
MIPS and SPIM tutorial
Part Two: load and store

November 2008

karl.marklund@it.uu.se

Get ready for part two of your MIPS
assembly programming training.

.text

.globl main

main:
addi $t0, $zero, 3 # a = 3
addi $t1, $zero, 2 # b = 2

add $t2, $t0, $t1 # c = a + b

seq $t3, $t0, $t1 # d = 1 iff a == b else d = 0
seq $t4, $t0, $t0 # e = 1 iff a == a (sic)

jr $ra # return to caller

first_try.s
In the first part of the tutorial
we examinded the following
program in detail.

op rd, rs, rt

Operation
add, sub, addi,
seq.

The generic format of a MIPS-
assembly instruction:

The first operand
register, source
register one.

The second operand
source register two.

Register to hold the
result. The destination
register.

add rd, rs, rt
addi rd, rs, imm

sub rd, rs, rt
subi rd, rs, rt

seq rd, rs, rt
Instructions we know so far.

There is no subi instruction... Instead, we can use
addi and a negative immediate constant.

MEMORY
ContentAddress

0xFFFFFFFF

0xFFFFFFFE

0x00000000

0x00000001

0x00000002

0x00000003

.

.

.

0xFFFFFFFC

0xFFFFFFFD

Each cell can
store 8 bits – a
byte.

In MIPS the
memory
consists of 232

memory cells.
Each cell has a
unique address.

Four adjacent
bytes forms
a word of 32
bits.

lw rt, address
sw rt, address

Address of label
+/- (Immediate + content of
register)

label +/- imm(register)

Address of label + /- immediatelabel +/- imm

Address of labellabel

Immediate + content of registerimm(register)

Immediateimm

Content of register(register)

Address computationAddress format

MIPS is a Load-Store
architecture which means
only load and store
instructions are allowed to
access memory.

.data
x: .word 5
y: .word 3
z: .space 4

.text

.globl main
main: la $t0, x

lw $t1, 0($t0)

lw $t2, y

add $t3, $t1, $t2

la $t4, z
sw $t3, 0($t4)
sw $t2, 4($t4)

jr $ra

We use labels
so we can
refer to these
locations in
memory later.

Each one of
these labels
denotes a
address in the
data segment.

Here we use the label x

Load Address (la)
translates the label x to
the address and stores
the result in $to.

to_and_from_memory.s

Load Word (lw)

We have a memroy address in $t0.

From the address $t0 in memory, load
the content at this memory location to
register $t1.

$t1 5 (x)

.data

A assembler directive instructing the
assembler to treat what follows as data
and place it in the data segment.

Text segment

.data
x: .word 5
y: .word 3
z: .space 8

.text

.globl main
main: la $t0, x

lw $t1, 0($t0)

lw $t2, y

add $t3, $t1, $t2

la $t4, z
sw $t3, 0($t4)
sw $t2, 4($t4)

jr $ra

We can use a label
directly to load from
memory.

to_and_from_memory.s

x + y

.space 8

Reserve
eight bytes
in the data
segment. Address of z

Store x+y in
memory at address
of z

Store y in memory
at address of z + 4

Load the source file
load_and_store.s

Allway – Allways – Allways

Look for error messages here:

Single step
until...

... you reach the la $t0,
x instruction.

$t0 is 00000000

Step again!

$t0 is now 10010000

The label x is refering
to the address
0x1001000 in the data
segment of the
memory.

The content at
address 0x1001000 is
0x00000005

Step again!

$t1 is now 00000005

The label x is refering
to the address
0x1001000 in the data
segment of the
memory.

The content at
address 0x1001000 i
0x00000005

Step again!

Loading using a label
directly

Step again!

This cannot be
translated directly to
one machine
instruction – its a
pseduo instruction.

Step again!

$t0 is now 00000003

The label y is refering
to the address
0x1001004 in the data
segment of the
memory.

The content at
address 0x1001004 is
0x00000003

Step again!

$t0 is now 00000008

The sum x + y
(loaded from
memory) is stored in
$t3.

Step again!

Load Address is
also a pseudo
instruction

$t4 is now 10010008

The label z is refering to
the address 0x1001008 in
the data segment of the
memory.

Step again!

Address 0x1001000 Address 0x1001004

The value in register $t3
(x+z) is stored in the
memory at location given
by $t4 (z).

Step again!

The value in register $t2 (x) is
stored in the memory at
location given by $t4 (z) + 4.

Step again!

You are now done with part
two of your MIPS assembly
programming training.

