
Tic-tac-toe

Lars-Henrik Eriksson

Functional Programming 1

Original presentation by Tjark Weber

Lars-Henrik Eriksson (UU) Tic-tac-toe 1 / 23

Take-Home Exam

Take-Home Exam

Lars-Henrik Eriksson (UU) Tic-tac-toe 2 / 23

Take-Home Exam Take-Home Exam

Take-Home Exam

If you have passed all lab assignments, you will pass the course with a
grade of (at least) 3. The exam is optional.

The exam will be an individual take-home exam. You do not need to
register for the exam. You can only take the exam once.

The exam instructions are already available on the Student Portal. The
submission deadline will be on October 27.

An average student should expect to spend roughly 40 hours on the exam
(more if you are ambitious). Plan your time accordingly! Contact me in
case of scheduling issues due to sickness etc.

Lars-Henrik Eriksson (UU) Tic-tac-toe 3 / 23

The SML Basis Library

The SML Basis Library

Lars-Henrik Eriksson (UU) Tic-tac-toe 4 / 23

The SML Basis Library The SML Basis Library: Introduction

The SML Basis Library: Introduction

We have been using a number of “built-in” types (e.g., int , bool, list),
functions (e.g., op+, print) and values (e.g., true, []).

So, what exactly is available?

Lars-Henrik Eriksson (UU) Tic-tac-toe 5 / 23

The SML Basis Library The SML Basis Library: Introduction

The SML Basis Library: Introduction

We have been using a number of “built-in” types (e.g., int , bool, list),
functions (e.g., op+, print) and values (e.g., true, []).

So, what exactly is available?

Lars-Henrik Eriksson (UU) Tic-tac-toe 5 / 23

The SML Basis Library The SML Basis Library: Description

The SML Basis Library: Description

The SML Basis Library provides interfaces and operations for
basic types, such as integers and strings, support for input and
output (I/O), interfaces to basic operating system interfaces, and
support for standard datatypes, such as options and lists. The
Library does not attempt to define higher-level APIs, such as
collection types or graphical user-interface components. These
APIs are left for other libraries.

http://sml-family.org/Basis/

Lars-Henrik Eriksson (UU) Tic-tac-toe 6 / 23

http://sml-family.org/Basis/

The SML Basis Library The SML Basis Library: Contents

The SML Basis Library: Contents

Contents:

Basic types (i.e., bool, int , word and real)

Standard datatypes (i.e., option and list)

Vectors and arrays

Text processing (e.g., char and string)

System interfaces (e.g., files, process control)

Sockets

The SML Basis Library is organized into structures. Most identifiers are
available in some structure. Only the most frequently used identifiers are
also available unqualified, in the top-level environment.

Lars-Henrik Eriksson (UU) Tic-tac-toe 7 / 23

The SML Basis Library The SML Basis Library: Documentation

The SML Basis Library: Documentation

See http://sml-family.org/Basis/ for a detailed list of all structures
and their components.

Alternatively, to quickly see the components of a (known) structure, you
can interactively open the structure. For example:

open L i s t ;

va l @ = fn : ’ a l i s t ∗ ’ a l i s t −> ’ a l i s t
exception Empty
va l a l l = fn : (’ a −> b o o l) −> ’ a l i s t −> b o o l
va l app = fn : (’ a −> u n i t) −> ’ a l i s t −> u n i t
. . .

Lars-Henrik Eriksson (UU) Tic-tac-toe 8 / 23

http://sml-family.org/Basis/

The SML Basis Library The SML Basis Library: The Bigger Picture

The SML Basis Library: The Bigger Picture

Remember that Poly/ML is just one of many different implementations
(compilers) for SML.

The SML Basis Library is available on (nearly) all SML implementations.
Thus, it facilitates the development of portable SML code.

Individual compilers may provide additional functionality. (For instance,
Poly/ML provides a structure—incidentally called PolyML—with
components that facilitate debugging, profiling, etc.)

Lars-Henrik Eriksson (UU) Tic-tac-toe 9 / 23

Tic-tac-toe

Tic-tac-toe

Lars-Henrik Eriksson (UU) Tic-tac-toe 10 / 23

Tic-tac-toe Tic-tac-toe: Rules

Tic-tac-toe: Rules

1 The game is played on a 3-by-3 board that is initially empty.

2 Two players, called X and O, take turns. X goes first.

3 A player’s move consists of marking an empty field with his name.

4 The first player to get three markers in a (horizontal, vertical or
diagonal) row wins the game.

5 Otherwise, the game is a draw after nine turns.

Lars-Henrik Eriksson (UU) Tic-tac-toe 11 / 23

Tic-tac-toe Tic-tac-toe: Program

Tic-tac-toe: Program

In the Student Portal you will find a complete ML program that plays
tic-tac-toe.

Here we will cover the basic ideas.

Lars-Henrik Eriksson (UU) Tic-tac-toe 12 / 23

Tic-tac-toe Tic-tac-toe: Basic SML Types

Tic-tac-toe: Basic SML Types

datatype p l a y e r = X | O

type f i e l d = p l a y e r o p t i o n

datatype board = Board of f i e l d ∗ f i e l d ∗ f i e l d ∗
f i e l d ∗ f i e l d ∗ f i e l d ∗
f i e l d ∗ f i e l d ∗ f i e l d

datatype p o s i t i o n = P o s i t i o n of p l a y e r ∗ board

datatype move = One | Two | Three | Four | F i v e
| S i x | Seven | E i g h t | Nine

Lars-Henrik Eriksson (UU) Tic-tac-toe 13 / 23

Tic-tac-toe Game Trees

Game Trees

A game tree is a directed graph whose nodes are positions in a game and
whose edges are moves.

The complete game tree for a game is the game tree starting at the initial
position and containing all possible moves from each position.

http://en.wikipedia.org/wiki/Game_tree

Lars-Henrik Eriksson (UU) Tic-tac-toe 14 / 23

http://en.wikipedia.org/wiki/Game_tree

Tic-tac-toe The Minimax Algorithm

The Minimax Algorithm

The minimax algorithm is a recursive algorithm for choosing the next
move in a game with two (or more) players. It works backwards, from the
final positions towards the current position.

1 Expand the complete game sub-tree below the current position.

2 Determine the value (i.e., O wins, draw, X wins) of each final
position.

3 Propagate these values backwards, under the assumption that each
player will choose the move that’s best for him.

Lars-Henrik Eriksson (UU) Tic-tac-toe 15 / 23

Tic-tac-toe The Minimax Algorithm: Example

The Minimax Algorithm: Example

Lars-Henrik Eriksson (UU) Tic-tac-toe 16 / 23

http://www.sussex.ac.uk/Users/christ/crs/kr-ist/lec05a.html

Tic-tac-toe The Minimax Algorithm: Example

The Minimax Algorithm: Example

Lars-Henrik Eriksson (UU) Tic-tac-toe 16 / 23

http://www.sussex.ac.uk/Users/christ/crs/kr-ist/lec05a.html

Tic-tac-toe The Minimax Algorithm: Example

The Minimax Algorithm: Example

Lars-Henrik Eriksson (UU) Tic-tac-toe 16 / 23

http://www.sussex.ac.uk/Users/christ/crs/kr-ist/lec05a.html

Tic-tac-toe The Minimax Algorithm: Example

The Minimax Algorithm: Example

Lars-Henrik Eriksson (UU) Tic-tac-toe 16 / 23

http://www.sussex.ac.uk/Users/christ/crs/kr-ist/lec05a.html

Tic-tac-toe The Minimax Algorithm: Example

The Minimax Algorithm: Example

Lars-Henrik Eriksson (UU) Tic-tac-toe 16 / 23

http://www.sussex.ac.uk/Users/christ/crs/kr-ist/lec05a.html

Tic-tac-toe The Minimax Algorithm: Example

The Minimax Algorithm: Example

Lars-Henrik Eriksson (UU) Tic-tac-toe 16 / 23

http://www.sussex.ac.uk/Users/christ/crs/kr-ist/lec05a.html

Tic-tac-toe The Minimax Algorithm: Ingredients

The Minimax Algorithm: Ingredients

To build the complete game tree, we need

a type of game positions (board, active player, etc.),

a type of moves (i.e., choices that a player has),

the initial position,

a function to enumerate all valid moves for a given position,

a function to generate the new position obtained after a valid move.

To employ the minimax algorithm, we also need

an evaluation function for final game positions.

Lars-Henrik Eriksson (UU) Tic-tac-toe 17 / 23

Tic-tac-toe The Minimax Algorithm: Code

The Minimax Algorithm: Code

fun minimax p o s i t i o n =
l e t

va l moves = moves o f p o s i t i o n
i n

i f n u l l moves then
v a l u e o f p o s i t i o n (∗ X wins > draw > O wins ∗)

e l s e
l e t

va l p o s i t i o n s = map (make move p o s i t i o n) moves
i n

(i f p l a y e r o f p o s i t i o n = X then max e l s e min)
(map minimax p o s i t i o n s)

end
end

Lars-Henrik Eriksson (UU) Tic-tac-toe 18 / 23

Tic-tac-toe Minimax With Limited Depth

Minimax With Limited Depth

For games that are significantly more complex than Tic-tac-toe (e.g.,
chess, Go), it is not feasible to generate the complete game tree.

Instead, the game tree is only explored to a certain depth (starting from
the current position), i.e., only a certain number of moves ahead.

The minimax algorithm can still be used, but it now requires an
evaluation heuristic that can be applied to non-final positions.

Lars-Henrik Eriksson (UU) Tic-tac-toe 19 / 23

Tic-tac-toe Evaluation Heuristics

Evaluation Heuristics

Evaluation heuristics estimate how much of an advantage players have in a
given position.

They rely heavily on game-specific knowledge. Finding good evaluation
heuristics is difficult.

Evaluation heuristics strike a balance between an accurate estimate and a
computationally cheap estimate. (In particular, they are much cheaper
than expanding the complete game sub-tree below the given position.)

Lars-Henrik Eriksson (UU) Tic-tac-toe 20 / 23

Thank You!

Thank You!

Lars-Henrik Eriksson (UU) Tic-tac-toe 21 / 23

Thank You! Thank You!

Thank You!

There is still a lot of work ahead (Assignment 4, the exam) . . . but today
was our last proper lecture. (There will also be a guest lecture about
practical use of functional programming.)

So, thank you for taking this course and sticking with it until now!

There will (of course) be a course evaluation on the Student Portal in a
few weeks’ time. Please take the time to give (positive and negative)
feedback. Next year’s students will benefit from it!

Lars-Henrik Eriksson (UU) Tic-tac-toe 22 / 23

Thank You! Advanced Functional Programming

Advanced Functional Programming

We hope that you got a first glimpse of functional programming in this
course.

If you are interested, there will be a course on Advanced Functional
Programming (5 hp) next period, covering multiple languages and more
advanced concepts.

Lars-Henrik Eriksson (UU) Tic-tac-toe 23 / 23

	Take-Home Exam
	Take-Home Exam

	The SML Basis Library
	The SML Basis Library: Introduction
	The SML Basis Library: Description
	The SML Basis Library: Contents
	The SML Basis Library: Documentation
	The SML Basis Library: The Bigger Picture

	Tic-tac-toe
	Tic-tac-toe: Rules
	Tic-tac-toe: Program
	Tic-tac-toe: Basic SML Types
	Game Trees
	The Minimax Algorithm
	The Minimax Algorithm: Example
	The Minimax Algorithm: Ingredients
	The Minimax Algorithm: Code
	Minimax With Limited Depth
	Evaluation Heuristics

	Thank You!
	Thank You!
	Advanced Functional Programming

