
12/9/2017 Functional Programming I, 5.0 c , Studentportalen - Uppsala universitet

https://studentportalen.uu.se/portal/portal/uusp/student/webpage?uusp.portalpage=true&mode=webpage456642&toolMode=studentUse&entityId=… 1/4

Functional Programming I, 5.0 c
Course code: 1DL330, Report code: 11006, 33%, DAG, NML, week: 35 - 43 Semester: Autumn 2017

CODING CONVENTION

This information is not available in English. Now showing the Swedish version.

Coding Convention
Good software development companies have coding conventions, hence so can programming courses and software
development courses! The requirements in this coding convention have been devised to be tools to guide and facilitate
your thinking before and while programming, but not additional obstacles after the already difficult task of
programming.

They also ease the communication of your programs to others, such as the instructors and assistants who grade them.

Shedding these good habits after this course would be doing yourself a great disservice. A competent programmer can
of course do the specification and verification (or verification outline, as in this course) in her brain only, but that will
be of no help if she herself reconsiders the program a few weeks later, or if somebody else has to call or modify or
verify her code. No engineer takes on a well-defined task without a specification.

The real value of following coding conventions like this one becomes apparent when you work in a team of
developers, and you have to read (and understand, use and modify) code written by someone else.

FUNCTION SPECIFICATIONS
Every function, whether declared globally or locally, whether named or anonymous, whether curried or not, whether
commissioned in the exercise or invented by you as a helper function, shall be commented with its specification, as
follows:

(* function_identifier argument
 TYPE: argument_type(s) -> result_type
 PRE: ... pre-condition on the arguments ...
 POST: ... post-condition on the result ...
 SIDE EFFECTS: ... if any, including exceptions ...
 EXAMPLES: ... especially if useful to highlight delicate issues; also consider including counter-examples ...
*)

where the function identifier is unnecessary for anonymous functions. The only exception to the necessity of
specifications is for an anonymous function that is passed as an argument to another function: you need not specify it
if it is very simple.

The names of the components of the argument need not be consistent between the specification and the program.

Under PRE, be careful not to require any accumulator to be equal to some constant. Indeed, this may be the case at the
first call, but any recursive call will almost certainly be for a value different from that constant, and would thus violate
such a pre-condition.

Under PRE and POST, there is no need to repeat the types of the argument and result, as they are already indicated
under TYPE.

12/9/2017 Functional Programming I, 5.0 c , Studentportalen - Uppsala universitet

https://studentportalen.uu.se/portal/portal/uusp/student/webpage?uusp.portalpage=true&mode=webpage456642&toolMode=studentUse&entityId=… 2/4

Under POST, it is sufficient to give the returned expression e, so that the actual post-condition implicitly is "the
returned expression is equal to e". Under this convention, writing "this function returns e" is also unnecessarily long.

A function specification is almost always wrong unless all of the function's arguments appear in the post-condition or
side effects.

Specifications shall be in English. Specifications are usually written independently of the programming language, to
the extent possible. A suitable combination of natural language and rather standard mathematical notation is usually
best.

IDENTIFIERS
Every function identifier shall be descriptive of the performed function. Every value identifier shall be descriptive of
the provided value.

Every function, value and type identifier shall begin with a lowercase letter. Every constructor name shall begin with
an uppercase letter.

If there are several words in an identifier, then either (i) separate each word with an underscore ('_'), or (ii) glue them
together, without using the underscore character, and start each new word with an uppercase letter. (This is known as
camel case.) Be consistent.

Examples:

 max_value
 end_of_the_game
 datatype this_is_a_datatype = This_is_a_constructor

 maxValue
 endOfTheGame
 datatype thisIsADatatype = ThisIsAConstructor

RECURSIVE FUNCTIONS
Every recursive function shall be commented with the chosen numeric variant, as follows:

(* VARIANT: ... *)

Like the pre- and post-conditions, the variant must refer to the parameter names in the specification, but not to the
possibly different parameter names in the program. The reason for this is that the variant reflects a decision made
before the program was written, according to the design methodology. Also, the variant is not part of the specification,
but rather part of the verification outline of why the program is believed correct. For a given specification, many
programs can be written, and the recursive ones usually have different variants.

DATATYPE REPRESENTATION
Every datatype definition (cf. the datatype keyword) shall be commented with an explanation of the type's
representation convention and invariant:

(* REPRESENTATION CONVENTION: ... description of how the datatype represents data ...
 REPRESENTATION INVARIANT: ... requirements on elements of the datatype that the code preserves at all times ...
 *)

12/9/2017 Functional Programming I, 5.0 c , Studentportalen - Uppsala universitet

https://studentportalen.uu.se/portal/portal/uusp/student/webpage?uusp.portalpage=true&mode=webpage456642&toolMode=studentUse&entityId=… 3/4

INDENTATION
Layout and indentation of function declarations shall be as follows:

 fun name pattern1 = expression1
 ...
 | name patternN = expressionN

Alternatively, expressions can be written on a separate line:

 fun name pattern1 =
 expression1
 ...
 | name patternN =
 expressionN

Layout and indentation of if-then-else expressions shall be as follows:

 if boolean_expression then
 expression1
 else
 expression2

If further if-then-else expressions follow after else the layout and indentation shall be as follows

 if boolean_expression1 then
 expression1
 else if boolean_expression2 then
 expression2
 ...
 else
 expressionN

Layout and indentation of case expressions shall be as follows:

 case expression of
 pattern1 => expression1
 ...
 | patternN => expressionN

Layout and indentation of let expressions shall be as follows:

 let
 declaration1
 ...
 declarationN
 in
 expression
 end

The exact number of spaces is not important, but all indentation must be consistent, that is, each expression within "..."
above must begin equally far from the left side (except where the indentation is changed according to the rules above).

Indentation of terms other than those described above shall be made in good faith. Please look at programs on the
lecture slides for ideas.

EXAMPLES

12/9/2017 Functional Programming I, 5.0 c , Studentportalen - Uppsala universitet

https://studentportalen.uu.se/portal/portal/uusp/student/webpage?uusp.portalpage=true&mode=webpage456642&toolMode=studentUse&entityId=… 4/4

(* fac n
 TYPE: int -> int
 PRE: n 0
 POST: n! (i.e., the factorial of n)
 EXAMPLES: fac 0 = 1
 fac 3 = 6
*)
(* VARIANT: n *)
fun fac 0 = 1
 | fac n = n * fac (n-1)

(* select n xs
 TYPE: int -> int list -> int list
 PRE: true
 POST: the list of the elements in xs that are larger than n,
 in the same order as they occur in xs
 EXAMPLES: select 2 [1,3,2,4,3] = [3,4,3]
 select 3 [1,3,1] = []
 select 0 [] = []
*)
(* VARIANT: the length of xs *)
fun select _ [] = []
 | select n (x::xs) =
 let
 val xs' = select n xs
 in
 if x>n then x::xs' else xs'
 end

(This coding convention is based on material by Lars-Henrik Eriksson, Pierre Flener and Tjark Weber.)

