT.2007.23 9,
65

[130] Robert H. Halstead, Jr. MULTILISP: a language for concurrent symbolic computation.
TOPLAS: ACM Transactions on Programming Languages and Systems, 7(4):501–538, 1985.
DOI: 10.1145/4472.4478 98

http://dx.doi.org/10.1007/978-3-642-02658-4_26
http://dx.doi.org/10.1007/11561927_23
http://dx.doi.org/10.1145/1073814.1073863
http://dx.doi.org/10.1145/1378533.1378587
http://dx.doi.org/10.1145/1345206.1345233
http://dx.doi.org/10.1145/1480881.1480931
http://dx.doi.org/10.1145/1272998.1273029
http://dx.doi.org/10.1145/197320.197346
http://dx.doi.org/10.1109/PACT.2007.23
http://dx.doi.org/10.1145/4472.4478

222 BIBLIOGRAPHY

[131] Lance Hammond, Brian D. Carlstrom, Vicky Wong, Ben Hertzberg, Mike Chen, Chris-
tos Kozyrakis, and Kunle Olukotun. Programming with transactional coherence and
consistency (TCC). In ASPLOS ’04: Proc. 11th International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 1–13, October 2004.
DOI: 10.1145/1024393.1024395 94

[132] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis, Ben
Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle Olukotun.
Transactional memory coherence and consistency. In ISCA ’04: Proc. 31st Annual International
Symposium on Computer Architecture, page 102, June 2004. DOI: 10.1145/1028176.1006711
147, 170, 179

[133] Tim Harris. Exceptions and side-effects in atomic blocks. In CSJP ’04: Proc. ACM PODC
Workshop on Concurrency and Synchronization in Java Programs, pages 46–53, July 2004. Pro-
ceedings published as Memorial University of Newfoundland CS Technical Report 2004-01.
DOI: 10.1016/j.scico.2005.03.005 81, 88

[134] Tim Harris and Keir Fraser. Language support for lightweight transactions. In OOPSLA ’03:
Proc. Object-Oriented Programming, Systems, Languages, and Applications, pages 388–402, Oc-
tober 2003. DOI: 10.1145/949343.949340 62, 68, 75, 83, 133, 141

[135] Tim Harris and Keir Fraser. Revocable locks for non-blocking programming. In
Proc. ACM Symposium on Principles and Practice of Parallel Programming, June 2005.
DOI: 10.1145/1065944.1065954 55, 128, 134

[136] Tim Harris, Maurice Herlihy, Simon Marlow, and Simon Peyton Jones. Composable mem-
ory transactions. In PPoPP ’05: Proc. ACM Symposium on Principles and Practice of Parallel
Programming, June 2005. A shorter version appeared in CACM 51(8):91–100, August 2008.
DOI: 10.1145/1065944.1065952 40, 62, 68, 73, 74, 83, 84

[137] Tim Harris and Simon Peyton Jones. Transactional memory with data invariants. In TRANS-
ACT ’06: 1st Workshop on Languages, Compilers, and Hardware Support for Transactional Com-
puting, June 2006. 24

[138] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Optimizing memory trans-
actions. In PLDI ’06: Proc. 2006 ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 14–25, June 2006. DOI: 10.1145/1133981.1133984 47, 62, 68,
83, 102, 105, 106, 107, 109, 113, 114

[139] Tim Harris and Srdjan Stipic. Abstract nested transactions. In TRANSACT ’07: 2nd Workshop
on Transactional Computing, August 2007. 55, 57

[140] Tim Harris, Sasa Tomic, Adrián Cristal, and Osman Unsal. Dynamic filtering: multi-purpose
architecture support for language runtime systems. In ASPLOS ’10: Proc. 15th International

http://dx.doi.org/10.1145/1024393.1024395
http://dx.doi.org/10.1145/1028176.1006711
http://dx.doi.org/10.1016/j.scico.2005.03.005
http://dx.doi.org/10.1145/949343.949340
http://dx.doi.org/10.1145/1065944.1065954
http://dx.doi.org/10.1145/1065944.1065952
http://dx.doi.org/10.1145/1133981.1133984

BIBLIOGRAPHY 223

Conference on Architectural Support for Programming Language and Operating Systems, pages
39–52, March 2010. DOI: 10.1145/1736020.1736027 198

[141] Maurice Herlihy. Wait-free synchronization. TOPLAS: ACM Transactions on Programming
Languages and Systems, 13(1):124–149, January 1991. DOI: 10.1145/114005.102808 47

[142] Maurice Herlihy and Eric Koskinen. Transactional boosting: a methodology for highly-
concurrent transactional objects. In PPoPP ’08: Proc. 13th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pages 207–216, February 2008.
DOI: 10.1145/1345206.1345237 58

[143] Maurice Herlihy and Yossi Lev. tm_db:a generic debugging library for transactional programs.
In PACT ’09: Proc. 18th International Conference on Parallel Architectures and Compilation
Techniques, pages 136–145, September 2009. DOI: 10.1109/PACT.2009.23 55, 89

[144] Maurice Herlihy, Victor Luchangco, and Mark Moir. The repeat offender problem: a
mechanism for supporting dynamic-sized, lock-free data structures. In DISC ’02: Proceed-
ings of the 16th International Conference on Distributed Computing, pages 339–353, 2002.
DOI: 10.1007/3-540-36108-1_23 82

[145] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchronization:
double-ended queues as an example. In ICDCS ’03: Proc. 23rd International Conference on Dis-
tributed Computing Systems,pages 522–529,May 2003.DOI: 10.1109/ICDCS.2003.1203503
47

[146] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III. Soft-
ware transactional memory for dynamic-sized data structures. In PODC ’03: Proc.
22nd ACM Symposium on Principles of Distributed Computing, pages 92–101, July 2003.
DOI: 10.1145/872035.872048 56, 94, 128, 131

[147] Maurice Herlihy, Mark Moir, and Victor Luchangco. A flexible framework for implementing
software transactional memory. In OOPSLA ’06: Proc. 21st ACM SIGPLAN Conference on
Object-Oriented Programing, Systems, Languages, and Applications, pages 253–262, October
2006. DOI: 10.1145/1167473.1167495 131

[148] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support for lock-
free data structures. In ISCA ’93: Proc. 20th Annual International Symposium on Computer
Architecture, pages 289–300, May 1993. DOI: 10.1145/165123.165164 6, 17, 149, 155

[149] Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. Morgan Kaufmann,
2008. DOI: 10.1145/1146381.1146382 56

[150] Maurice Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for concur-
rent objects. TOPLAS: ACM Transactions on Programming Languages and Systems, 12(3):463–
492, July 1990. DOI: 10.1145/78969.78972 23

http://doi.acm.org/10.1145/1736020.1736027
http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1145/1345206.1345237
http://dx.doi.org/10.1109/PACT.2009.23
http://dx.doi.org/10.1007/3-540-36108-1_23
http://dx.doi.org/10.1109/ICDCS.2003.1203503
http://dx.doi.org/10.1145/872035.872048
http://dx.doi.org/10.1145/1167473.1167495
http://dx.doi.org/10.1145/165123.165164
http://dx.doi.org/10.1145/1146381.1146382
http://dx.doi.org/10.1145/78969.78972

224 BIBLIOGRAPHY

[151] Michael Hicks, Jeffrey S. Foster, and Polyvios Prattikakis. Lock inference for atomic sec-
tions. In TRANSACT ’06: 1st Workshop on Languages, Compilers, and Hardware Support for
Transactional Computing, June 2006. 9, 65

[152] Mark D. Hill, Derek Hower, Kevin E. Moore, Michael M. Swift, Haris Volos, and David A.
Wood. A case for deconstructing hardware transactional memory systems. Technical Re-
port CS-TR-2007-1594, University of Wisconsin-Madison, 2007. Also Dagstuhl Seminar
Proceedings 07361. 169

[153] W. Daniel Hillis and Guy L. Steele,Jr. Data parallel algorithms. Communications of the ACM,
29(12):1170–1183, 1986. DOI: 10.1145/7902.7903 2

[154] Benjamin Hindman and Dan Grossman. Atomicity via source-to-source translation. In
MSPC ’06: Proc. 2006 Workshop on Memory System Performance and Correctness, October 2006.
DOI: 10.1145/1178597.1178611 71, 116

[155] Benjamin Hindman and Dan Grossman. Strong atomicity for Java without virtual-machine
support. Technical Report 2006-05-01, University of Washington, Dept. Computer Science,
May 2006. 35, 71

[156] C. A. R. Hoare. Monitors: an operating system structuring concept. Communications of the
ACM, pages 549–557, October 1974. DOI: 10.1145/355620.361161 63

[157] C. A. R. Hoare. Towards a theory of parallel programming. In The origin of concurrent
programming: from semaphores to remote procedure calls, pages 231–244. Springer-Verlag, 2002.
DOI: 10.1007/3-540-07994-7_47 63, 76

[158] Owen S. Hofmann, Donald E. Porter, Christopher J. Rossbach, Hany E. Ramadan, and
Emmett Witchel. Solving difficult HTM problems without difficult hardware. In TRANS-
ACT ’07: 2nd Workshop on Transactional Computing, August 2007. 203

[159] Owen S. Hofmann, Christopher J. Rossbach, and Emmett Witchel. Maximum benefit
from a minimal HTM. In ASPLOS ’09: Proc. 14th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pages 145–156, March 2009.
DOI: 10.1145/1508244.1508262 203

[160] James J. Horning, Hugh C. Lauer, P. M. Melliar-Smith, and Brian Randell. A program
structure for error detection and recovery. In Operating Systems, Proceedings of an International
Symposium, pages 171–187. Springer-Verlag, 1974. DOI: 10.1007/BFb0029359 80

[161] Liyang Hu and Graham Hutton. Towards a verified implementation of software transactional
memory. In Proc. Symposium on Trends in Functional Programming, May 2008. 145

http://dx.doi.org/10.1145/7902.7903
http://dx.doi.org/10.1145/1178597.1178611
http://dx.doi.org/10.1145/355620.361161
http://dx.doi.org/10.1007/3-540-07994-7_47
http://dx.doi.org/10.1145/1508244.1508262
http://dx.doi.org/10.1007/BFb0029359

BIBLIOGRAPHY 225

[162] Richard L. Hudson, Bratin Saha, Ali-Reza Adl-Tabatabai, and Benjamin C. Hertzberg.
McRT-Malloc: a scalable transactional memory allocator. In ISMM ’06: Proc.
5th International Symposium on Memory Management, pages 74–83, June 2006.
DOI: 10.1145/1133956.1133967 82, 105, 137

[163] Damien Imbs, José Ramon de Mendivil, and Michel Raynal. Virtual world consis-
tency: a new condition for STM systems (brief announcement). In PODC ’09: Proc.
28th ACM Symposium on Principles of Distributed Computing, pages 280–281, August 2009.
DOI: 10.1145/1582716.1582764 30

[164] Amos Israeli and Lihu Rappoport. Disjoint-access-parallel implementations of strong shared
memory primitives. In PODC ’94: Proc. 13th ACM Symposium on Principles of Distributed
Computing, pages 151–160, August 1994. DOI: 10.1145/197917.198079 48

[165] Eric H. Jensen, Gary W. Hagensen, and Jeffrey M. Broughton. A new approach to exclusive
data access in shared memory multiprocessors. Technical Report Technical Report UCRL-
97663, November 1987. 155

[166] Gerry Kane. MIPS RISC architecture. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1988. 155

[167] Seunghwa Kang and David A. Bader. An efficient transactional memory algorithm for com-
puting minimum spanning forest of sparse graphs. In PPoPP ’09: Proc. 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 15–24, February 2009.
DOI: 10.1145/1504176.1504182 91

[168] Gokcen Kestor, Srdjan Stipic, Osman S. Unsal, Adrián Cristal, and Mateo Valero. RMS-TM:
A transactional memory benchmark for recognition, mining and synthesis applications. In
TRANSACT ’09: 4th Workshop on Transactional Computing, February 2009. 91

[169] Behram Khan, Matthew Horsnell, Ian Rogers, Mikel Luján, Andrew Dinn, and Ian Watson.
An object-aware hardware transactional memory. In HPCC ’08: Proc. 10th International
Conference on High Performance Computing and Communications, pages 93–102, September
2008. DOI: 10.1109/HPCC.2008.110 150

[170] Aaron Kimball and Dan Grossman. Software transactions meet first-class continuations. In
Proc. 8th Annual Workshop on Scheme and Functional Programming, September 2007. 62, 80

[171] Thomas F. Knight. An architecture for mostly functional languages. In LFP ’86:
Proc. ACM Lisp and Functional Programming Conference, pages 500–519, August 1986.
DOI: 10.1145/319838.319854 179

[172] G.K. Konstadinidis, M. Tremblay, S. Chaudhry, M. Rashid, P.F. Lai, Y. Otaguro, Y. Orginos,
S. Parampalli, M. Steigerwald, S. Gundala, R. Pyapali, L.D. Rarick, I. Elkin, Y. Ge, and

http://dx.doi.org/10.1145/1133956.1133967
http://dx.doi.org/10.1145/1582716.1582764
http://dx.doi.org/10.1145/197917.198079
http://dx.doi.org/10.1145/1504176.1504182
http://dx.doi.org/10.1109/HPCC.2008.110
http://doi.acm.org/10.1145/319838.319854

226 BIBLIOGRAPHY

I. Parulkar. Architecture and physical implementation of a third generation 65nm, 16 core, 32
thread chip-multithreading SPARC processor. IEEE Journal of Solid-State Circuits, 44(1):7–
17, January 2009. DOI: 10.1109/JSSC.2008.2007144 161

[173] Guy Korland, Nir Shavit, and Pascal Felber. Noninvasive Java concurrency with Deuce STM
(poster). In SYSTOR ’09: The Israeli Experimental Systems Conference, May 2009. Further
details at http://www.deucestm.org/. 13

[174] Guy Korland, Nir Shavit, and Pascal Felber. Noninvasive concurrency with Java STM. In
MULTIPROG ’10: Proc. 3rd Workshop on Programmability Issues for Multi-Core Computers,
January 2010. 68, 131

[175] Eric Koskinen and Maurice Herlihy. Checkpoints and continuations instead of nested
transactions. In SPAA ’08: Proc. 20th Annual Symposium on Parallelism in Algorithms and
Architectures, pages 160–168, June 2008. An earlier version appeared at TRANSACT ’08.
DOI: 10.1145/1378533.1378563 57

[176] Eric Koskinen and Maurice Herlihy. Dreadlocks: efficient deadlock detection. In SPAA ’08:
Proc. 20th Annual Symposium on Parallelism in Algorithms and Architectures, pages 297–303,
June 2008. An earlier version appeared at TRANSACT ’08. DOI: 10.1145/1378533.1378585
21, 109

[177] Eric Koskinen and Maurice Herlihy. Concurrent non-commutative boosted transactions. In
TRANSACT ’09: 4th Workshop on Transactional Computing, February 2009. 58

[178] Eric Koskinen, Matthew Parkinson, and Maurice Herlihy. Coarse-grained transactions. In
POPL ’10: Proc. 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 19–30, January 2010. DOI: 10.1145/1706299.1706304 58

[179] Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel Luján, Chris C. Kirkham,
and Ian Watson. DiSTM: A software transactional memory framework for clusters.
In ICPP ’08: Proc. 37th International Conference on Parallel Processing, September 2008.
DOI: 10.1109/ICPP.2008.59 143

[180] Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel Luján, Chris C. Kirkham,
and Ian Watson. Investigating software transactional memory on clusters. In
IPDPS ’08: Proc. 22nd International Parallel and Distributed Processing Symposium, 2008.
DOI: 10.1109/IPDPS.2008.4536340 143

[181] Milind Kulkarni, Patrick Carribault, Keshav Pingali, Ganesh Ramanarayanan, Bruce Walter,
Kavita Bala, and L. Paul Chew. Scheduling strategies for optimistic parallel execution of
irregular programs. In SPAA ’08: Proc. 20th Annual Symposium on Parallelism in Algorithms
and Architectures, pages 217–228, June 2008. DOI: 10.1145/1378533.1378575 54, 58

http://dx.doi.org/10.1109/JSSC.2008.2007144
http://www.deucestm.org/
http://dx.doi.org/10.1145/1378533.1378563
http://dx.doi.org/10.1145/1378533.1378585
http://dx.doi.org/10.1145/1706299.1706304
http://dx.doi.org/10.1109/ICPP.2008.59
http://dx.doi.org/10.1109/IPDPS.2008.4536340
http://dx.doi.org/10.1145/1378533.1378575

BIBLIOGRAPHY 227

[182] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala, and
L. Paul Chew. Optimistic parallelism requires abstractions. In PLDI ’07: Proc. 2007 ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages 211–222,
June 2007. DOI: 10.1145/1250734.1250759 58

[183] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu, and Anthony Nguyen.
Hybrid transactional memory. In PPoPP ’06: Proc. 11th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming,March 2006.DOI: 10.1145/1122971.1123003
166

[184] Bradley C. Kuszmaul and Charles E. Leiserson. Transactions everywhere, January 2003.
Available at http://dspace.mit.edu/handle/1721.1/3692. 94

[185] Edmund S. L. Lam and Martin Sulzmann. A concurrent constraint handling rules
implementation in Haskell with software transactional memory. In DAMP ’07: Proc.
2007 workshop on Declarative aspects of multicore programming, pages 19–24, January 2007.
DOI: 10.1145/1248648.1248653 92

[186] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-
cations of the ACM, 21(7):558–565, 1978. DOI: 10.1145/359545.359563 161

[187] Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess
progranm. IEEE Trans. Comput., 28(9):690–691, 1979. DOI: 10.1109/TC.1979.1675439 38

[188] Yossi Lev, Victor Luchangco, Virendra Marathe, Mark Moir, Dan Nussbaum, and Marek
Olszewski. Anatomy of a scalable software transactional memory. In TRANSACT ’09: 4th
Workshop on Transactional Computing, February 2009. 15, 115, 122, 131, 139, 140

[189] Yossi Lev and Jan-Willem Maessen. Toward a safer interaction with transactional memory
by tracking object visibility. In SCOOL ’05: Proc. OOPSLA Workshop on Synchronization and
Concurrency in Object-Oriented Languages, October 2005. 40

[190] Yossi Lev and Jan-Willem Maessen. Split hardware transactions: true nesting of transactions
using best-effort hardware transactional memory. In PPoPP ’08: Proc. 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 197–206, February 2008.
DOI: 10.1145/1345206.1345236 81, 88, 202

[191] Yossi Lev and Mark Moir. Fast read sharing mechanism for software transactional memory
(poster). In PODC ’04: Proc. 23rd ACM Symposium on Principles of Distributed Computing,
2004. 115, 131

[192] Yossi Lev and Mark Moir. Debugging with transactional memory. In TRANSACT ’06: 1st
Workshop on Languages, Compilers, and Hardware Support for Transactional Computing, June
2006. 89

http://dx.doi.org/10.1145/1250734.1250759
http://dx.doi.org/10.1145/1122971.1123003
http://dspace.mit.edu/handle/1721.1/3692
http://dx.doi.org/10.1145/1248648.1248653
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1145/1345206.1345236

228 BIBLIOGRAPHY

[193] Yossi Lev, Mark Moir, and Dan Nussbaum. PhTM: Phased transactional memory. In
TRANSACT ’07: 2nd Workshop on Transactional Computing, August 2007. 15, 166

[194] Sean Lie. Hardware support for unbounded transactional memory. Master’s thesis, May
2004. Massachusetts Institute of Technology. 165

[195] Richard J. Lipton. Reduction: a method of proving properties of parallel programs. Com-
munications of the ACM, 18(12):717–721, December 1975. DOI: 10.1145/361227.361234
58

[196] Barbara Liskov. Distributed programming in Argus. Communications of the ACM, 31(3):300–
312, 1988. DOI: 10.1145/42392.42399 5

[197] Yi Liu, Xin Zhang, He Li, Mingxiu Li, and Depei Qian. Hardware transactional memory
supporting I/O operations within transactions. In HPCC ’08: Proc. 10th International Con-
ference on High Performance Computing and Communications, pages 85–92, September 2008.
DOI: 10.1109/HPCC.2008.71 81

[198] Yu David Liu, Xiaoqi Lu, and Scott F. Smith. Coqa: concurrent objects with quantized
atomicity. In CC ’08: Proc. International Conference on Compiler Construction, pages 260–275,
March 2008. DOI: 10.1007/978-3-540-78791-4_18 96

[199] David B. Lomet. Process structuring, synchronization, and recovery using atomic actions.
In ACM Conference on Language Design for Reliable Software, pages 128–137, March 1977.
DOI: 10.1145/800022.808319 6, 62

[200] João Lourenço and Goncalo T. Cunha. Testing patterns for software transactional memory
engines. In PADTAD ’07: Proc. 2007 ACM Workshop on Parallel and Distributed Systems:
Testing and Debugging, pages 36–42, July 2007. DOI: 10.1145/1273647.1273655 144

[201] David B. Loveman. High performance Fortran. IEEE Parallel Distrib. Technol., 1(1):25–42,
1993. DOI: 10.1109/88.219857 2

[202] Victor Luchangco. Against lock-based semantics for transactional memory (brief announce-
ment). In SPAA ’08: Proc. 20th Symposium on Parallelism in Algorithms and Architectures, pages
98–100, June 2008. DOI: 10.1145/1378533.1378549 36

[203] Victor Luchangco and Virendra J. Marathe. Transaction synchronizers. In SCOOL ’05: Proc.
OOPSLA Workshop on Synchronization and Concurrency in Object-Oriented Languages, October
2005. 76

[204] Marc Lupon,Grigorios Magklis,and Antonio González. Version management alternatives for
hardware transactional memory. In MEDEA ’08: Proc. 9th Workshop on Memory Performance,
October 2008. DOI: 10.1145/1509084.1509094 172

http://dx.doi.org/10.1145/361227.361234
http://dx.doi.org/10.1145/42392.42399
http://dx.doi.org/10.1109/HPCC.2008.71
http://dx.doi.org/10.1007/978-3-540-78791-4_18
http://dx.doi.org/10.1145/800022.808319
http://doi.acm.org/10.1145/1273647.1273655
http://dx.doi.org/10.1109/88.219857
http://dx.doi.org/10.1145/1378533.1378549
http://doi.acm.org/10.1145/1509084.1509094

BIBLIOGRAPHY 229

[205] Kaloian Manassiev, Madalin Mihailescu, and Cristiana Amza. Exploiting distributed version
concurrency in a transactional memory cluster. In PPoPP ’06: Proc. 11th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 198–208, March 2006.
DOI: 10.1145/1122971.1123002 142

[206] Chaiyasit Manovit, Sudheendra Hangal, Hassan Chafi, Austen McDonald, Christos
Kozyrakis, and Kunle Olukotun. Testing implementations of transactional memory. In
PACT ’06: Proc. 15th international conference on Parallel architectures and compilation techniques,
pages 134–143, September 2006. DOI: 10.1145/1152154.1152177 144

[207] Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory model. In POPL ’05:
Proc. 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 378–391, January 2005. DOI: 10.1145/1040305.1040336 34, 35, 36, 65, 97, 103

[208] Virendra J.Marathe and Mark Moir.Toward high performance nonblocking software transac-
tional memory. In PPoPP ’08: Proc. 13th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 227–236,February 2008.DOI: 10.1145/1345206.1345240 47,
102, 134

[209] Virendra J. Marathe, William N. Scherer III, and Michael L. Scott. Adaptive software trans-
actional memory. In Proc. 19th International Symposium on Distributed Computing, September
2005. Earlier but expanded version available as TR 868, University of Rochester Computer
Science Dept., May 2005. 131, 132

[210] Virendra J. Marathe and Michael L. Scott. Using LL/SC to simplify word-based software
transactional memory (poster). In PODC ’05: Proc. 24th ACM Symposium on Principles of
Distributed Computing, July 2005. 135

[211] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya, David Eisenstat,
William N.Scherer III,and Michael L.Scott. Lowering the overhead of software transactional
memory. Technical Report TR 893, Computer Science Department, University of Rochester,
March 2006. Condensed version presented at TRANSACT ’06. 15, 131, 132, 197, 198

[212] Virendra J. Marathe, Michael F. Spear, and Michael L. Scott. Scalable techniques for trans-
parent privatization in software transactional memory. In ICPP ’08: Proc. 37th International
Conference on Parallel Processing, September 2008. DOI: 10.1109/ICPP.2008.69 138, 139

[213] Milo M. K. Martin, Mark D. Hill, and David A. Wood. Token coherence: decoupling
performance and correctness. In ISCA ’03: Proc. 30th International Symposium on Computer
Architecture, pages 182–193, June 2003. DOI: 10.1109/ISCA.2003.1206999 190

[214] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. Autolocker: synchro-
nization inference for atomic sections. In POPL ’06: Proc. 33rd ACM SIGPLAN-

http://dx.doi.org/10.1145/1122971.1123002
http://dx.doi.org/10.1145/1152154.1152177
http://dx.doi.org/10.1145/1040305.1040336
http://dx.doi.org/10.1145/1345206.1345240
http://dx.doi.org/10.1109/ICPP.2008.69
http://dx.doi.org/10.1109/ISCA.2003.1206999

230 BIBLIOGRAPHY

SIGACT Symposium on Principles of Programming Languages, pages 346–358, January 2006.
DOI: 10.1145/1111037.1111068 9, 65

[215] Austen McDonald, JaeWoong Chung, Brian D. Carlstrom, Chi Cao Minh, Hassan Chafi,
Christos Kozyrakis, and Kunle Olukotun. Architectural semantics for practical transactional
memory. In ISCA ’06: Proc. 33rd Annual International Symposium on Computer Architecture,
pages 53–65, June 2006. 81, 88, 201, 202

[216] Phil McGachey, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Vijay Menon, Bratin Saha,
and Tatiana Shpeisman. Concurrent GC leveraging transactional memory. In PPoPP ’08:
Proc. 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages
217–226, February 2008. DOI: 10.1145/1345206.1345238 83

[217] P.E. McKenney and J. D. Slingwine. Read-copy update: using execution history to solve con-
currency problems. In Proc. 10th International Conference on Parallel and Distributed Computing
and Systems, pages 508–518, 1998. 82

[218] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott Mahlke. Parallelizing sequential appli-
cations on commodity hardware using a low-cost software transactional memory. In PLDI ’09:
Proc. 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 166–176, June 2009. DOI: 10.1145/1542476.1542495 125

[219] Vijay Menon,Steven Balensiefer,Tatiana Shpeisman,Ali-Reza Adl-Tabatabai,Richard Hud-
son, Bratin Saha, and Adam Welc. Single global lock semantics in a weakly atomic STM.
In TRANSACT ’08: 3rd Workshop on Transactional Computing, February 2008. 31, 37, 38, 65,
136, 137

[220] Vijay Menon, Steven Balensiefer, Tatiana Shpeisman, Ali-Reza Adl-Tabatabai, Richard L.
Hudson, Bratin Saha, and Adam Welc. Practical weak-atomicity semantics for Java STM.
In SPAA ’08: Proc. 20th Annual Symposium on Parallelism in Algorithms and Architectures, pages
314–325, June 2008. DOI: 10.1145/1378533.1378588 31, 62, 65, 136

[221] Vijay S. Menon, Neal Glew, Brian R. Murphy, Andrew McCreight, Tatiana Shpeisman,
Ali-Reza Adl-Tabatabai, and Leaf Petersen. A verifiable SSA program representation for ag-
gressive compiler optimization. In POPL ’06: Proc. 33rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 397–408, January 2006. 114

[222] Maged M. Michael. Hazard pointers: safe memory reclamation for lock-free ob-
jects. IEEE Transactions on Parallel and Distributed Systems, 15(6):491–504, June 2004.
DOI: 10.1109/TPDS.2004.8 82

[223] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and block-
ing concurrent queue algorithms. In PODC ’96: Proc. 15th Annual ACM Symposium on Prin-

http://doi.acm.org/10.1145/1111037.1111068
http://dx.doi.org/10.1145/1345206.1345238
http://dx.doi.org/10.1145/1542476.1542495
http://dx.doi.org/10.1145/1378533.1378588
http://dx.doi.org/10.1109/TPDS.2004.8

BIBLIOGRAPHY 231

ciples of Distributed Computing, pages 267–275, May 1996. DOI: 10.1145/248052.248106
2

[224] Maged M. Michael, Martin T. Vechev, and Vijay A. Saraswat. Idempotent work stealing.
In PPoPP ’09: Proc. 14th Symposium on Principles and Practice of Parallel Programming, pages
45–54, February 2009. DOI: 10.1145/1504176.1504186 2

[225] Miloš Milovanović, Roger Ferrer, Vladimir Gajinov, Osman S. Unsal, Adrián Cristal, Eduard
Ayguadé, and Mateo Valero. Multithreaded software transactional memory and OpenMP.
In MEDEA ’07: Proc. 2007 Workshop on Memory Performance, pages 81–88, September 2007.
DOI: 10.1145/1327171.1327181 44

[226] Katherine F. Moore and Dan Grossman. High-level small-step operational semantics for
transactions. In POPL ’08: Proc. 35th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 51–62, January 2008. Earlier version presented at
TRANSACT ’07. DOI: 10.1145/1328438.1328448 23, 31, 38, 40, 44, 68, 145

[227] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A. Wood.
LogTM: Log-based transactional memory. In HPCA ’06: Proc. 12th International Symposium
on High-Performance Computer Architecture, pages 254–265, February 2006. 14, 21, 22, 147,
170, 172

[228] Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke Yen, Mark D. Hill, Ben
Liblit, Michael M. Swift, and David A. Wood. Supporting nested transactional mem-
ory in LogTM. In ASPLOS ’06: Proc. 12th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pages 359–370, October 2006.
DOI: 10.1145/1168857.1168902 81, 201

[229] J. Eliot B. Moss and Antony L. Hosking. Nested transactional memory: Model and archi-
tecture sketches. 63(2):186–201, December 2006. DOI: 10.1016/j.scico.2006.05.010 42, 43,
202

[230] Armand Navabi, Xiangyu Zhang, and Suresh Jagannathan. Quasi-static scheduling for safe
futures. In PPoPP ’08: Proc. 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 23–32, February 2008. DOI: 10.1145/1345206.1345212 98

[231] Yang Ni, Vijay S. Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosking, Richard L. Hudson,
J. Eliot B. Moss, Bratin Saha, and Tatiana Shpeisman. Open nesting in software transactional
memory. In PPoPP ’07: Proc. 12th ACM SIGPLAN symposium on Principles and Practice of
Parallel Programming, pages 68–78, March 2007. DOI: 10.1145/1229428.1229442 43

[232] Yang Ni, Adam Welc, Ali-Reza Adl-Tabatabai, Moshe Bach, Sion Berkowits, James Cownie,
Robert Geva, Sergey Kozhukow, Ravi Narayanaswamy, Jeffrey Olivier, Serguei Preis, Bratin

http://dx.doi.org/10.1145/248052.248106
http://doi.acm.org/10.1145/1504176.1504186
http://dx.doi.org/10.1145/1327171.1327181
http://dx.doi.org/10.1145/1328438.1328448
http://dx.doi.org/10.1145/1168857.1168902
http://dx.doi.org/10.1016/j.scico.2006.05.010
http://dx.doi.org/10.1145/1345206.1345212
http://dx.doi.org/10.1145/1229428.1229442

232 BIBLIOGRAPHY

Saha, Ady Tal, and Xinmin Tian. Design and implementation of transactional con-
structs for C/C++. In OOPSLA ’08: Proc. 23rd ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 195–212, September 2008.
DOI: 10.1145/1449764.1449780 62, 69, 80

[233] Konstantinos Nikas, Nikos Anastopoulos, Georgios Goumas, and Nektarios Koziris. Em-
ploying transactional memory and helper threads to speedup Dijkstra’s algorithm. In ICPP ’09:
Proc. 38th International Conference on Parallel Processing, September 2009. 91

[234] Cosmin E. Oancea, Alan Mycroft, and Tim Harris. A lightweight in-place implementation
for software thread-level speculation. In SPAA ’09: Proc. 21st Symposium on Parallelism in
Algorithms and Architectures, August 2009. DOI: 10.1145/1583991.1584050 xiv

[235] John O’Leary, Bratin Saha, and Mark R. Tuttle. Model checking transactional memory
with Spin (brief announcement). In PODC ’08: Proc. 27th ACM symposium on Principles of
Distributed Computing, pages 424–424, August 2008. DOI: 10.1145/1400751.1400816 144

[236] Marek Olszewski, Jeremy Cutler, and J. Gregory Steffan. JudoSTM: a dynamic binary-
rewriting approach to software transactional memory. In PACT ’07: Proc. 16th International
Conference on Parallel Architecture and Compilation Techniques, pages 365–375, September
2007. DOI: 10.1109/PACT.2007.42 55, 68, 102, 124, 126

[237] Kunle Olukotun and Lance Hammond. The future of microprocessors. Queue, 3(7):26–29,
2005. DOI: 10.1145/1095408.1095418 1

[238] Victor Pankratius,Ali-Reza Adl-Tabatabai, and Frank Otto. Does transactional memory keep
its promises? Results from an empirical study. Technical Report 2009-12, IPD, University of
Karlsruhe, Germany, September 2009. 94

[239] Salil Pant and Gregory Byrd. Extending concurrency of transactional memory programs by
using value prediction. In CF ’09: Proc. 6th ACM conference on Computing frontiers, pages
11–20, May 2009. DOI: 10.1145/1531743.1531748 56

[240] Salil Pant and Gregory Byrd. Limited early value communication to improve performance
of transactional memory. In ICS ’09: Proc. 23rd International Conference on Supercomputing,
pages 421–429, June 2009. DOI: 10.1145/1542275.1542334 56

[241] Cristian Perfumo, Nehir Sönmez, Srdjan Stipic, Osman S. Unsal, Adrián Cristal, Tim Har-
ris, and Mateo Valero. The limits of software transactional memory (STM): dissecting
Haskell STM applications on a many-core environment. In CF ’08: Proc. 5th conference
on Computing frontiers, pages 67–78, May 2008. Earlier version presented at TRANSACT ’07.
DOI: 10.1145/1366230.1366241 90, 92

http://dx.doi.org/10.1145/1449764.1449780
http://dx.doi.org/10.1145/1583991.1584050
http://dx.doi.org/10.1145/1400751.1400816
http://dx.doi.org/10.1109/PACT.2007.42
http://dx.doi.org/10.1145/1095408.1095418
http://dx.doi.org/10.1145/1531743.1531748
http://dx.doi.org/10.1145/1542275.1542334
http://dx.doi.org/10.1145/1366230.1366241

BIBLIOGRAPHY 233

[242] Filip Pizlo, Marek Prochazka, Suresh Jagannathan, and Jan Vitek. Transactional lock-free
objects for real-time Java. In CSJP ’04: Proc. ACM PODC Workshop on Concurrency and
Synchronization in Java Programs, pages 54–62, 2004. 53, 63, 84

[243] Donald E. Porter, Owen S. Hofmann, Christopher J. Rossbach, Alexander Benn, and
Emmett Witchel. Operating systems transactions. In SOSP ’09: Proc. 22nd ACM
SIGOPS Symposium on Operating Systems Principles, pages 161–176, October 2009.
DOI: 10.1145/1629575.1629591 15, 81, 88

[244] Donald E. Porter and Emmett Witchel. Operating systems should provide transactions. In
HotOS ’09: Proc. 12th Workshop on Hot Topics in Operating Systems, May 2009. 88

[245] Seth H. Pugsley, Manu Awasthi, Niti Madan, Naveen Muralimanohar, and Rajeev Bala-
subramonian. Scalable and reliable communication for hardware transactional memory. In
PACT ’08: Proc. 17th International Conference on Parallel Architectures and Compilation Tech-
niques, pages 144–154, October 2008. DOI: 10.1145/1454115.1454137 182

[246] George Radin. The 801 minicomputer. In ASPLOS ’82: Proc. 1st International Symposium on
Architectural Support for Programming Languages and Operating Systems, pages 39–47, 1982.
DOI: 10.1145/800050.801824 194

[247] Ravi Rajwar. Speculation-Based Techniques for Transactional Lock-Free Execution of Lock-Based
Programs. PhD thesis, October 2002. University of Wisconsin. 96, 150, 160

[248] Ravi Rajwar and James R. Goodman. Speculative lock elision: enabling highly concurrent
multithreaded execution. In MICRO ’01: Proc. 34th International Symposium on Microarchi-
tecture, pages 294–305, December 2001. 93, 96, 149, 150, 159

[249] Ravi Rajwar and James R. Goodman. Transactional lock-free execution of lock-based pro-
grams. In ASPLOS ’02: Proc. 10th Symposium on Architectural Support for Programming Lan-
guages and Operating Systems, pages 5–17, October 2002. DOI: 10.1145/605397.605399 159,
161

[250] Ravi Rajwar and James R. Goodman. Transactional execution: toward reliable,
high-performance multithreading. IEEE Micro, 23(6):117–125, Nov-Dec 2003.
DOI: 10.1109/MM.2003.1261395 166

[251] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing transactional memory. In
ISCA ’05: Proc. 32nd Annual International Symposium on Computer Architecture, pages 494–
505, June 2005. 191

[252] Hany Ramadan and Emmett Witchel. The Xfork in the road to coordinated sibling trans-
actions. In TRANSACT ’09: 4th Workshop on Transactional Computing, February 2009. 44

http://dx.doi.org/10.1145/1629575.1629591
http://dx.doi.org/10.1145/1454115.1454137
http://dx.doi.org/10.1145/800050.801824
http://doi.acm.org/10.1145/605397.605399
http://dx.doi.org/10.1109/MM.2003.1261395

234 BIBLIOGRAPHY

[253] Hany E. Ramadan, Christopher J. Rossbach, Donald E. Porter, Owen S. Hofmann, Aditya
Bhandari, and Emmett Witchel. MetaTM/TxLinux: transactional memory for an operating
system. In ISCA ’07: Proc. 34th annual international symposium on Computer architecture, pages
92–103, 2007. A later paper about this work appeared in CACM 51(9), September 2008.
DOI: 10.1145/1250662.1250675 93

[254] Hany E. Ramadan, Christopher J. Rossbach, and Emmett Witchel. Dependence-
aware transactional memory for increased concurrency. In MICRO ’08: Proc. 2008
41st IEEE/ACM International Symposium on Microarchitecture, pages 246–257, 2008.
DOI: 10.1109/MICRO.2008.4771795 56

[255] Hany E. Ramadan, Indrajit Roy, Maurice Herlihy, and Emmett Witchel. Committing
conflicting transactions in an STM. In PPoPP ’09: Proc. 14th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pages 163–172, February 2009.
DOI: 10.1145/1504176.1504201 56

[256] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill, 2000. 5

[257] G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable.
TOPLAS: ACM Transactions on Programming Languages and Systems, 22(2):416–430, 2000.
DOI: 10.1145/349214.349241 2

[258] Paruj Ratanaworabhan, Martin Burtscher, Darko Kirovski, Benjamin Zorn, Rahul Nagpal,
and Karthik Pattabiraman. Detecting and tolerating asymmetric races. In PPoPP ’09: Proc.
14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages
173–184, February 2009. DOI: 10.1145/1504176.1504202 31

[259] Lukas Renggli and Oscar Nierstrasz. Transactional memory for Smalltalk. In ICDL ’07:
Proc. 2007 International Conference on Dynamic Languages, pages 207–221, August 2007.
DOI: 10.1145/1352678.1352692 62

[260] Torval Riegel, Christof Fetzer, Heiko Sturzrehm, and Pascal Felber. From causal to
z-linearizable transactional memory (brief announcement). In PODC ’07: Proc. 26th
ACM symposium on Principles of distributed computing, pages 340–341, August 2007.
DOI: 10.1145/1281100.1281162 27

[261] Torvald Riegel and Diogo Becker de Brum. Making object-based STM practical in unman-
aged environments. In TRANSACT ’08: 3rd Workshop on Transactional Computing, February
2008. 105

[262] Torvald Riegel, Pascal Felber, and Christof Fetzer. A lazy snapshot algorithm with ea-
ger validation. In DISC ’06: Proc. 20th International Symposium on Distributed Comput-
ing, volume 4167 of Lecture Notes in Computer Science, pages 284–298, September 2006.
DOI: 10.1007/11864219_20 15, 123

http://dx.doi.org/10.1145/1250662.1250675
http://dx.doi.org/10.1109/MICRO.2008.4771795
http://dx.doi.org/10.1145/1504176.1504201
http://dx.doi.org/10.1145/349214.349241
http://dx.doi.org/10.1145/1504176.1504202
http://dx.doi.org/10.1145/1352678.1352692
http://doi.acm.org/10.1145/1281100.1281162
http://dx.doi.org/10.1007/11864219_20

BIBLIOGRAPHY 235

[263] Torvald Riegel, Christof Fetzer, and Pascal Felber. Snapshot isolation for software trans-
actional memory. In TRANSACT ’06: 1st Workshop on Languages, Compilers, and Hardware
Support for Transactional Computing, June 2006. 27, 123

[264] Torvald Riegel, Christof Fetzer, and Pascal Felber. Time-based transactional memory with
scalable time bases. In SPAA ’07: Proc. 19th ACM Symposium on Parallelism in Algorithms and
Architectures, pages 221–228, June 2007. DOI: 10.1145/1248377.1248415 121

[265] Torvald Riegel, Christof Fetzer, and Pascal Felber. Automatic data partitioning in software
transactional memories. In SPAA ’08: Proc. 20th Symposium on Parallelism in Algorithms and
Architectures, pages 152–159, June 2008. DOI: 10.1145/1378533.1378562 105

[266] Michael F. Ringenburg and Dan Grossman. AtomCaml: First-class atomicity via rollback. In
Proc. 10th ACM SIGPLAN International Conference on Functional Programming, September
2005. DOI: 10.1145/1086365.1086378 62, 73, 75, 86

[267] Paolo Romano, Nuno Carvalho, and Luís Rodrigues. Towards distributed software transac-
tional memory systems. In LADIS ’08: Proc. 2nd Workshop on Large-Scale Distributed Systems
and Middleware, September 2008. DOI: 10.1145/1529974.1529980 143

[268] Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis, II. System level concurrency
control for distributed database systems. TODS: ACM Transactions on Database Systems,
3(2):178–198, 1978. DOI: 10.1145/320251.320260 161

[269] Christopher Rossbach, Owen Hofmann, and Emmett Witchel. Is transactional memory pro-
gramming actually easier? In PPoPP ’10: Proc. 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 47–56, January 2010. Earlier version presented at
TRANSACT ’09. DOI: 10.1145/1693453.1693462 93

[270] Christopher J. Rossbach, Owen S. Hofmann, Donald E. Porter, Hany E. Ramadan, Aditya
Bhandari, and Emmett Witchel. TxLinux: using and managing hardware transactional mem-
ory in an operating system. In SOSP ’07: Proc. 21st ACM SIGOPS Symposium on Operating
Systems Principles, pages 87–102, October 2007. A later paper about this work appeared in
CACM 51(9), September 2008. DOI: 10.1145/1294261.1294271 93

[271] Christopher J. Rossbach, Hany E. Ramadan, Owen S. Hofmann, Donald E. Porter, Aditya
Bhandari, and Emmett Witchel. TxLinux and MetaTM: transactional memory and the
operating system. Communications of the ACM, 51(9):83–91,September 2008. Earlier versions
of this work appeared at ISCA ’07 and SOSP ’07. DOI: 10.1145/1378727.1378747 14, 93

[272] Amitabha Roy, Steven Hand, and Tim Harris. A runtime system for software lock elision. In
EuroSys ’09: Proc. 4th ACM European Conference on Computer Systems, pages 261–274, April
2009. DOI: 10.1145/1519065.1519094 96

http://dx.doi.org/10.1145/1248377.1248415
http://dx.doi.org/10.1145/1378533.1378562
http://doi.acm.org/10.1145/1086365.1086378
http://dx.doi.org/10.1145/1529974.1529980
http://dx.doi.org/10.1145/320251.320260
http://dx.doi.org/10.1145/1693453.1693462
http://dx.doi.org/10.1145/1294261.1294271
http://dx.doi.org/10.1145/1378727.1378747
http://dx.doi.org/10.1145/1519065.1519094

236 BIBLIOGRAPHY

[273] Bratin Saha, Ali-Reza Adl-Tabatabai, Anwar Ghuloum, Mohan Rajagopalan, Richard L.
Hudson, Leaf Petersen, Vijay Menon, Brian Murphy,Tatiana Shpeisman, Eric Sprangle, An-
war Rohillah, Doug Carmean, and Jesse Fang. Enabling scalability and performance in a large
scale CMP environment. In EuroSys ’07: Proc. 2nd ACM SIGOPS/EuroSys European Confer-
ence on Computer Systems 2007, pages 73–86, March 2007. DOI: 10.1145/1272996.1273006
109

[274] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Ben-
jamin Hertzberg. McRT-STM: a high performance software transactional memory sys-
tem for a multi-core runtime. In PPoPP ’06: Proc. 11th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pages 187–197, March 2006.
DOI: 10.1145/1122971.1123001 47, 102, 108, 109, 115

[275] Bratin Saha,Ali-Reza Adl-Tabatabai, and Quinn Jacobson. Architectural support for software
transactional memory. In MICRO ’06: Proc. 39th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 185–196, 2006. DOI: 10.1109/MICRO.2006.9 197

[276] Daniel Sanchez, Luke Yen, Mark D. Hill, and Karthikeyan Sankaralingam. Implementing
signatures for transactional memory. In MICRO ’07: Proc. 40th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 123–133, 2007. DOI: 10.1109/MICRO.2007.20
174, 175

[277] Sutirtha Sanyal, Adrián Cristal, Osman S. Unsal, Mateo Valero, and Sourav Roy. Dynamically
filtering thread-local variables in lazy-lazy hardware transactional memory. In HPCC ’09: Proc.
11th Conference on High Performance Computing and Communications, June 2009. 178

[278] William N. Scherer III and Michael L. Scott. Contention management in dynamic
software transactional memory. In CSJP ’04: Proc. ACM PODC Workshop on Concur-
rency and Synchronization in Java Programs, July 2004. In conjunction with PODC’04.
Please also download errata from http://www.cs.rochester.edu/u/scott/papers/
2004_CSJP_contention_mgmt_errata.pdf. 29, 51, 131

[279] William N. Scherer III and Michael L. Scott. Nonblocking concurrent objects with condition
synchronization. In DISC ’04: Proc. 18th International Symposium on Distributed Computing,
October 2004. 75

[280] William N. Scherer III and Michael L. Scott. Advanced contention management for dynamic
software transactional memory. In PODC ’05: Proc. 24th ACM Symposium on Principles of
Distributed Computing, pages 240–248, July 2005. DOI: 10.1145/1073814.1073861 51, 52

[281] Florian T. Schneider, Vijay Menon, Tatiana Shpeisman, and Ali-Reza Adl-Tabatabai. Dy-
namic optimization for efficient strong atomicity. In OOPSLA ’08: Proc. 23rd ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, pages 181–
194, September 2008. DOI: 10.1145/1449764.1449779 35, 71

http://dx.doi.org/10.1145/1272996.1273006
http://dx.doi.org/10.1145/1122971.1123001
http://dx.doi.org/10.1109/MICRO.2006.9
http://dx.doi.org/10.1109/MICRO.2007.20
http://www.cs.rochester.edu/u/scott/papers/2004_CSJP_contention_mgmt_errata.pdf
http://www.cs.rochester.edu/u/scott/papers/2004_CSJP_contention_mgmt_errata.pdf
http://doi.acm.org/10.1145/1073814.1073861
http://dx.doi.org/10.1145/1449764.1449779

BIBLIOGRAPHY 237

[282] Michael L. Scott. Sequential specification of transactional memory semantics. In TRANS-
ACT ’06: 1st Workshop on Languages, Compilers, and Hardware Support for Transactional Com-
puting, June 2006. 23

[283] Michael L. Scott, Michael F. Spear, Luke Dalessandro, and Virendra J. Marathe. De-
launay triangulation with transactions and barriers. In IISWC ’07: Proc. 2007 IEEE In-
ternational Symposium on Workload Characterization, September 2007. Benchmarks track.
DOI: 10.1109/IISWC.2007.4362186 91

[284] Michael L. Scott, Michael F. Spear, Luke Dalessandro, and Virendra J. Marathe. Trans-
actions and privatization in Delaunay triangulation (brief announcement). In PODC ’07:
Proc. 26th PODC ACM Symposium on Principles of Distributed Computing, August 2007.
DOI: 10.1145/1281100.1281160 40

[285] Nir Shavit and Dan Touitou. Software transactional memory. In PODC ’95: Proc. 14th
ACM Symposium on Principles of Distributed Computing, pages 204–213, August 1995.
DOI: 10.1145/224964.224987 101, 128

[286] Avraham Shinnar, David Tarditi, Mark Plesko, and Bjarne Steensgaard. Integrating sup-
port for undo with exception handling. Technical Report MSR-TR-2004-140, Microsoft
Research, December 2004. 80, 83

[287] Tatiana Shpeisman, Ali-Reza Adl-Tabatabai, Robert Geva, Yang Ni, and Adam Welc.
Towards transactional memory semantics for C++. In SPAA ’09: Proc. 21st Sym-
posium on Parallelism in Algorithms and Architectures, pages 49–58, August 2009.
DOI: 10.1145/1583991.1584012 62, 80

[288] Tatiana Shpeisman,Vijay Menon,Ali-Reza Adl-Tabatabai,Steve Balensiefer,Dan Grossman,
Richard Hudson, Katherine F. Moore, and Bratin Saha. Enforcing isolation and ordering in
STM. In PLDI ’07: Proc. 2007 ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 78–88, June 2007. DOI: 10.1145/1250734.1250744 31, 35, 40, 71

[289] Arrvindh Shriram,Virendra J. Marathe, Sandhya Dwarkadas, Michael L. Scott, David Eisen-
stat,Christopher Heriot,William N.Scherer III, and Michael F.Spear. Hardware acceleration
of software transactional memory. Technical Report TR 887, Computer Science Department,
University of Rochester, December 2005. Revised, March 2006; condensed version presented
at TRANSACT ’06. 182, 198

[290] Arrvindh Shriraman and Sandhya Dwarkadas. Refereeing conflicts in hardware transac-
tional memory. In ICS ’09: Proc. 23rd International Conference on Supercomputing, pages
136–146, June 2009. Also available as TR 939, Department of Computer Science, University
of Rochester, September 2008. DOI: 10.1145/1542275.1542299 50, 52, 147, 152, 170, 182,
198

http://dx.doi.org/10.1109/IISWC.2007.4362186
http://doi.acm.org/10.1145/1281100.1281160
http://dx.doi.org/10.1145/224964.224987
http://dx.doi.org/10.1145/1583991.1584012
http://dx.doi.org/10.1145/1250734.1250744
http://dx.doi.org/10.1145/1542275.1542299

238 BIBLIOGRAPHY

[291] Arrvindh Shriraman, Sandhya Dwarkadas, and Michael L. Scott. Flexible decoupled trans-
actional memory support. Journal of Parallel and Distributed Computing: Special Issue on
Transactional Memory, June 2010. Earlier version published in ISCA ’08. 50, 52, 147, 170,
182, 183, 198

[292] Arrvindh Shriraman, Michael F. Spear, Hemayet Hossain, Virendra Marathe, Sandhya
Dwarkadas, and Michael L. Scott. An integrated hardware-software approach to flexible
transactional memory. In ISCA ’07: Proc. 34rd Annual International Symposium on Computer
Architecture, pages 104–115, June 2007. DOI: 10.1145/1250662.1250676 197

[293] Ed Sikha, Rick Simpson, Cathy May, and Hank Warren, editors. The PowerPC architecture:
a specification for a new family of RISC processors. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1994. 155

[294] Satnam Singh. Higher order combinators for join patterns using STM. In TRANSACT ’06:
1st Workshop on Languages, Compilers, and Hardware Support for Transactional Computing, June
2006. 92

[295] Travis Skare and Christos Kozyrakis. Early release: friend or foe? In Proc. Workshop on
Transactional Workloads, June 2006. 56

[296] J. E. Smith and G. Sohi. The microarchitecture of superscalar processors. Proc. IEEE,
48:1609–1624, December 1995. DOI: 10.1109/5.476078 152, 159

[297] Nehir Sonmez, Tim Harris, Adrián Cristal, Osman S. Unsal, and Mateo Valero. Taking the
heat off transactions: dynamic selection of pessimistic concurrency control. In IPDPS ’09:
Proc. 23rd International Parallel and Distributed Processing Symposium, May 2009. 54, 109

[298] Nehir Sonmez, Cristian Perfumo, Srdan Stipic, Osman Unsal, Adrian Cristal, and Mateo
Valero. UnreadTVar: extending Haskell software transactional memory for performance. In
Symposium on Trends in Functional Programming, April 2007. 56

[299] Michael F. Spear, Luke Dalessandro, Virendra Marathe, and Michael L. Scott.
Ordering-based semantics for software transactional memory. In OPODIS ’08: Proc.
12th International Conference on Principles of Distributed Systems, pages 275–294, De-
cember 2008. Springer-Verlag Lecture Notes in Computer Science volume 5401.
DOI: 10.1007/978-3-540-92221-6_19 38, 136

[300] Michael F. Spear, Luke Dalessandro, Virendra J. Marathe, and Michael L. Scott. A compre-
hensive strategy for contention management in software transactional memory. In PPoPP ’09:
Proc. 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages
141–150, February 2009. DOI: 10.1145/1504176.1504199 21, 50, 52, 53, 107, 108, 121, 184

http://dx.doi.org/10.1145/1250662.1250676
http://dx.doi.org/10.1109/5.476078
http://dx.doi.org/10.1007/978-3-540-92221-6_19
http://dx.doi.org/10.1145/1504176.1504199

BIBLIOGRAPHY 239

[301] Michael F. Spear, Virendra J. Marathe, Luke Dalessandro, and Michael L. Scott. Pri-
vatization techniques for software transactional memory (brief announcement). In
PODC ’07: Proc. 26th PODC ACM Symposium on Principles of Distributed Computing,
August 2007. Extended version available as TR-915, Computer Science Department,
University of Rochester, Feb. 2007, http://www.cs.rochester.edu/u/scott/papers/
2007_TR915.pdf. DOI: 10.1145/1281100.1281161 137

[302] Michael F. Spear,Virendra J. Marathe,William N. Scherer III, and Michael L. Scott. Conflict
detection and validation strategies for software transactional memory. In DISC ’06: Proc. 20th
International Symposium on Distributed Computing, September 2006. 115, 123, 131, 132

[303] Michael F. Spear, Maged M. Michael, and Michael L. Scott. Inevitability mechanisms for
software transactional memory. In TRANSACT ’08: 3rd Workshop on Transactional Computing,
February 2008. 21, 81, 87

[304] Michael F. Spear, Maged M. Michael, Michael L. Scott, and Peng Wu. Reducing mem-
ory ordering overheads in software transactional memory. In CGO ’09: Proc. 2009 In-
ternational Symposium on Code Generation and Optimization, pages 13–24, March 2009.
DOI: 10.1109/CGO.2009.30 103, 120

[305] Michael F. Spear, Maged M. Michael, and Christoph von Praun. RingSTM: scalable transac-
tions with a single atomic instruction. In SPAA ’08: Proc. 20th Annual Symposium on Parallelism
in Algorithms and Architectures, pages 275–284, June 2008. DOI: 10.1145/1378533.1378583
15, 102, 124

[306] Michael F. Spear, Arrvindh Shriraman, Luke Dalessandro, Sandhya Dwarkadas, and
Michael L. Scott. Nonblocking transactions without indirection using alert-on-update. In
SPAA ’07: Proc. 19th ACM Symposium on Parallel Algorithms and Architectures, pages 210–220,
June 2007. DOI: 10.1145/1248377.1248414 134

[307] Michael F. Spear, Arrvindh Shriraman, Luke Dalessandro, and Michael L. Scott. Transac-
tional mutex locks. In TRANSACT ’09: 4th Workshop on Transactional Computing, February
2009. 126

[308] Michael F. Spear, Michael Silverman, Luke Dalessandro, Maged M. Michael, and Michael L.
Scott. Implementing and exploiting inevitability in software transactional memory. In
ICPP ’08: Proc. 37th International Conference on Parallel Processing, September 2008.
DOI: 10.1109/ICPP.2008.55 21, 87, 91, 141, 142

[309] Janice M. Stone, Harold S. Stone, Phil Heidelberger, and John Turek. Multiple reservations
and the Oklahoma update. IEEE Parallel & Distributed Technology, 1(4):58–71, November
1993. DOI: 10.1109/88.260295 6, 149, 150, 158

http://www.cs.rochester.edu/u/scott/papers/2007_TR915.pdf
http://www.cs.rochester.edu/u/scott/papers/2007_TR915.pdf
http://doi.acm.org/10.1145/1281100.1281161
http://dx.doi.org/10.1109/CGO.2009.30
http://dx.doi.org/10.1145/1378533.1378583
http://dx.doi.org/10.1145/1248377.1248414
http://dx.doi.org/10.1109/ICPP.2008.55
http://dx.doi.org/10.1109/88.260295

240 BIBLIOGRAPHY

[310] P. Sweazey and A. J. Smith. A class of compatible cache consistency protocols and their
support by the IEEE Futurebus. In ISCA ’86: Proc. 13th annual international symposium on
Computer architecture, pages 414–423, 1986. 151

[311] Michael Swift, Haris Volos, Neelam Goyal, Luke Yen, Mark Hill, and David Wood. OS
support for virtualizing hardware transactional memory. In TRANSACT ’08: 3rd Workshop on
Transactional Computing, February 2008. 187

[312] Fuad Tabba, Andrew W. Hay, and James R. Goodman. Transactional value prediction. In
TRANSACT ’09: 4th Workshop on Transactional Computing, February 2009. 55

[313] Fuad Tabba, Mark Moir, James R. Goodman, Andrew Hay, and Cong Wang. NZTM:
Nonblocking zero-indirection transactional memory. In SPAA ’09: Proc. 21st Symposium on
Parallelism in Algorithms and Architectures, August 2009. 47, 102, 134, 135

[314] Fuad Tabba, Cong Wang, James R. Goodman, and Mark Moir. NZTM: Nonblocking,
zero-indirection transactional memory. In TRANSACT ’07: 2nd Workshop on Transactional
Computing, August 2007. 47, 102, 134, 135

[315] Serdar Tasiran. A compositional method for verifying software transactional memory imple-
mentations. Technical Report MSR-TR-2008-56, Microsoft Research, April 2008. 145

[316] Rubén Titos, Manuel E. Acacio, and José M. García. Directory-based conflict detection in
hardware transactional memory. In HiPC ’08: Proc. 15th International Conference on High Per-
formance Computing, December 2008. Springer-Verlag Lecture Notes in Computer Science
volume 5374. DOI: 10.1007/978-3-540-89894-8_47 164

[317] Rubén Titos, Manuel E. Acacio, and Jose M. Garcia. Speculation-based conflict resolution in
hardware transactional memory. In IPDPS ’09: Proc. 23rd International Parallel and Distributed
Processing Symposium, May 2009. 56

[318] Sasa Tomic, Cristian Perfumo, Chinmay Kulkarni, Adria Armejach, Adrián Cristal, Osman
Unsal,Tim Harris, and Mateo Valero. EazyHTM: eager-lazy hardware transactional memory.
In MICRO ’09: Proc. 2009 42nd IEEE/ACM International Symposium on Microarchitecture,
December 2009. DOI: 10.1145/1669112.1669132 50, 184

[319] Takayuki Usui,Yannis Smaragdakis, and Reimer Behrends. Adaptive locks: Combining trans-
actions and locks for efficient concurrency. In PACT ’09: Proc. 18th International Conference
on Parallel Architectures and Compilation Techniques, September 2009. 98

[320] Jan Vitek, Suresh Jagannathan, Adam Welc, and Antony L. Hosking. A semantic framework
for designer transactions. In ESOP ’04: Proc. European Symposium on Programming, volume
2986 of Lecture Notes in Computer Science, pages 249–263, 2004. DOI: 10.1007/b96702 44

http://dx.doi.org/10.1007/978-3-540-89894-8_47
http://dx.doi.org/10.1145/1669112.1669132
http://dx.doi.org/10.1007/b96702

BIBLIOGRAPHY 241

[321] Haris Volos, Neelam Goyal, and Michael Swift. Pathological interaction of locks with trans-
actional memory. In TRANSACT ’08: 3rd Workshop on Transactional Computing, February
2008. 84, 203

[322] Haris Volos, Andres Jaan Tack, Neelam Goyal, Michael M. Swift, and Adam Welc. xCalls:
safe I/O in memory transactions. In EuroSys ’09: Proc. 4th ACM European Conference on
Computer Systems, pages 247–260, April 2009. DOI: 10.1145/1519065.1519093 81, 88

[323] Haris Volos, Adam Welc, Ali-Reza Adl-Tabatabai, Tatiana Shpeisman, Xinmin Tian, and
Ravi Narayanaswamy. NePaLTM: Design and implementation of nested parallelism for
transactional memory systems. In ECOOP ’09: Proc. 23rd European Conference on Object-
Oriented Programming, June 2009. Springer-Verlag Lecture Notes in Computer Science
volume 5653. DOI: 10.1007/978-3-642-03013-0_7 44

[324] Christoph von Praun, Luis Ceze, and Calin Caşcaval. Implicit parallelism with ordered
transactions. In PPoPP ’07: Proc. 12th ACM SIGPLAN symposium on Principles and Practice of
Parallel Programming, pages 79–89, March 2007. DOI: 10.1145/1229428.1229443 98, 179

[325] M. M. Waliullah and Per Stenström. Starvation-free transactional memory system protocols.
In Proc. 13th Euro-Par Conference: European Conference on Parallel and Distributed Computing,
pages 280–291, August 2007. 182

[326] M. M. Waliullah and Per Stenström. Intermediate checkpointing with conflicting access
prediction in transactional memory systems. In IPDPS ’08: Proc. 22nd International Parallel
and Distributed Processing Symposium, April 2008. DOI: 10.1109/IPDPS.2008.4536249 57

[327] Cheng Wang, Wei-Yu Chen, Youfeng Wu, Bratin Saha, and Ali-Reza Adl-Tabatabai. Code
generation and optimization for transactional memory constructs in an unmanaged language.
In CGO ’07: Proc. International Symposium on Code Generation and Optimization, pages 34–48,
March 2007. DOI: 10.1109/CGO.2007.4 62, 68, 105, 120, 121, 137

[328] Cheng Wang, Victor Ying, and Youfeng Wu. Supporting legacy binary code in a soft-
ware transaction compiler with dynamic binary translation and optimization. In CC ’08:
Proc. International Conference on Compiler Construction, pages 291–306, March 2008.
DOI: 10.1007/978-3-540-78791-4_20 68

[329] William E. Weihl. Data-dependent concurrency control and recovery (extended abstract). In
PODC ’83: Proc. second Annual ACM symposium on Principles of distributed computing, pages
63–75, 1983. DOI: 10.1145/800221.806710 58

[330] Adam Welc, Antony L. Hosking, and Suresh Jagannathan. Transparently reconciling trans-
actions with locking for Java synchronization. In ECOOP ’06: Proc. European Conference on
Object-Oriented Programming, pages 148–173, July 2006. DOI: 10.1007/11785477 96, 97

http://dx.doi.org/10.1145/1519065.1519093
http://dx.doi.org/10.1007/978-3-642-03013-0_7
http://dx.doi.org/10.1145/1229428.1229443
http://dx.doi.org/10.1109/IPDPS.2008.4536249
http://dx.doi.org/10.1109/CGO.2007.4
http://dx.doi.org/10.1007/978-3-540-78791-4_20
http://dx.doi.org/10.1145/800221.806710
http://dx.doi.org/10.1007/11785477

242 BIBLIOGRAPHY

[331] Adam Welc, Suresh Jagannathan, and Antony Hosking. Safe futures for Java. In OOPSLA ’05:
Proc. 20th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 439–453, October 2005. DOI: 10.1145/1094811.1094845 98

[332] Adam Welc,Suresh Jagannathan,and Antony L.Hosking.Transactional monitors for concur-
rent objects. In ECOOP ’04: Proc. European Conference on Object-Oriented Programming, vol-
ume 3086 of Lecture Notes in Computer Science, pages 519–542, 2004. DOI: 10.1007/b98195
50

[333] Adam Welc, Bratin Saha, and Ali-Reza Adl-Tabatabai. Irrevocable transactions and their
applications. In SPAA ’08: Proc. 20th Annual Symposium on Parallelism in Algorithms and
Architectures, pages 285–296, June 2008. DOI: 10.1145/1378533.1378584 21, 81, 87, 141,
142

[334] I. W. Williams and M. I. Wolczko. An object-based memory architecture. In Proc. 4th
International Workshop on Persistent Object Systems, pages 114–130. Morgan Kaufmann, 1990.
150

[335] Greg Wright, Matthew L. Seidl, and Mario Wolczko. An object-aware memory architecture.
Science of Computer Programming, 62(2):145–163, 2006. DOI: 10.1016/j.scico.2006.02.007
150

[336] Peng Wu, Maged M. Michael, Christoph von Praun, Takuya Nakaike, Rajesh Bordawekar,
Harold W. Cain, Calin Cascaval, Siddhartha Chatterjee, Stefanie Chiras, Rui Hou, Mark F.
Mergen, Xiaowei Shen, Michael F. Spear, Huayong Wang, and Kun Wang. Compiler and
runtime techniques for software transactional memory optimization. Concurrency and Com-
putation: Practice and Experience, 21(1):7–23, 2009. DOI: 10.1002/cpe.1336 62, 114

[337] Luke Yen, Jayaram Bobba, Michael M. Marty, Kevin E. Moore, Haris Volos, Mark D. Hill,
Michael M. Swift, and David A. Wood. LogTM-SE: Decoupling hardware transactional
memory from caches. In HPCA ’07: Proc. 13th International Symposium on High-Performance
Computer Architecture, February 2007. DOI: 10.1109/HPCA.2007.346204 14, 177, 178, 185,
186

[338] Luke Yen, Stark C. Draper, and Mark D. Hill. Notary: Hardware techniques to enhance
signatures. In MICRO ’08: Proc. 2008 41st IEEE/ACM International Symposium on Microar-
chitecture, pages 234–245, 2008. DOI: 10.1109/MICRO.2008.4771794 178

[339] V.Ying,C.Wang,Y.Wu,and X. Jiang. Dynamic binary translation and optimization of legacy
library code in a STM compilation environment. In Proc. Workshop on Binary Instrumentation
and Applications, October 2006. 68

http://dx.doi.org/10.1145/1094811.1094845
http://dx.doi.org/10.1007/b98195
http://dx.doi.org/10.1145/1378533.1378584
http://dx.doi.org/10.1016/j.scico.2006.02.007
http://dx.doi.org/10.1002/cpe.1336
http://doi.ieeecomputersociety.org/10.1109/HPCA.2007.346204
http://dx.doi.org/10.1109/MICRO.2008.4771794

BIBLIOGRAPHY 243

[340] Richard M. Yoo and Hsien-Hsin S. Lee. Adaptive transaction scheduling for transactional
memory systems. In SPAA ’08: Proc. 20th Annual Symposium on Parallelism in Algorithms and
Architectures, pages 169–178, June 2008. DOI: 10.1145/1378533.1378564 53

[341] Richard M. Yoo, Yang Ni, Adam Welc, Bratin Saha, Ali-Reza Adl-Tabatabai, and Hsien-
Hsin S. Lee. Kicking the tires of software transactional memory: why the going gets tough.
In SPAA ’08: Proc. 20th Annual Symposium on Parallelism in Algorithms and Architectures, pages
265–274, June 2008. DOI: 10.1145/1378533.1378582 139

[342] Rui Zhang, Zoran Budimlić, and William N. Scherer III. Commit phase in timestamp-based
STM. In SPAA ’08: Proc. 20th Annual Symposium on Parallelism in Algorithms and Architectures,
pages 326–335, June 2008. DOI: 10.1145/1378533.1378589 121, 122

[343] Lukasz Ziarek and Suresh Jagannathan. Memoizing multi-threaded transactions. In
DAMP ’08: Proc. Workshop on Declarative Aspects of Multicore Programming, 2008. 92

[344] Lukasz Ziarek, K. C. Sivaramakrishnan, and Suresh Jagannathan. Partial memo-
ization of concurrency and communication. In ICFP ’09: Proc. 14th ACM SIG-
PLAN International Conference on Functional Programming, pages 161–172, August 2009.
DOI: 10.1145/1596550.1596575 92

[345] Lukasz Ziarek, Adam Welc, Ali-Reza Adl-Tabatabai, Vijay Menon, Tatiana Shpeisman,
and Suresh Jagannathan. A uniform transactional execution environment for Java. In
ECOOP ’08: Proc. 22nd European Conference on Object-Oriented Programming, pages 129–
154, July 2008. Springer-Verlag Lecture Notes in Computer Science volume 5142.
DOI: 10.1007/978-3-540-70592-5_7 62, 96, 97

[346] Craig Zilles and Lee Baugh. Extending hardware transactional memory to support non-
busy waiting and nontransactional actions. In TRANSACT ’06: 1st Workshop on Languages,
Compilers, and Hardware Support for Transactional Computing, June 2006. 43, 81, 88, 202

[347] Craig Zilles and David Flint. Challenges to providing performance isolation in transactional
memories. In WDDD ’05: Proc. 4th Workshop on Duplicating, Deconstructing, and Debunking,
pages 48–55, June 2005. 51, 164

[348] Craig Zilles and Ravi Rajwar. Implications of false conflict rate trends for robust software
transactional memory. In IISWC ’07: Proc. 2007 IEEE INTL Symposium on Workload Char-
acterization, September 2007. DOI: 10.1109/IISWC.2007.4362177 105, 150

[349] Ferad Zyulkyarov, Adrián Cristal, Sanja Cvijic, Eduard Ayguadé, Mateo Valero, Osman S.
Unsal, and Tim Harris. WormBench: a configurable workload for evaluating transactional
memory systems. In MEDEA ’08: Proc. 9th Workshop on Memory Performance, pages 61–68,
October 2008. DOI: 10.1145/1509084.1509093 91

http://dx.doi.org/10.1145/1378533.1378564
http://dx.doi.org/10.1145/1378533.1378582
http://dx.doi.org/10.1145/1378533.1378589
http://dx.doi.org/10.1145/1596550.1596575
http://dx.doi.org/10.1007/978-3-540-70592-5_7
http://dx.doi.org/10.1109/IISWC.2007.4362177
http://dx.doi.org/10.1145/1509084.1509093

244 BIBLIOGRAPHY

[350] Ferad Zyulkyarov, Vladimir Gajinov, Osman S. Unsal, Adrián Cristal, Eduard Ayguadé,
Tim Harris, and Mateo Valero. Atomic Quake: using transactional memory in an in-
teractive multiplayer game server. In PPoPP ’09: Proc. 14th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pages 25–34, February 2009.
DOI: 10.1145/1504176.1504183 12, 92

[351] Ferad Zyulkyarov,Tim Harris,Osman S.Unsal,Adrián Cristal, and Mateo Valero. Debugging
programs that use atomic blocks and transactional memory. In PPoPP ’10: Proc. 15th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 57–66, January
2010. DOI: 10.1145/1693453.1693463 89, 90

http://dx.doi.org/10.1145/1504176.1504183
http://dx.doi.org/10.1145/1693453.1693463

246

Authors’ Biographies

TIM HARRIS
Tim Harris is a Senior Researcher at MSR Cambridge where he works on abstractions for using
multi-core computers. He has worked on concurrent algorithms and transactional memory for over
ten years, most recently, focusing on the implementation of STM for multi-core computers and the
design of programming language features based on it. Harris is currently working on the Barrelfish
operating system and on architecture support for programming language runtime systems. Harris
has a BA and PhD in computer science from Cambridge University Computer Laboratory. He was
on the faculty at the Computer Laboratory from 2000-2004 where he led the department’s research
on concurrent data structures and contributed to the Xen virtual machine monitor project. He joined
Microsoft Research in 2004.

JAMES LARUS
James Larus is Director of Research and Strategy of the Extreme Computing Group in Microsoft
Research. Larus has been an active contributor to the programming languages, compiler, and com-
puter architecture communities. He has published many papers and served on numerous program
committees and NSF and NRC panels. Larus became an ACM Fellow in 2006. Larus joined
Microsoft Research as a Senior Researcher in 1998 to start and, for five years, led the Software Pro-
ductivity Tools (SPT) group, which developed and applied a variety of innovative techniques in static
program analysis and constructed tools that found defects (bugs) in software. This group’s research
has both had considerable impact on the research community, as well as being shipped in Microsoft
products such as the Static Driver Verifier and FX/Cop, and other, widely-used internal software
development tools. Larus then became the Research Area Manager for programming languages and
tools and started the Singularity research project, which demonstrated that modern programming
languages and software engineering techniques could fundamentally improve software architectures.
Before joining Microsoft, Larus was an Assistant and Associate Professor of Computer Science at
the University of Wisconsin-Madison, where he published approximately 60 research papers and
co-led the Wisconsin Wind Tunnel (WWT) research project with Professors Mark Hill and David
Wood. WWT was a DARPA and NSF-funded project investigated new approaches to simulating,
building, and programming parallel shared-memory computers. Larus’s research spanned a number
of areas: including new and efficient techniques for measuring and recording executing programs’
behavior, tools for analyzing and manipulating compiled and linked programs, programming lan-
guages for parallel computing, tools for verifying program correctness, and techniques for compiler

AUTHORS’ BIOGRAPHIES 247

analysis and optimization. Larus received his MS and PhD in Computer Science from the Univer-
sity of California, Berkeley in 1989, and an AB in Applied Mathematics from Harvard in 1980. At
Berkeley, Larus developed one of the first systems to analyze Lisp programs and determine how to
best execute them on a parallel computer.

RAVI RAJWAR
Ravi Rajwar is an architect in Microprocessor and Graphics Development as part of the Intel
Architecture Group at Intel Corporation. His research interests include theoretical and practical
aspects of computer architecture. In the past, he has investigated resource-efficient microprocessors
and architectural support for improving programmability of parallel software. Rajwar received a
PhD from the University of Wisconsin-Madison in 2002, a MS from the University of Wisconsin-
Madison in 1998, and a BE from the University of Roorkee, India, in 1994, all in Computer Science.

	Preface
	Acknowledgments
	Introduction
	Motivation
	Difficulty of Parallel Programming
	Parallel Programming Abstractions

	Database Systems and Transactions
	What Is a Transaction?

	Transactional Memory
	Basic Transactional Memory
	Building on Basic Transactions
	Software Transactional Memory
	Hardware Transactional Memory
	What is Transactional Memory Good For?
	Differences Between Database Transactions and TM
	Current Transactional Memory Systems and Simulators

	Basic Transactions
	TM Design Choices
	Concurrency Control
	Version Management
	Conflict Detection

	Semantics of Transactions
	Correctness Criteria for Database Transactions
	Consistency During Transactions
	Problems with Mixed-Mode Accesses
	Handling Mixed-Mode Accesses: Lock-Based Models
	Handling Mixed-Mode Accesses: TSC
	Nesting

	Performance, Progress and Pathologies
	Progress Guarantees
	Conflict Detection and Performance
	Contention Management and Scheduling
	Reducing Conflicts Between Transactions
	Higher-Level Conflict Detection

	Summary

	Building on Basic Transactions
	Basic Atomic Blocks
	Semantics of Basic Atomic Blocks.
	Building Basic Atomic Blocks Over TM
	Providing Strong Guarantees Over Weak TM Systems

	Extending Basic Atomic Blocks
	Condition Synchronization
	Exceptions and Failure Atomicity
	Integrating Non-TM Resources
	Binary Libraries
	Storage Allocation and GC
	Existing Synchronization Primitives
	System Calls, IO, and External Transactions

	Programming with TM
	Debugging and Profiling
	TM Workloads
	User Studies

	Alternative Models
	Transactions Everywhere
	Lock-Based Models over TM
	Speculation over TM

	Summary

	Software Transactional Memory
	Managing STM Logs and Metadata
	Maintaining Metadata
	Undo-Logs and Redo-Logs
	Read-Sets and Write-Sets

	Lock-Based STM Systems with Local Version Numbers
	Two-Phase Locking with Versioned Locks
	Optimizing STM Usage
	Providing Opacity
	Discussion

	Lock-Based STM Systems with a Global Clock
	Providing Opacity Using a Global Clock
	Timebase Extension
	Clock Contention vs False Conflict Tradeoffs
	Alternative Global Clock Algorithms

	Lock-Based STM Systems with Global Metadata
	Bloom Filter Conflict Detection
	Value-Based Validation

	Nonblocking STM Systems
	Per-object Indirection
	Nonblocking Object-Based STM Design Space
	Nonblocking STM Systems Without Indirection

	Additional Implementation Techniques
	Supporting Privatization Safety and Publication Safety
	Condition Synchronization
	Irrevocability

	Distributed STM Systems
	STM for Clusters
	STM-Based Middleware
	STM for PGAS Languages

	STM Testing and Correctness
	Summary

	Hardware-Supported Transactional Memory
	Basic Mechanisms for Conventional HTMs
	Identifying Transactional Locations
	Tracking Read-Sets and Managing Write-Sets
	Detecting Data Conflicts
	Resolving Data Conflicts
	Managing Architectural Register State
	Committing and Aborting HTM Transactions

	Conventional HTM Proposals
	Explicitly Transactional HTMs
	Implicitly Transactional HTM Systems
	Hybrid TMs: Integrating HTMs and STMs
	Software and Design Considerations

	Alternative Mechanisms for HTMs
	Software-Resident Logs for Version Management
	Signatures for Access Tracking
	Conflict Detection via Update Broadcasts
	Deferring Conflict Detection

	Unbounded HTMs
	Combining Signatures and Software-Resident Logs
	Using Persistent Meta-Data
	Using Page Table Extensions

	Exposing Hardware Mechanisms to STMs
	Accelerating Short Transactions and Filtering Redundant Reads
	Software Controlled Cache Coherence
	Exposed Signatures to STMs
	Exposing Metadata to STMs

	Extending HTM: Nesting, IO, and Synchronization
	Summary

	Conclusions
	Bibliography
	Authors' Biographies

