
MIPS and SPIM tutorial
Part Four: Strings, Loops, If-Then-Else and Arrays

November 2008

karl.marklund@it.uu.se

Get ready for part four of your MIPS
assembly programming training.

.data

STR: .asciiz "abcdefghijklmnopqrstuvxyz"

.text

.globl main

main: la $t0, STR
lw $t1, 0($t0)

lb $t2, 0($t0)
lb $t3, 1($t0)
lb $t4, 2($t0)
lb $t5, 3($t0)

jr $ra

.asciiz

A directive that
stores a NUL
terminated string in
the data segment.

Ok, but how is a
string
represented?

string.s

Each character in the
alphabet is assigned a 2
digit hexadecimal number.

Each character is
assigned a 8 bit
ASCII value – a byte.

Column: leftmost digit

Row: rightmost digit

The ASCII
value of ’a’ is
0x61

ASCII:

American
Standard
Code for
Information
Interchange.

The ASCII
value of ’H’ is
0x48

ASCII NUL 0x00 is
used to mark the end
of a string.

.data

STR: .asciiz "abcdefghijklmnopqrstuvxyz"

.text

.globl main

main: la $t0, STR
lw $t1, 0($t0)

lb $t2, 0($t0)
lb $t3, 1($t0)
lb $t4, 2($t0)
lb $t5, 3($t0)

jr $ra

Ok, just like Load Word
but only loads one byte.

Load Byte: lb

string.s

Load the source file
string.s

Single step
until...

$t0 is 10010000

The label STR is
refering to the
address 0x1001000 in
the data segment of
the memory.

The content at
address 0x1001000 is
0x64636261

Single step
again...

$t1 is 0x64636261

The content at
address 0x1001000 is
0x64636261

Single step
again...

$t2 is 0x00000061

The content at
address 0x1001000 is
0x64636261

Single step
again...

Load Byte

$t3 is 0x00000062

The content at
address 0x1001000 is
0x64636261

Single step
again...

Load Byte

$t4 is 0x00000063

The content at
address 0x1001000 is
0x64636261

Single step
again...

Load Byte

$t5 is 0x00000064

The content at
address 0x1001000 is
0x64636261

Single step
again...

Load Byte

Word stored in $t1

Character ’d’ ’c’ ’b’ ’a’

ASCII 0x64 0x63 0x62 0x61
Address 0x10010003 0x10010002 0x10010001 0x10010000

[0x10010000] 0x61626364 0x65666768 0x696a6b6c 0x6d6e6f70
[0x10010010] 0x71727374 0x75767778 0x797a0000 0x00000000

Word stored in $t1
Character ’a’ ’b’ ’c’ ’d’
ASCII 0x61 0x62 0x63 0x64
Address 0x10010000 0x10010001 0x10010002 0x10010003

If we run the
same program
on the
department
Unix system

x68
1 Word

Character ’d’ ’c’ ’b’ ’a’
ASCII 0x64 0x63 0x62 0x61
Address 0x10010003 0x10010002 0x10010001 0x10010000

SPARC
1 Word

Character ’a’ ’b’ ’c’ ’d’
ASCII 0x61 0x62 0x63 0x64
Address 0x10010000 0x10010001 0x10010002 0x10010003

What? We store the same string and
gets two different words?

x68 (Little Endian)
1 Word

Character ’d’ ’c’ ’b’ ’a’
ASCII 0x64 0x63 0x62 0x61
Address 0x10010003 0x10010002 0x10010001 0x10010000

SPARC (Big Endian)
1 Word

Character ’a’ ’b’ ’c’ ’d’
ASCII 0x61 0x62 0x63 0x64
Address 0x10010000 0x10010001 0x10010002 0x10010003

A MIPS processor can
be configured to use
either Litte Endian or Big
Endian byte order.

SPIM is a simulator and
uses the same byte
order as the host
machine.

.data
STR: .asciiz "Hello world, your lucky number is: "

.text

.globl main
main:

system call code for print_str
li $v0, 4
address of string to print
la $a0, STR
syscall

system call code for print_int
li $v0, 1
integer to print
addi $a0, $zero, 44
syscall

jr $ra

SPIM comes with a number of system calls.print_string_and_integer.s

Print number

Print String call code 4 in $v0

call code 1 in $v0

Address to string

Number to print

When you run this
program, a console
will pop up.

Both the string and
the number is written
to the console.

We often wants to repeat
something a number of
times...

It’s time to learn how to
program loops.

.text

.globl main

main: add $t0, $zero, $zero # loop counter i
addi $s0 ,$zero, 5 # loop limit N

loop: beq $t0, $s0, done # for i = 0...(N-1)

integer to print
add $a0, $zero, $t0
system call code for print_int
li $v0, 1
syscall

addi $t0, $t0, 1 # i ++

j loop

done: jr $ra

Branch on EQual: beq

If $t0 == $t5, jump to the
label done.

Otherweise, continue with
next instruction below.

loop.s

Jump (j)

Unconditional
jump – jump to
the label loop.

Example of good comments

.text

.globl main

main: add $t0, $zero, $zero # loop counter i
addi $s0 ,$zero, 5 # loop limit N

loop: beq $t0, $s0, done # for i = 0...(N-1)

add $a0, $zero, $t0 # print i
system call code for print_int
li $v0, 1
syscall

addi $t0, $t0, 1 # i ++

j loop # loop again

done: jr $ra # return to caller

loop.s
Example of good comments

You should be
able to

understand
what the

program does
by only looking

at the
comments and

the labels.

Introduce
abstractions
in your
comments.

Refer to
previously
defined.
abstractions.

Choose
descriptive
names for
your labels.

Choose
descriptive
names for
your labels.

.text

.globl main

main: add $t0, $zero, $zero # loop-counter i
addi $s0 ,$zero, 5 # loop limit N

loop: beq $t0, $s0, done # for i = 0...(N-1)

add $a0, $zero, $t0 # print i
system call code for print_int
li $v0, 1
syscall

addi $t0, $t0, 1 # i ++

j loop # loop again

done: jr $ra # return to caller

loop.s

If you start with
the comments
and the labels
you can use
them as your

”recipe” for the
program,

translating the
comments and

labels into
MIPS assembly

.text

.globl main

main: add $t0, $zero, $zero # loop-counter i
addi $s0 ,$zero, 5 # loop limit N

loop: beq $t0, $s0, done # for i = 0...(N-1)

add $a0, $zero, $t0 # print i
system call code for print_int
li $v0, 1
syscall

addi $t0, $t0, 1 # i ++

j loop # loop again

done: jr $ra # return to caller

loop.s

Load the source file loop.s

Single step until you
reach this instruction.

Machine Instruction: 0x11100006

Hexadecimal Decimal Binary
0x11 1*161 + 1 = 17 0001 0001
0x10 1*161 = 16 0001 0000
0x00 0 0000 0000
0x06 6*160 = 6 0000 0110

rsop rt immediate

OP(beq) = 4

Register 16 .Register 8 Branch offset 6

beq is an I-type
instruction.

000100 01000 10000 0000 0000 0000 0110

Machine Instruction: 0x11100006

Hexadecimal Decimal Binary
0x11 1*161 + 1 = 17 0001 0001
0x10 1*161 = 16 0001 0000
0x00 0 0000 0000
0x06 6*160 = 6 0000 0110

rsop rt immediate

OP(beq) = 4

Register 16 .Register 8 Branch offset 6

beq is an I-type
instruction.

000100 01000 10000 0000 0000 0000 0110

When you run this
program, a console
will pop up.

The loop prints out
the number 0,1,2,3
and 4

To make choices we can
use an IF-THEN-ELSE
construct

.data
STR_THEN: .asciiz "equal"
STR_ELSE: .asciiz "not equal"

.text

.globl main

main: li $t0, 15 # a
addi $t1, $zero, 15 # b

if: bne $t0, $t1, else # if (a==b)

then: # system call for print_str # print equal

li $v0, 4
la $a0, STR_THEN
syscall
j end_if

else:
system call for print_str # print not equal
li $v0, 4
la $a0, STR_ELSE
syscall

end_if: jr $ra

if_then_else.s

Branch Not
Equal: bne

Load this
program
into SPIM
and
experiment
wiht
different
values for a
& b. Single
step to
follow the
execution.

We often
need to store
things in a
sequence

The first element,
element 0.

The last element,
element N-1

A sequence of N
elements - an array.

.data

ARRAY: .word 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

array.s

10 numbers stored in
sequence in the data
segments – an array
of numbers.

ARRAY is a label, i.e,
the address to the
first number.

Each number is a
word – i.e, four bytes

array.s

ARRAY: .word 1 1 2 3 5 8 13 21 34 55

Index i 0 1 2 3 4 5 6 7 8 9

Let i be an index such that
the first number has index 0,
the second number has index 1,
the third number has index 2,

array.s

Address = ARRAY

The label ARRAY is a
named address in the data
segment.

ARRAY: .word 1 1 2 3 5 8 13 21 34 55

(index i) 0 1 2 3 4 5 6 7 8 9

Address = ARRAY + 4

Address = ARRAY + 4 + 4 =
ARRAY + 8

array.s

ARRAY: .word 1 1 2 3 5 8 13 21 34 55

(index i) 0 1 2 3 4 5 6 7 8 9

For the ithelement
ARRAY[i], the address is
ARRAY + 4*i

A clever way of
multiplying by 2...

510 = 001012

2* 510 = 1010 = 010102 Same as 00101 << 1 (shift left 1 bit)

2*2*510 = 4*510 = 2010 = 101002 Same as 01010 << 1 (shift left 1 bit)
Same as 00101 << 2 (shift left 2 bits)

Multiplying by 2 is
equivalent to shift 1
bit to the left.

Multiplying by 4 is
equivalent to shift 2
bits to the left.

Example:

.data
NL: .asciiz "\n"
SIZE: .word 10
ARRAY: .word 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

.text

.globl main
main: add $t0, $zero, $zero # array index i

la $t1, ARRAY
lw $t2, SIZE

loop: beq $t0, $t2, done # for e in ARRAY
sll $t4, $t0, 2 # offset = 4*i
add $t3, $t1, $t4 # addr = ARRAY + offset
lw $a0, 0($t3) # e = ARRAY[i]
li $v0, 1 # print e
syscall
li $v0, 4 # print \n
la $a0, NL
syscall

addi $t0, $t0, 1 # next element

j loop

done: jr $ra

Shif Left Logical: sll

Multiply by 4 is
equivalent to shift left
2 bits.

array.s

When you run this
program, a console
will pop up. All the numbers in the

array are printed. A
new line separate
each number.

You learned about arrays and
strings. But what about arrays
of strings...

.data

STR_1: .asciiz "The sum of "
STR_2: .asciiz " and "
STR_3: .asciiz " is "

ARRAY_OF_STRINGS:
Each element is an address to a string.
.word STR_1, STR_2, STR_3

Each label
denotes the
start address of
a string

array_of_string.s

Declear three
strings

Use these
addresses to
construct an
array of strings.

The label
ARRAY_OF_STRINGS refers
to address 0x10010018

Address 0x10010010

Address 0x10010014

On this address in
memor, the address
to the stirng STR_1
is stored.

.text

.globl main
main:

Just for fun, get the address of
label "ARRAY_OF_STRINGS":
la $t0, ARRAY_OF_STRINGS

addi $a1, $zero, 3 # a
addi $a2, $zero, 11 # b

Must copy $a0 since the
syscalls used later needs $a0

add $t0, $a0, $zero

Print "The sum of "
li $v0, 4
lw $a0, ARRAY_OF_STRINGS
syscall

Print the value of a
li $v0, 1
add $a0, $zero, $a1
syscall

Print " and "
li $v0, 4
lw $a0, ARRAY_OF_STRINGS + 4
syscall

array_of_string.s (text segment part one)

Get address to
STR_1 ”The sum of ”

Get address to
STR_2 ” and ”

Address to the 2nd

element in
ARRAY_OF_STIRINGS

Print the value of b
li $v0, 1
add $a0, $zero, $a2
syscall

Print " is "
li $v0, 4
lw $a0, ARRAY_OF_STRINGS + 8
syscall

Print the sum a + b
li $v0, 1
add $a0, $a1, $a2
syscall

jr $ra

array_of_string.s (text segment part two)

Get address to
STR_3 ” is ”

Address to the 3rd

element in
ARRAY_OF_STIRINGS

ASCII(’T’) = 0x54

The string is terminated by 0x00
(NUL).

ASCII(’h’) = 0x68

ASCII(’e’) = 0x65

sum su of

The label
ARRAY_OF_STRINGS refers
to address 0x10010018

and

ARRAY_OF_STRINGS + 4

You are now done with part
four of your MIPS assembly
programming training.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47

