
Transactional Memory

Dave Clarke
dave.clarke@it.uu.se

LACPP (UU) Transactional Memory 1 / 33

dave.clarke@it.uu.se

Suggested Reading

T. Harris, J. Larus, R. Rajwar: Transactional Memory (2nd edition).
Synthesis Lectures on Computer Architecture. Morgan & Claypool, 2010.
263 pages.

Especially Chapters 1-3.

LACPP (UU) Transactional Memory 2 / 33

http://www.morganclaypool.com/doi/abs/10.2200/S00272ED1V01Y201006CAC011

Abstractions for Concurrent/Parallel Programming

Multi-core hardware is incredibly complex. What abstractions do we use to
write concurrent/parallel programs?

Two common approaches are:

Data parallelism

Task-based parallelism

LACPP (UU) Transactional Memory 3 / 33

Data Parallelism

Data parallelism: the same operation is performed on different pieces of
data (cf. SIMD).

+ Simple programming model

+ Convenient for certain numeric computations (e.g., matrix operations)

+ Parallelization (e.g., synchronization and load-balancing) can be left
to the compiler and run-time system

– Not a universal programming model: only applicable to certain data
structures and programming problems

LACPP (UU) Transactional Memory 4 / 33

Task-based Parallelism

Task-based parallelism: operations are performed on separate threads that
are coordinated with explicit synchronization (fork/join, locks, etc.)

This model places no restrictions on the code that each thread executes,
when and how threads communicate, etc.

+ Universal programming model: capable of expressing all forms of
parallel computation

– Low level of abstraction, close to hardware

– Very difficult to write correct programs

LACPP (UU) Transactional Memory 5 / 33

Locks Are Bad

We have seen some of the difficulties with locks:

Taking too few locks
. . . can lead to race conditions and data races.

Taking too many locks
. . . can inhibit concurrency or lead to deadlocks.

Taking the wrong locks
. . . because the connection between data and lock is only implicit.

Taking locks in the wrong order
. . . can lead to deadlocks, and is difficult to avoid.

Error recovery
. . . is tedious: inconsistent states must be avoided, locks released.

LACPP (UU) Transactional Memory 6 / 33

What is Abstraction?

LACPP (UU) Transactional Memory 7 / 33

Abstraction (in Computer Science)

Abstraction is a way to introduce new concepts that are meaningful to
humans.

Abstraction tries to reduce and factor out details so that, e.g., the
programmer can focus on a few concepts at a time.

Examples: files, data structures, procedure calls, . . .

(We think of files as something real, but files don’t really exist—they are a bunch of bits

on a hard drive. Come to think of it, bits don’t really exist either—they are magnetic

fluctuations on the surface of disk platters.)

LACPP (UU) Transactional Memory 8 / 33

What is Composition?

LACPP (UU) Transactional Memory 9 / 33

Composition (in Computer Science)

Composition is the ability to put entities together to build a larger, more
complex entity.

Examples: logic circuits, functions, objects, . . .

(These can be composed into more complex circuits/functions/objects, respectively.)

Abstraction allows us to think about the composition as a single entity,
rather than about its constituent parts.

LACPP (UU) Transactional Memory 10 / 33

Locks Don’t Compose

Consider a hash table that provides operations Insert and Remove.
Suppose that these functions use locks to achieve thread-safety.

hash
functionkeys

John Smith

Lisa Smith

Sandra Dee

buckets

00

01 521-8976

02 521-1234

03

: :

13

14 521-9655

15

How would you implement a function Move that moves an item from one
hash table to another? The intermediate state, in which neither table
contains the item, must not be visible to concurrent threads.

LACPP (UU) Transactional Memory 11 / 33

http://commons.wikimedia.org/wiki/File:Hash_table_3_1_1_0_1_0_0_SP.svg

Locks Don’t Compose (cont.)

Move cannot be implemented (in a thread-safe manner) by simply
composing Insert and Remove.

Instead, new methods such as LockTable and UnlockTable are needed.

Note that these break the hash table abstraction by exposing an
implementation detail.

Moreover, avoiding deadlock is tricky.

LACPP (UU) Transactional Memory 12 / 33

Locks Don’t Compose: Another Example

Suppose a library function WaitAny takes a list of input queues and blocks
until (at least) one of the queues is non-empty.

A function f1 uses WaitAny to wait for one of the queues A and B.

A function f2 uses WaitAny to wait for one of the queues C and D.

How would you write a function that waits on any of the four queues, and
performs the appropriate action in f1 or f2, depending on which queue
becomes non-empty?

LACPP (UU) Transactional Memory 13 / 33

Locks Don’t Compose: Another Example (cont.)

Simply applying WaitAny to f1 and f2 is not possible (since these are
functions and not queues).

A typical (but awkward) solution is to use WaitAny on A, B, C and D, and
then dispatch to the appropriate function (f1 or f2), depending on which
queue has become non-empty.

Here, the abstractions f1 and f2 cannot be composed, but we need to
know some of their implementation details before they can be merged.

LACPP (UU) Transactional Memory 14 / 33

Database Systems

Are there better approaches to general-purpose concurrent/parallel
programming?

Let’s look at (and take inspiration from) databases. These have supported
concurrent access and exploited parallel hardware for many decades.

What is the programming model for databases?

LACPP (UU) Transactional Memory 15 / 33

Database Transactions

A database transaction is a sequence of actions (e.g., look-ups, updates)
that appears to execute as if there was no concurrent database access.

Thus, different transactions appear to execute one after another—they can
be serialized.

The database system ensures that this property is preserved even when
transactions are actually executed in parallel.

LACPP (UU) Transactional Memory 16 / 33

ACID

A database transaction, by definition, satisfies atomicity, consistency,
isolation, and durability (ACID).

LACPP (UU) Transactional Memory 17 / 33

Atomicity

Atomicity: Either all actions in a transaction complete successfully (the
transaction commits), or there is no evidence at all that the transaction
began executing (the transaction aborts).

“All or nothing.”

LACPP (UU) Transactional Memory 18 / 33

Consistency

Consistency: Transactions start in a consistent state and should produce a
consistent state.

The meaning of “consistent” is entirely application-dependent. Typically, data structures
must satisfy a number of invariants.

When a transaction aborts, consistency is trivially maintained.

LACPP (UU) Transactional Memory 19 / 33

Isolation

Isolation: Each transaction appears to execute on its own. It is not
affected by other transactions, even if those execute in parallel.

LACPP (UU) Transactional Memory 20 / 33

Durability

Durability: Once a transaction commits, all changes are persistent (i.e.,
written to disk) and will not be lost in case of a system crash.

LACPP (UU) Transactional Memory 21 / 33

Transactions for Concurrent/Parallel Programming

Idea: Transactions provide a convenient abstraction also for coordinating
reads and writes of shared data in a concurrent (or parallel) system.

If we could wrap a computation in a transaction, we would get atomicity,
consistency and isolation—without having to worry about locking!

Since programs typically access shared data in memory, this approach to
concurrency control is known as transactional memory.

LACPP (UU) Transactional Memory 22 / 33

Transactional Memory: A Brief History

Transactional memory was first proposed by Lomet in 1977.

Practical implementations became available in the 1990s.

Today, TM is (still) a very active research area with many proposed hard-
and software implementations.

Intel Haswell processors (released in 2013) offer hardware transactional
memory support.

LACPP (UU) Transactional Memory 23 / 33

Differences Between Database Transactions And TM

Data is held in memory, not on disk (much faster access times).

TM implementations must have little overhead for each transaction.
Hardware support is more attractive for TM.

Data is lost when the program terminates (no durability).

Data may be accessed also through normal memory operations.

TM must coexist with existing languages, libraries, etc.

LACPP (UU) Transactional Memory 24 / 33

Running Example: A Double-Ended Queue

Exercise: implement a (sequential) function

void PushLeft(DQueue *q, int val)

LACPP (UU) Transactional Memory 25 / 33

PushLeft

void PushLeft(DQueue *q, int val) {

QNode *qn = malloc(sizeof(QNode));

qn->val = val;

QNode *leftSentinel = q->left;

QNode *oldLeftNode = leftSentinel ->right;

qn->left = leftSentinel;

qn->right = oldLeftNode;

leftSentinel ->right = qn;

oldLeftNode ->left = qn;

}

LACPP (UU) Transactional Memory 26 / 33

Basic Transactional Memory: Example

void PushLeft(DQueue *q, int val) {

QNode *qn = malloc(sizeof(QNode));

qn->val = val;

do {

StartTx ();

QNode *leftSentinel = ReadTx (&(q->left));

QNode *oldLeftNode = ReadTx (&(leftSentinel ->right));

WriteTx (&(qn ->left), leftSentinel);

WriteTx (&(qn ->right), oldLeftNode);

WriteTx (&(leftSentinel ->right), qn);

WriteTx (&(oldLeftNode ->left), qn);

} while (! CommitTx ());

}

LACPP (UU) Transactional Memory 27 / 33

Basic Transactional Memory: Remarks

Memory accesses are performed by ReadTx/WriteTx operations. These
accesses must be managed by the transactional memory implementation.

The StartTx/CommitTx pair indicates the scope of a transaction.

Note that the level of abstraction is fundamentally different from manual
locking: we have not indicated where to acquire/release locks, or which
operations may execute concurrently with PushLeft.

LACPP (UU) Transactional Memory 28 / 33

Implementation of TM: Versioning

The TM implementation must execute the (tentative) operations
performed by a transaction.

Eager versioning: updates are directly written to memory, maintaining
information about overwritten values

Lazy versioning: updates are collected in a private buffer and written
to memory when the transaction commits

LACPP (UU) Transactional Memory 29 / 33

Implementation of TM: Conflict Detection

The TM implementation must ensure isolation between transactions. This
is typically achieved by detecting conflicts (cf. Bernstein’s condition1)
between transactions that run in parallel.

Eager conflict detection: conflicts are identified while transactions are
running; (at least) one transaction is aborted

Lazy conflict detection: conflicts are identified when transactions
commit; (at least) one commit fails

1Bernstein: S1; S2 ≡ S1‖S2 provided WR(S1) ∩WR(S2) = ∅, RD(S1) ∩WR(S2) = ∅
and WR(S1) ∩ RD(S2) = ∅.

LACPP (UU) Transactional Memory 30 / 33

Building on Basic Transactions

ReadTx/WriteTx and StartTx/CommitTx operations introduce a lot of
boilerplate. Transactions are frequently integrated into high-level
languages via atomic blocks. For instance:

void PushLeft(DQueue *q, int val) {

QNode *qn = malloc(sizeof(QNode));

qn->val = val;

atomic {

QNode *leftSentinel = q->left;

QNode *oldLeftNode = leftSentinel ->right;

qn ->left = leftSentinel;

qn ->right = oldLeftNode;

leftSentinel ->right = qn;

oldLeftNode ->left = qn;

}

}

LACPP (UU) Transactional Memory 31 / 33

What is Transactional Memory Good For?

Scalability: locking is pessimistic (every thread needs to acquire the lock
before it can do anything), while transactions are optimistic (a commit
fails only in the case of a conflict).

Algorithms that operate on dynamically selected parts of a larger data
structure (e.g., graph traversals): locks are overly conservative (e.g.,
locking the entire data structure at once) or very difficult to get right.

Quake game server: to model the effect of a player’s move, a
lock-based implementation first needs to simulate the move
to find out which objects to lock, then lock and update the
affected objects. Transactions can avoid the simulation step.

LACPP (UU) Transactional Memory 32 / 33

http://en.wikipedia.org/wiki/Quake_%28video_game%29

Transactions Are Not a Panacea

It is still up to the programmer to divide the work into tasks that can be
executed concurrently.

Transactions might be too short
. . . exposing inconsistent intermediate states.

Transactions might be too long
. . . inhibiting concurrency or even blocking concurrent threads.

Transactions might be used incorrectly
. . . e.g., StartTx without a matching CommitTx.

Transactions might cause a decline in performance
. . . potentially rendering parallelization pointless.

LACPP (UU) Transactional Memory 33 / 33

	Transactional Memory
	Suggested Reading
	Abstractions for Concurrent/Parallel Programming
	Data Parallelism
	Task-based Parallelism
	Locks Are Bad
	What is Abstraction?
	Abstraction (in Computer Science)
	What is Composition?
	Composition (in Computer Science)
	Locks Don't Compose
	Locks Don't Compose (cont.)
	Locks Don't Compose: Another Example
	Locks Don't Compose: Another Example (cont.)
	Database Systems
	Database Transactions
	ACID
	Atomicity
	Consistency
	Isolation
	Durability
	Transactions for Concurrent/Parallel Programming
	Transactional Memory: A Brief History
	Differences Between Database Transactions And TM
	Running Example: A Double-Ended Queue
	PushLeft
	Basic Transactional Memory: Example
	Basic Transactional Memory: Remarks
	Implementation of TM: Versioning
	Implementation of TM: Conflict Detection
	Building on Basic Transactions
	What is Transactional Memory Good For?
	Transactions Are Not a Panacea

