
Functional Programming 1 — 1DL330

Assignment 4

Lab: Thursday, 28 September

Submission Deadline: 18:00, Tuesday, 3 October, 2017

This is an individual assignment. You must construct your own solution. Keep any
discussions with other students at the level of abstract solution methods; do not share
your code. If you think there is a risk that such a discussion leads to very similar solutions,
then report this to the instructor in advance, e.g., by clearly stating any collaboration in
your submission. If you have any questions about this assignment, please contact our lab
assistant, albert.yang@it.uu.se.

Instructions

• Start by reading the General Lab Instructions (on the Student Portal).

• Name the file containing your solutions lab4.sml. The file that you submit must
contain valid SML code, so the answers to some of the questions need to be placed
in comments: (∗ ... ∗).

• Remember to follow our Coding Convention (also on the Student Portal), and pro-
vide specifications for all functions that you write.

• Make sure that your solution passes the tests in lab4 test.sml before you submit.
A submission that does not pass these tests will get grade K.

1 A Signature for Valuations

A valuation in propositional logic maps named variables (i.e., strings) to Boolean values.
Define a signature VALUATION for valuations. This signature shall provide a type T of
valuations, and various operations on them. Among the operations provided there shall
be a way to

1. obtain an empty valuation (empty: T),

2. add a variable with a given Boolean value (set : T −> string −> bool −> T),

3. find the Boolean value associated with a variable (value of : T−> string −> bool),

4. compute a list of all variables in a valuation (variables : T −> string list),

5. and print the contents of a valuation (print : T −> unit).

1

mailto:albert.yang@it.uu.se
https://en.wikipedia.org/wiki/Valuation_%28logic%29

2 A Structure for Valuations

1. Define a matching structure Valuation :> VALUATION that implements (at least)
the operations from Exercise 1. (You may use any suitable data structure that has
been presented in class, or invent one yourself.)

To print the contents of a valuation, you can use the following code:

fun p r i n t v a l u a t i o n =
(

L i s t . app
(fn name => TextIO . p r i n t (name ˆ ” = ” ˆ

Bool . t o S t r i n g (v a l u e o f v a l u a t i o n name) ˆ ”\n”))
(v a r i a b l e s v a l u a t i o n) ;

TextIO . p r i n t ”\n”
)

(See here for an explanation of List .app.)

2. For all operations provided by your Valuation structure, state their (worst-case) time
complexity. (The size of a valuation is given by the number of variables that the
valuation maps to a value.)

3 A Functor for Propositional Logic

1. Consider the following data type of propositional formulas:

datatype f o rmu la = True
| Fa l s e
| Var of s t r i n g
| Not of f o rmu la
| And of f o rmu la ∗ f o rmu la
| Or of f o rmu la ∗ f o rmu la

Define a functor Semantics that, given any structure V that implements valuations
(i.e., any structure that matches your VALUATION signature from Exercise 1), re-
turns a structure that matches the following signature:

s i g
va l t r u t h v a l u e : V .T −> f o rmu la −> boo l
va l i s t a u t : f o rmu la −> boo l

end

Here, V.T is the type of valuations.

The functions truth value and is taut are specified as follows.

truth value : Given a valuation and a formula, the function truth value returns the
truth value of the formula under the given valuation. Examples:

• Given any valuation v, truth value v maps

– True to true,

– False to false .

2

http://www.sml-family.org/Basis/list.html#SIG:LIST.app:VAL
https://en.wikipedia.org/wiki/Propositional_formula

• Given any valuation v that maps ”x” to true and ”y” to false , truth value v
maps

– Var ”x” to true,

– Not (Var ”x”) to false ,

– And (Var ”x”, Var ”y”) to false .

If a variable is mentioned in the formula but not defined in the valuation, truth value
cannot compute a meaningful result. You must decide how to handle this situation.

is taut : Given a formula, the function is taut returns true if and only if the formula
is a tautology. A formula is a tautology if its truth value is true under all valuations
(that define all variables mentioned in the formula). Examples:

• For the formula Var ”x”, we have to consider two valuations: the valuation
that maps ”x” to true, and the valuation that maps ”x” to false . Under the
latter valuation, the truth value of Var ”x” is false . Therefore, Var ”x” is not
a tautology, i.e., is taut (Var ”x”) must return false .

• For the formula Or (Var ”x”, Not (Var ”x”)), we again have to consider these
two valuations: the valuation that maps ”x” to true, and the valuation that
maps ”x” to false . Under either valuation, the truth value of
Or (Var ”x”, Not (Var ”x”)) is true. Therefore, Or (Var ”x”, Not (Var ”x”)) is
a tautology, i.e., is taut (Or (Var ”x”, Not (Var ”x”))) must return true.

• For the formula Or (Var ”x”, Var ”y”), we have to consider four valuations: all
possible combinations of mapping ”x” and ”y” to true or false . In particular,
under the valuation that maps both ”x” and ”y” to false , the truth value
of Or (Var ”x”, Var ”y”) is false . Therefore, Or (Var ”x”, Var ”y”) is not a
tautology, i.e., is taut (Or (Var ”x”, Var ”y”)) must return false .

Hint: First, make sure you understand the definition of tautology! To find out
whether a formula is a tautology, you can simply check its truth value under a
number of valuations. First, write a helper function that collects all variables that
occur in a formula. Next, think about which valuations you need to consider to
work out if the formula is a tautology, and how these valuations can be generated
recursively. (In general, if there are n distinct variables occurring in a formula, then
there are 2n valuations to consider.) Use additional helper functions as necessary.

2. Apply your Semantics functor to your Valuation structure from Exercise 2. Test the
resulting truth value and is taut functions on at least five different combinations
of valuations and formulas. Include the test code in the file that you submit.

4 Simplification of Propositional Formulas

1. Write a function simp: formula −> formula that takes a formula and simplifies it.
There are many strategies for simplifying a logic formula. You should at least apply
the following rules:

• Or (True, x) simplifies to True

• Or (False , x) simplifies to x

3

https://en.wikipedia.org/wiki/Tautology_%28logic%29

• Or (x, True) simplifies to True

• Or (x, False) simplifies to x

• And (True, x) simplifies to x

• And (False, x) simplifies to False

• And (x, True) simplifies to x

• And (x, False) simplifies to False

• Not (Not x) simplifies to x

• Not True simplifies to False

• Not False simplifies to True

In these rules, x refers to any formula. Your simplifier should be able to apply the
rules to sub-formulas. Note that application of one simplification rule might allow
other simplifications to be applied later. Your simplifier should take advantage of
this. For example,

Not (And (And (Fa l s e , Var ”x”) , Var ”y”))

can be simplied to

Not (And (Fa l s e , Var ”y”))

which can in turn be simplified to

Not Fa l s e

and further to

True

Include at least five test cases for your simp function in the file that you submit.

2. Of course, your simp function should terminate for any input formula. Give a
variant (or several variants, one for each recursive function used in your simplifier)
that shows termination.

Testing

Use the file lab4 test.sml (from the Student Portal) to test your solution. See the
instructions for Assignment 1 for further information on running the tests.

Some tests might fail because they assume other datatype definitions or function
signatures than what you are using. If necessary, change your solutions to make all tests
compile and run successfully.

Good luck!

4

	A Signature for Valuations
	A Structure for Valuations
	A Functor for Propositional Logic
	Simplification of Propositional Formulas

