
Basic Transactions

Dave Clarke
dave.clarke@it.uu.se

LACPP (UU) Basic Transactions 1 / 45

dave.clarke@it.uu.se


Basic Transactions

Today, we will look at transactions from the perspective of a low-level
programmer (or, equivalently, from the perspective of a compiler that is
using transactional memory to implement features like atomicity in a
high-level programming language).

This is not how you will use transactions in a high-level language—but it
will help you understand what’s going on behind the scenes.

LACPP (UU) Basic Transactions 2 / 45



Transactional Memory: A Simple Interface

Transaction management:

void StartTx ();

bool CommitTx ();

void AbortTx ();

Data access:

T ReadTx(T *addr);

void WriteTx(T *addr , T v);

LACPP (UU) Basic Transactions 3 / 45



Basic Transactional Memory: Example

void PushLeft(DQueue *q, int val) {

QNode *qn = malloc(sizeof(QNode ));

qn->val = val;

do {

StartTx ();

QNode *leftSentinel = ReadTx (&(q->left ));

QNode *oldLeftNode = ReadTx (&( leftSentinel ->right ));

WriteTx (&(qn ->left), leftSentinel );

WriteTx (&(qn ->right), oldLeftNode );

WriteTx (&( leftSentinel ->right), qn);

WriteTx (&( oldLeftNode ->left), qn);

} while (! CommitTx ());

}

LACPP (UU) Basic Transactions 4 / 45



Basic Transactional Memory: Remarks

Typical structure:

do {

StartTx ();

// update from one consistent state to another

// ...

} while (! CommitTx ());

It is not necessary to explicitly acquire and release locks—this is managed
by the TM implementation.

(Try writing a lock-based implementation of PushLeft that doesn’t block
concurrent PushRight operations. It’s pretty hard!)

LACPP (UU) Basic Transactions 5 / 45



Today

1 Design choices for transactional memory

2 Semantics of transactions

3 Performance and progress

LACPP (UU) Basic Transactions 6 / 45



Design choices for transactional memory

LACPP (UU) Basic Transactions 7 / 45



Concurrency Control: Pessimistic vs. Optimistic

The TM implementation must detect conflicts, and resolve them by
delaying or aborting transactions.

Pessimistic concurrency control: conflicts are detected when they
occur, and resolved immediately—in effect, transactions have
exclusive ownership of data (cf. locking)

Optimistic concurrency control: conflicts are detected and resolved
some time before a transaction commits—allowing conflicting
transactions to continue to run in parallel for some time

LACPP (UU) Basic Transactions 8 / 45



Concurrency Control: Deadlock vs. Lifelock

Pessimistic concurrency control requires care in the TM implementation to
avoid deadlocks.

Optimistic concurrency control requires care in the TM implementation to
avoid livelocks.

LACPP (UU) Basic Transactions 9 / 45



Concurrency Control: Performance

Pessimistic concurrency control is typically superior when conflicts are
frequent (once a transaction holds its locks, it can run to completion).

If conflicts are rare, optimistic concurrency control avoids the cost of
locking and may increase concurrency.

Hybrid approaches are commonly used.

LACPP (UU) Basic Transactions 10 / 45



Version Management: Eager vs. Lazy

The TM implementation must execute the (tentative) operations
performed by a transaction.

Eager versioning (aka direct update): updates are directly written to
memory, maintaining information about overwritten values in an undo
log (for when the transaction aborts)

Lazy versioning (aka deferred update): updates are collected in a
private buffer (redo log) and written to memory when the transaction
commits

Eager versioning requires pessimistic concurrency control (for write operations) to

prevent data races.

LACPP (UU) Basic Transactions 11 / 45



Conflict Detection: Granularity

TM implementations often do not perform conflict detection at the level
of individual memory locations.

Instead, conflict detection may be performed at a granularity of, e.g., words
or cache lines (in hardware TM) or complete objects (in software TM).

A false conflict occurs when the TM implementation treats two
transactions as conflicting even though they have accessed distinct
memory locations.

LACPP (UU) Basic Transactions 12 / 45



False Conflicts: Example

This code might trigger a false conflict in some (hardware or software) TM
implementations:

// shared data

struct {

int x;

int y;

} s;

// Thread 1 // Thread 2

do { do {

StartTx (); StartTx ();

WriteTx (&s.x, 1); WriteTx (&s.y, 1);

} while (! CommitTx ()); } while (! CommitTx ());

LACPP (UU) Basic Transactions 13 / 45



Conflict Detection: Eager vs. Lazy

Optimistic concurrency control permits a wide spectrum of conflict
detection techniques.

Eager conflict detection: conflicts are identified while transactions are
running, i.e., as soon as they attempt to access data

Conflicts can be identified by a special validation step, which may
occur at any time (or even multiple times) during a transaction’s
execution

Lazy conflict detection: conflicts are identified when transactions
attempt to commit

LACPP (UU) Basic Transactions 14 / 45



Conflict Detection: Tentative vs. Committed

TM implementations may consider different strategies to determine
whether a conflict has occurred.

Tentative conflict detection identifies conflicts between running
transactions.

Committed conflict detection only considers conflicts between active
transactions and those that have already committed.

Usually, conflict detection is eager+tentative or lazy+committed.

Hybrid approaches are also commonly used.

LACPP (UU) Basic Transactions 15 / 45



Semantics of transactions

LACPP (UU) Basic Transactions 16 / 45



Semantics of Transactions: Caveat

It is important that programming abstractions have clean, simple
semantics.

Unfortunately, there is no universally agreed semantics of transactions.

Different choices in the implementation of TM systems lead to slightly
different semantics.

LACPP (UU) Basic Transactions 17 / 45



Two Levels of Concurrency

Concurrency between individual TM operations

Concurrency between transactions

LACPP (UU) Basic Transactions 18 / 45



Individual TM Operations: Linearizability

To abstract over the low-level details of the TM’s concurrency control, we
require that individual TM operations (e.g., StartTx, CommitTx,
AbortTx, ReadTx, WriteTx) are linearizable.

Linearizability requires that each individual operation appears to take
place atomically at some point between its invocation and its return.

LACPP (UU) Basic Transactions 19 / 45



Linearizability: Example

Thread 1

Thread 2

Thread 3

X

time

Definitely before X Could happen before or after X Definitely after X

LACPP (UU) Basic Transactions 20 / 45



Linearizability: Example

Thread 1

Thread 2

Thread 3

X

time

Definitely before X Could happen before or after X Definitely after X

LACPP (UU) Basic Transactions 20 / 45



Sequential Semantics of Transactions

We still need to consider what different sequential orderings of TM
operations mean (i.e., which behaviors we might observe).

This is known as the sequential semantics of transactions.

There are many possible choices with different trade-offs between
efficiency and programmability (i.e., guarantees provided).

LACPP (UU) Basic Transactions 21 / 45



Serializability

Serializability requires that the result of a concurrent execution is identical
to the result of some sequential execution of the transactions.

Serializability ensures isolation (cf. ACID). However, it does not impose
any real-time constraints on the sequential execution.

LACPP (UU) Basic Transactions 22 / 45



Serializability: Example

Thread 1

Thread 2

Thread 3

A

time

Definitely before A Could happen before or after A Definitely after A

LACPP (UU) Basic Transactions 23 / 45



Serializability: Example

9.8.7.1. 2. 3. 6.5.4.

Thread 1

Thread 2

Thread 3

A

Definitely before A Could happen before or after A Definitely after A

LACPP (UU) Basic Transactions 23 / 45



Strict Serializability

Strict serializability additionally requires that if transaction A completes
before B starts, then A must occur before B in the sequential execution.

Strict serializability imposes real-time constraints. However, it does not
consider non-transactional accesses.

LACPP (UU) Basic Transactions 24 / 45



Strict Serializability: Example

Thread 1

Thread 2

Thread 3

A

time

Definitely before A Could happen before or after A Definitely after A

LACPP (UU) Basic Transactions 25 / 45



Strict Serializability: Example

Thread 1

Thread 2

Thread 3

A

9.8.7.1. 2. 3. 6.5.4.

Definitely before A Could happen before or after A Definitely after A

LACPP (UU) Basic Transactions 25 / 45



Linearizability

Linearizability requires that each transaction appears to take place
atomically at some point between the beginning of its StartTx and the
completion of its final CommitTx call.

Linearizability covers non-transactional accesses. However, it is not
immediately clear how to specify the behavior of transactions that abort.

LACPP (UU) Basic Transactions 26 / 45



Consistency During Transactions

Strict serializability and linearizability specify how committed transactions
behave. But what happens while a transaction runs?

For instance, consider

// Thread 1 // Thread 2

do {

StartTx ();

int u = ReadTx (&x);

do {

StartTx ();

WriteTx (&x, 42);

WriteTx (&y, 42);

} while (! CommitTx ());

int v = ReadTx (&y);

while (u!=v) {};

} while (! CommitTx ());

LACPP (UU) Basic Transactions 27 / 45



Zombie Transactions and Incremental Validation

Transactions that operate on inconsistent data, but where the conflict has
not yet been detected by the TM implementation, are known as zombie
transactions or doomed transactions.

A “manual” solution is to require that the programmer adds explicit
validation operations to transactions where necessary (e.g., after a series
of ReadTx operations) to ensure that zombie transactions are aborted.

LACPP (UU) Basic Transactions 28 / 45



Opacity

Alternatively, the TM implementation can provide stronger guarantees
about the consistency of values read by a transaction.

Opacity is an extension of strict serializability where running and aborted
transactions must also appear in the serial order (albeit without their
effects being exposed to other threads).

With opacity a transaction is always guaranteed to operate on consistent
data, by ensuring the transaction’s read-set remains consistent.

LACPP (UU) Basic Transactions 29 / 45



Mixed-Mode Access

A semantics for TM must consider the interaction between transactional
and non-transactional accesses to the same data.

Weak isolation guarantees transactional semantics only among
transactions.

Strong isolation also guarantees transactional semantics between
transactions and non-transactional code.

Strong isolation is much easier to program for, but difficult to provide in software

TM implementations.

LACPP (UU) Basic Transactions 30 / 45



Problems With Weak Isolation

Non-repeatable read: a transaction reads the same variable twice and
observes an intermediate update by a non-transactional write

Intermediate lost update: a non-transactional write interposes in a
read-modify-write series executed by a transaction and is lost

Intermediate dirty read: a non-transactional read observes an
intermediate (non-committed) value written by a transaction

Granular lost update: a non-transactional write is lost due to a
transactional update to an adjacent memory location

LACPP (UU) Basic Transactions 31 / 45



Problems With Weak Isolation and Zombies

// Thread 1 // Thread 2

do {

StartTx ();

int u = ReadTx (&x);

do {

StartTx ();

WriteTx (&x, 42);

WriteTx (&y, 42);

} while (! CommitTx ());

int v = ReadTx (&y);

if (u != v) {

WriteTx (&z, 10);

}

} while (! CommitTx ());

A concurrent non-transactional read from z might observe the value 10.

LACPP (UU) Basic Transactions 32 / 45



Problems With Weak Isolation (cont.)

// Thread 1 // Thread 2

do {

StartTx ();

if (ReadTx (& x_priv) == 0)

WriteTx (&x, 20);

do {

StartTx ();

WriteTx (&x_priv , 1);

} while (! CommitTx ());

x = 10;

} while (! CommitTx ());

The non-transactional update of x to 10 may be lost when the transaction
in Thread 2 is rolled back.

LACPP (UU) Basic Transactions 33 / 45



Problems With Weak Isolation (cont.)

// Thread 1 // Thread 2

do {

StartTx ();

int tmp = ReadTx (&x);

x = 42;

do {

StartTx ();

WriteTx (&x_pub , 1);

} while (! CommitTx ());

if (ReadTx (&x_pub) == 1) {

// use tmp

}

} while (! CommitTx ());

Thread 2 may miss the non-transactional update of x to 42.

LACPP (UU) Basic Transactions 34 / 45



TM Semantics and Memory Models

// Thread 1 // Thread 2

do { int r = ready;

StartTx (); int d = data;

WriteTx (&data , 42); if (r == 1) {

WriteTx (&ready , 1); // use d

} while (! CommitTx ()); }

Even with strong isolation, Thread 2 may observe r==1 but d!=42. This
depends on the underlying memory model of the programming language.

LACPP (UU) Basic Transactions 35 / 45



A Lock-based Semantics for TM

A simple model for defining the semantics of transactions is single-lock
atomicity (SLA). Under this model, programs execute as if all transactions
acquire a single, program-wide mutual exclusion lock.

Unfortunately, SLA is difficult to extend beyond basic transactions.

Moreover, SLA may not agree with our intuition about transactions:

// Thread 1 // Thread 2

StartTx (); StartTx ();

while (true) {}; int tmp = ReadTx (&x);

CommitTx (); CommitTx ();

Under SLA, Thread 2 might block forever while Thread 1 holds the lock.

LACPP (UU) Basic Transactions 36 / 45



Transactional Sequential Consistency

Transactional sequential consistency (TSC) is an extension of sequential
consistency to TM.

It requires that all operations appear to happen in some serial order, and
moreover that the operations of a transaction being attempted by one
thread are not interleaved with any operations from other threads.

LACPP (UU) Basic Transactions 37 / 45



Transactional Data-Race Freedom

TSC is a strong consistency model. Practical TM implementations provide
TSC only for race-free programs.

A program is transactional data-race free (TDRF) if it has no (ordinary or
transactional) data races (assuming TSC).

LACPP (UU) Basic Transactions 38 / 45



Nesting

If we allow transactions to be nested, various semantics are possible.

Flattened nesting: aborting the inner transaction causes the outer
transaction to abort; committing has no effect until the outer
transaction commits

Closed nesting: aborting the inner transaction transfers control to the
outer transaction; committing has no effect until the outer
transaction commits

Open nesting: aborting the inner transaction transfers control to the
outer transaction; committing makes changes immediately visible
(even if the outer transaction later aborts)

LACPP (UU) Basic Transactions 39 / 45



Performance and progress

LACPP (UU) Basic Transactions 40 / 45



Performance: Different Areas of Interest

Inherent concurrency: what is the optimal way in which a TM system
could schedule the work (while providing specified semantics, e.g., TSC)?

Actual concurrency: how does the concurrency that is actually achieved
compare to inherent concurrency?

Progress guarantees: are transactions guaranteed to make progress (e.g., is
there some kind of fairness guarantee)?

Sequential overhead: in the absence of contention, how fast is a
transaction when compared to non-transactional code?

LACPP (UU) Basic Transactions 41 / 45



Progress Guarantees

Is this program guaranteed to make progress?

// Thread 1 // Thread 2

do { do {

StartTx (); StartTx ();

WriteTx (&x, 1); int tmp = ReadTx (&x);

} while (! CommitTx ()); while (tmp == 0) {}

} while (! CommitTx ());

The answer depends on the TM implementation.

LACPP (UU) Basic Transactions 42 / 45



Wasted Work vs. Lost Concurrency

// Thread 1 // Thread 2

do { do {

StartTx (); StartTx ();

WriteTx (&x, 1); WriteTx (&x, 1);

// Long computation // Long computation

... ...

if (Prob(p)) { if (Prob(p)) {

AbortTx (); AbortTx ();

} }

} while (! CommitTx ()); } while (! CommitTx ());

If p is high, it is worthwhile to execute both transactions concurrently.
Otherwise, it is best to run only one of the transactions at a time.

LACPP (UU) Basic Transactions 43 / 45



Contention Management

To mitigate poor performance caused by conflicts, TM implementations
employ contention resolution policies.

Such a policy decides which one of the conflicting transactions should be
aborted, and whether any of the transactions involved should be delayed.

There is no single best policy.

LACPP (UU) Basic Transactions 44 / 45



Conclusion

TM implementations face a trade-off between performance and semantic
guarantees.

TM implementations face a trade-off between sequential performance and
concurrency.

Different TM implementations make different choices. Many of the details
remain open research questions.

LACPP (UU) Basic Transactions 45 / 45


	Basic Transactions
	Basic Transactions
	Transactional Memory: A Simple Interface
	Basic Transactional Memory: Example
	Basic Transactional Memory: Remarks
	Today
	Concurrency Control: Pessimistic vs. Optimistic
	Concurrency Control: Deadlock vs. Lifelock
	Concurrency Control: Performance
	Version Management: Eager vs. Lazy
	Conflict Detection: Granularity
	False Conflicts: Example
	Conflict Detection: Eager vs. Lazy
	Conflict Detection: Tentative vs. Committed
	Semantics of Transactions: Caveat
	Two Levels of Concurrency
	Individual TM Operations: Linearizability
	Linearizability: Example
	Sequential Semantics of Transactions
	Serializability
	Serializability: Example
	Strict Serializability
	Strict Serializability: Example
	Linearizability
	Consistency During Transactions
	Zombie Transactions and Incremental Validation
	Opacity
	Mixed-Mode Access
	Problems With Weak Isolation
	Problems With Weak Isolation and Zombies
	Problems With Weak Isolation (cont.)
	Problems With Weak Isolation (cont.)
	TM Semantics and Memory Models
	A Lock-based Semantics for TM
	Transactional Sequential Consistency
	Transactional Data-Race Freedom
	Nesting
	Performance: Different Areas of Interest
	Progress Guarantees
	Wasted Work vs. Lost Concurrency
	Contention Management
	Conclusion


