
Language Abstractions for Concurrent and Parallel Programming

Introduction

Dave Clarke
dave.clarke@it.uu.se

LACPP (UU) Introduction 1 / 48

dave.clarke@it.uu.se


Welcome!

Dave Clarke George Kalamatianos
Teacher Lab Assistant

LACPP (UU) Introduction 2 / 48



Today

Practical matters

General information

Introduction to concurrent and parallel computing

Project details

LACPP (UU) Introduction 3 / 48



This Course Is Fairly New

Given for the first time in 2014

Part of the UPMASTER Specialization in Concurrent and Parallel
Programming (see http://www.it.uu.se/upmaster)

Split in two in 2017 – this is the second half of prior instances.

LACPP (UU) Introduction 4 / 48

http://www.it.uu.se/upmaster


Course Registration

To get credit for the course, you must be admitted and registered!

If you are admitted already, please web-register yourself for this course on
the Student Portal as soon as possible.

If you are admitted but cannot web-register for any reason, contact the
Student O�ce (it-kansli@it.uu.se).

LACPP (UU) Introduction 5 / 48

it-kansli@it.uu.se


Late Admission

If you are not admitted yet:

Master students should contact their programme counsellor.

Exchange students should contact Ulrika Jaresund
(Ulrika.Jaresund@it.uu.se), the exchange student coordinator at
the IT Department.

Students with an older registration, who want to re-register, should
contact the Student O�ce (it-kansli@it.uu.se).

Students on the reserve list will be contacted by the Student O�ce if
they are admitted.

Everyone else should apply at http://www.antagning.se, via Late
application (“Sen anmälan”).

LACPP (UU) Introduction 6 / 48

Ulrika.Jaresund@it.uu.se
it-kansli@it.uu.se
http://www.antagning.se


Dropping Courses

We hope that you will enjoy this course!

However, if you decide to drop it, you must inform the Student O�ce
(it-kansli@it.uu.se).

If less than 3 weeks have passed since the course started, your course
registration will simply be removed.

After 3 weeks a “course intermission” will be reported to UPPDOK
instead.

Teachers cannot help with admission/registration. Please contact the
Student O�ce (IT-kansliet) if you have questions about these formalities.

LACPP (UU) Introduction 7 / 48

it-kansli@it.uu.se


Special Needs

If you have special needs (for instance, if you need more time on exams),
please contact the responsible coordinator: see

http://teknat.uu.se/student/stod-och-service/sarskilt-stod/

Also consider informing your teachers.

LACPP (UU) Introduction 8 / 48

http://teknat.uu.se/student/stod-och-service/sarskilt-stod/


Course Structure

5 ECTS credits (hp) ⇡ 135 hours of work
(33% pace during periods 2):

Introduction + 3 modules (⇠ 10 lectures, 3 labs in total)

3 assignments

Final project

The course will end just before Christmas, though some assignments are
due in week 2, 2018.

Web page: https://studentportalen.uu.se/

Language: English

LACPP (UU) Introduction 9 / 48

https://studentportalen.uu.se/


The Student Portal

Lecture slides, example programs, assignments etc. will be made available
on the Student Portal.

Solutions to assignments must be submitted via the Student Portal.

Of course, you can also contact your teachers by email and in person.

LACPP (UU) Introduction 10 / 48



Your Expectations

What do you expect to learn in this course?

What would you like to learn?

LACPP (UU) Introduction 11 / 48



Your Background

How familiar are you with C/C++?

How familiar are you with Java?

How familiar are you with Erlang?

How familiar are you with Scala?

How familiar are you with Python?

(A) I have heard of it.
(B) I have used it before, at least once.
(C) I use it regularly.

LACPP (UU) Introduction 12 / 48



Your Background

How familiar are you with C/C++?

How familiar are you with Java?

How familiar are you with Erlang?

How familiar are you with Scala?

How familiar are you with Python?

(A) I have heard of it.
(B) I have used it before, at least once.
(C) I use it regularly.

LACPP (UU) Introduction 12 / 48



Your Background

How familiar are you with C/C++?

How familiar are you with Java?

How familiar are you with Erlang?

How familiar are you with Scala?

How familiar are you with Python?

(A) I have heard of it.
(B) I have used it before, at least once.
(C) I use it regularly.

LACPP (UU) Introduction 12 / 48



Your Background

How familiar are you with C/C++?

How familiar are you with Java?

How familiar are you with Erlang?

How familiar are you with Scala?

How familiar are you with Python?

(A) I have heard of it.
(B) I have used it before, at least once.
(C) I use it regularly.

LACPP (UU) Introduction 12 / 48



Your Background

How familiar are you with C/C++?

How familiar are you with Java?

How familiar are you with Erlang?

How familiar are you with Scala?

How familiar are you with Python?

(A) I have heard of it.
(B) I have used it before, at least once.
(C) I use it regularly.

LACPP (UU) Introduction 12 / 48



Your Background (cntd.)

How familiar are you with concurrent/parallel programming?

How familiar are you with threads and locks?

How familiar are you with task-based parallelism?

How familiar are you with transactional memory?

How familiar are you with actors?

How familiar are you with map-reduce/spark?

(A) I have heard of it.
(B) I have used it before, at least once.
(C) I use it regularly.

LACPP (UU) Introduction 13 / 48



Your Background (cntd.)

How familiar are you with concurrent/parallel programming?

How familiar are you with threads and locks?

How familiar are you with task-based parallelism?

How familiar are you with transactional memory?

How familiar are you with actors?

How familiar are you with map-reduce/spark?

(A) I have heard of it.
(B) I have used it before, at least once.
(C) I use it regularly.

LACPP (UU) Introduction 13 / 48



Your Background (cntd.)

How familiar are you with concurrent/parallel programming?

How familiar are you with threads and locks?

How familiar are you with task-based parallelism?

How familiar are you with transactional memory?

How familiar are you with actors?

How familiar are you with map-reduce/spark?

(A) I have heard of it.
(B) I have used it before, at least once.
(C) I use it regularly.

LACPP (UU) Introduction 13 / 48



Your Background (cntd.)

How familiar are you with concurrent/parallel programming?

How familiar are you with threads and locks?

How familiar are you with task-based parallelism?

How familiar are you with transactional memory?

How familiar are you with actors?

How familiar are you with map-reduce/spark?

(A) I have heard of it.
(B) I have used it before, at least once.
(C) I use it regularly.

LACPP (UU) Introduction 13 / 48



Your Background (cntd.)

How familiar are you with concurrent/parallel programming?

How familiar are you with threads and locks?

How familiar are you with task-based parallelism?

How familiar are you with transactional memory?

How familiar are you with actors?

How familiar are you with map-reduce/spark?

(A) I have heard of it.
(B) I have used it before, at least once.
(C) I use it regularly.

LACPP (UU) Introduction 13 / 48



Your Background (cntd.)

How familiar are you with concurrent/parallel programming?

How familiar are you with threads and locks?

How familiar are you with task-based parallelism?

How familiar are you with transactional memory?

How familiar are you with actors?

How familiar are you with map-reduce/spark?

(A) I have heard of it.
(B) I have used it before, at least once.
(C) I use it regularly.

LACPP (UU) Introduction 13 / 48



Course Contents

Some di↵erent models for concurrency and parallel programming:

transactional memory,

actors,

map-reduce and Spark.

A number of di↵erent programming languages to illustrate these models,
such as C++ (Transactional Memory), Erlang (Actors),
Java/Python/Scala (MapReduce/Spark).

Closer study of each model and its implementation in some language, plus
laboratory work that experiments with the models.

LACPP (UU) Introduction 14 / 48



Learning Outcomes

To pass the course, the student should be able to

write and modify programs using di↵erent models and language
abstractions for concurrent and parallel programming,

analyze models with respect to which specific problems they address,
where they can be used and where they should be avoided,

explain the di↵erence between a model and its implementation in a
specific language,

explain how some languages implement hybrids or multiple models
and how these can interact.

LACPP (UU) Introduction 15 / 48



Assessment

To pass the course, you must pass all three assignments and the final
project.

Each assignment is worth 10 points. The project consist of two
components (code and written report) and is worth 20 points. (Total: 50
points)

To pass the course, you must achieve 50% of the points in each

assignment and each project component. (Attending the lectures is
optional, but recommended!)

For a final course grade of 4, you must obtain at least 35 points. For a
final course grade of 5, you must obtain at least 42 points.

LACPP (UU) Introduction 16 / 48



Cheating

Plagiarism and cheating are serious academic o↵enses and can lead to
suspension from the university for six months.

Cheating includes:

Knowingly using some fellow student’s solution to an exercise while
solving it.

Knowingly submitting a (changed) copy of some fellow student’s
solution.

Knowingly submitting a solution based on a hardcopy or Internet
publication without citing it.

Knowingly helping some student to do any of the three actions above.

Golden rule: Give credit when you use someone else’s ideas.

LACPP (UU) Introduction 17 / 48



Introduction to

Concurrent and Parallel Computing

LACPP (UU) Introduction 18 / 48



Sequential Programs

A sequential program consists of a sequence (ordered list) of instructions.
These must be executed in their given order, one after another.

LACPP (UU) Introduction 19 / 48

http://www.ntu.edu.sg/home/ehchua/programming/java/images/Construct_Sequential.png


Intel CPU Trends

LACPP (UU) Introduction 20 / 48



Motivation (1)

AMD Opteron processor (4 cores)

LACPP (UU) Introduction 21 / 48



Motivation (2)

IBM Blue Gene/P (163,840 cores)

LACPP (UU) Introduction 22 / 48



Motivation (3)

Elastic cloud computing (??? cores)

LACPP (UU) Introduction 23 / 48



Motivation: Summary

Single-core performance is no longer improving dramatically. Clock
speeds have remained almost constant since around 2004.

However, the number of transistors in CPUs continues to grow
exponentially. Multi-core hardware has become ubiquitous.

To take full advantage of modern hardware, software must be concurrent.

LACPP (UU) Introduction 24 / 48



Concurrent Programming 6= Parallel Programming

A concurrent program consists of independent tasks, which may execute
during overlapping time periods.

A parallel computation executes several operations at the very same
instant.

Concurrency is mostly about distribution, redundancy, etc., while
parallelism is mostly about speed.

(Unfortunately, even experts are not always very careful about this distinction.)

LACPP (UU) Introduction 25 / 48



Concurrency vs. Parallelism: Questions

Discuss:

1 Can a concurrent program be executed on a single-core CPU?

2 Are the tasks of a concurrent program always executed in parallel?

3 Can parallel computation happen on a single-core CPU?

4 Is parallel computation always concurrent?

LACPP (UU) Introduction 26 / 48



Speedup

Speedup is a metric for relative performance improvement.

Given the old execution time T

old

and the new execution time T

new

for a
program, the speedup is

S =
T

old

T

new

LACPP (UU) Introduction 27 / 48



Amdahl’s Law: Motivation

If we execute a program on a quad-core CPU, can we expect a speedup
of 4 (relative to a single-core CPU)?

Usually not. The speedup of a program using multiple processors in
parallel computing is limited by the sequential fraction of the program.

“The bearing of a child takes nine months, no matter how many

women are assigned.”

F. Brooks, The mythical man month

LACPP (UU) Introduction 28 / 48



Amdahl’s Law: Motivation

If we execute a program on a quad-core CPU, can we expect a speedup
of 4 (relative to a single-core CPU)?

Usually not. The speedup of a program using multiple processors in
parallel computing is limited by the sequential fraction of the program.

“The bearing of a child takes nine months, no matter how many

women are assigned.”

F. Brooks, The mythical man month

LACPP (UU) Introduction 28 / 48



Amdahl’s Law

Given

B 2 [0, 1], the fraction of an algorithm that is strictly serial,

n 2 N, the number of threads of execution,

the time that it takes the algorithm to finish when executed on n threads is

T (n) = T (1)

✓
B +

1

n

(1� B)

◆

Consequently, the corresponding speedup is

S(n) =
T (1)

T (n)
=

1

B + 1

n

(1� B)

(G. Amdahl, 1967)

LACPP (UU) Introduction 29 / 48



Amdahl’s Law: Exercise

Choose a B 2 {0.05, 0.10, 0.25, 0.5}. (In other words, 5%, 10%, 25% or
50% of the algorithm are strictly serial.)

Compute S(n) for n = 1, 2, 4, 8, 16, 1024.

Calculate lim
n!1 S(n).

LACPP (UU) Introduction 30 / 48



20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

Sp
ee

du
p

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Number of Processors

Amdahl’s Law

Serial Portion (B)
50%
25%
10%
5%

LACPP (UU) Introduction 31 / 48

http://en.wikipedia.org/wiki/File:AmdahlsLaw.svg


Amdahl’s Law: Limitations

Amdahl’s Law assumes that the total amount of work remains the same
when parallelized. In practice, this is often not the case.

A concurrent program usually incurs some overhead for

task creation, task management;

communication between tasks.

LACPP (UU) Introduction 32 / 48



Parallel Slowdown

Parallel slowdown occurs when parallelization beyond a certain point
causes the program to run slower. (This is typically caused by a
communications bottleneck.)

Number of processing elements

Speed-up

Program
Runtime Ideal speed-up

(linear increase)

Ideal runtime
(linear decrease)

1
-

LACPP (UU) Introduction 33 / 48

http://en.wikipedia.org/wiki/File:Parallelization_diagram.svg


Super-Linear Speedup

Let n 2 N. According to Amdahl’s Law, what is the maximal
speedup S(n)? For which B 2 [0, 1] is this speedup attained?

In practice, is it possible to observe a higher speedup (for some
programs)?

Hint:

LACPP (UU) Introduction 34 / 48


	Introduction
	Welcome!
	Today
	This Course Is Fairly New
	Course Registration
	Late Admission
	Dropping Courses
	Special Needs
	Course Structure
	The Student Portal
	Your Expectations
	Your Background
	Your Background (cntd.)
	Course Contents
	Learning Outcomes
	Assessment
	Cheating

	Introduction to Concurrent and Parallel Computing
	Sequential Programs
	Intel CPU Trends
	Motivation (1)
	Motivation (2)
	Motivation (3)
	Motivation: Summary
	Concurrent Programming != Parallel Programming
	Concurrency vs. Parallelism: Questions
	Speedup
	Amdahl's Law: Motivation
	Amdahl's Law
	Amdahl's Law: Exercise
	Amdahl's Law: Graph
	Amdahl's Law: Limitations
	Parallel Slowdown
	Super-Linear Speedup

	Final Project
	No Exam …
	But a Final Project!
	Learning Outcomes
	Step 1: Find a Partner
	Step 2: Find a Topic
	Step 3: Choose a Concurrency Abstraction
	Write a Project Description
	Submit Your Project Description
	Step 4: Design and Implementation
	Step 5: Write a Report
	Submit Your Code and Report
	Assessment
	Good Luck!


