
MIPS and SPIM tutorial

 Part Five

Exception and Interrups ► Polled and Interrupt driven I/O ► DMA ► Introduction to Operating Systems

November 2008

karl.marklund@it.uu.se

Get ready for part five of your MIPS
assembly programming training.

Time to create a really
large number... Lets see
how SPIM copes whith
this.

addi $t0, $zero, 0xffffffff
addi $t0, $t0, 1

BUT: addi can only handle a
16 bit immediate constant
and we try to use the 32 bit
number 0xffffffff

The assembler is clever
enough to interpret th 32 bit
number 0xffffffff as the 16 bit
number 0xffff (both means
-1)

Mashine instruction 0x2008ffff, i.e., op 2, register 0,
register 8 and the 16 bit immediate constant 0xfffff (-1 in
two’s complement)

When we add 1…

…the result becomes 0…

…because -1 +1 = 0.

Hmm... Lets make another
experiment.

addi $t2, $zero, 0xffff

Immediate value (65535) out of range (-32768..32767)

We try to add the 16 bit constant 1111 1111 1111 11112 .

But, all numbers are signed. The sign bit requires an
extra bit (17 bits in total).

The largets 16 bit possitive constant:
0111 1111 1111 11112 = 0x7fff.

The smallest 16 bit negative
constant:
1000 0000 0000 00002 = 0x8000.

Ok, how can we create the largets possitive 32 bit
number...

We could use the
not instruction…But
it’s more fun to use

the load upper
immeadeate (lui)

instruction…

lui $t2, 0x7fff

addi $t3, $t2, 0x7fff

Load Upper Immediate: lui

0111 1111 1111 1111 0111 1111 1111 11112 (0x7fff7fff)

$t2  0x7fff0000

OR 0000 0000 0000 0000 1000 0000 0000 00002 (0x00008000)

--

 0111 1111 1111 1111 1111 1111 1111 1111 (0x7fffffff)

$t3  0x7fff7fff

ori $t4, $t3, 0x8000 $t4  0x7fffffff = 2.147.483.64710

The largets possitive 32 bit number

”upper”
half

”lower”
half

Ok, lets add 1 to this ”largest” number:

lui $t2, 0x7fff # 0x00007fff
addi $t3, $t2, 0x7fff # 0x7fff7fff
ori $t4, $t3, 0x8000 # 0x7fffffff

addi $t5, $t4, 1 # 0x7fffffff + 1

What happens if we execute
this instruction?

The EPC (Exeption Program Counter) register stores the
address to the instruction causing the overflow.

The hardware detects an
arithmetic overflow: the result
does not fit into 32 bits.

The program counter jumps to this
predefined address – it jumps to the
exception handler.

An error code is stored in the Cause register.

If we continue to execute, the
small ”operating system” (the
exception handler) will print out
the following error message.

We will soon learn more about
exceptions and interrupts.

What happens if we try to do this?

lw $t5, 0($zero)

Coprocessor 1 – floating point unit.

coprocessor 0 – system monitoring.
Used to manage exceptions and
interrupts.

mfc0 $k0 $13 # Cause register
srl $a0 $k0 2 # Extract ExcCode Field
andi $a0 $a0 0x1f

Cause register:

Register nr 13 in Coprocessor 0.

Move From Coprocessor 0: mfc0

0000 0000 0000 0000 0000 0000 0001 1100

Cause register

Move From Coprocessor 0 (mfc0) used to
get contents of Cause Register into
ordinary register.

0000 0000 0000 0000 0000 0000 0001 1100

0000 0000 0000 0000 0000 0000 0000 0111

Cause register

Cause Register Shifted right 2 bits 5 Bit Exception Code

0000 0000 0000 0000 0000 0000 0000 0111

XXXX XXXX XXXX XXXX XXXX XXXX XXX0 0111

 AND 0000 0000 0000 0000 0000 0000 0001 1111

--

0000 0000 0000 0000 0000 0000 0000 0111

Cause register

Exception Code == 710

Bit Mask used to mask out only
the desired bits

 .kdata
__m1_: .asciiz " Exception "
__m2_: .asciiz " occurred and ignored\n“

__e0_: .asciiz " [Interrupt] "
__e1_: .asciiz " [TLB]"
__e2_: .asciiz " [TLB]"
__e3_: .asciiz " [TLB]"
__e4_: .asciiz " [Address error in inst/data fetch] "
__e5_: .asciiz " [Address error in store] "
__e6_: .asciiz " [Bad instruction address] "
__e7_: .asciiz " [Bad data address] "
__e8_: .asciiz " [Error in syscall] "
__e9_: .asciiz " [Breakpoint] "
__e10_: .asciiz " [Reserved instruction] "
__e11_: .asciiz ""
__e12_: .asciiz " [Arithmetic overflow] “
.
.
.
__e30_: .asciiz " [Cache]"
__e31_: .asciiz ""

__excp: .word __e0_, __e1_, __e2_, __e3_, __e4_, __e5_, __e6_, __e7_, __e8_, __e9_
 .word __e10_, __e11_, __e12_, __e13_, __e14_, __e15_, __e16_, __e17_, __e18_,
 .word __e19_, __e20_, __e21_, __e22_, __e23_, __e24_, __e25_, __e26_, __e27_,
 .word __e28_, __e29_, __e30_, __e31_

At the beginning of the the default
exception handler for spim (exceptions.s).

A number of
strings

An array of
strings

 .kdata
__m1_: .asciiz " Exception "
__m2_: .asciiz " occurred and ignored\n“

__e0_: .asciiz " [Interrupt] "
__e1_: .asciiz " [TLB]"
__e2_: .asciiz " [TLB]"
__e3_: .asciiz " [TLB]"
__e4_: .asciiz " [Address error in inst/data fetch] "
__e5_: .asciiz " [Address error in store] "
__e6_: .asciiz " [Bad instruction address] "
__e7_: .asciiz " [Bad data address] "
__e8_: .asciiz " [Error in syscall] "
__e9_: .asciiz " [Breakpoint] "
__e10_: .asciiz " [Reserved instruction] "
__e11_: .asciiz ""
__e12_: .asciiz " [Arithmetic overflow] “
.
.
.
__e30_: .asciiz " [Cache]"
__e31_: .asciiz ""
__excp: .word __e0_, __e1_, __e2_, __e3_, __e4_, __e5_, __e6_, __e7_, __e8_, __e9_
 .word __e10_, __e11_, __e12_, __e13_, __e14_, __e15_, __e16_, __e17_, __e18_,
 .word __e19_, __e20_, __e21_, __e22_, __e23_, __e24_, __e25_, __e26_, __e27_,
 .word __e28_, __e29_, __e30_, __e31_

Error message for
exception nr 7

At the beginning of the the default
exception handler for spim (exceptions.s).

Overflow and bad data adress
are examples of internal errors
in a program

For the same input, these
internal errors will occurs at
the same place every time.

Exceptions are internal and synchronous.

Communication?

I/O enhet Processor

Programs
we write...

A keyboard key being
pressed is a signal from the
outside and may arrive at
any time.

Reading and writing to a and
from a hard disk is very
similar in nature.

Interrupts are external and asynchronous.

Interrupts are external and asynchronous.

Exceptions are internal and synchronous.

Overflow and bad data
adress are examples of
internal errors in a program.

For the same input, these
internal errors will occurs at
the same place (PC) every
time.

A keyboard key being
pressed is a signal from the
outside and may arrive at
any time.

Time to learn how to input text from the consoll and output text to the
consoll wihtout using syscall.

SPIM simulates a memory
mapped I/O device. This
device is controlled by a
number of registers…

…but, these are not real
registers (like $t0). Instead
they are represented by
words in memory.

Ready-Bit: automatically set to 1 if the device is ready to
transmit a new character, that is, if the character stored in
transmitter data has been consued.

ASCII value of character to output.

Address in memory for the
memory mapped register
Transmitter control.

Address in memory for the
memory mapped register
Transmitter data.

Memoy Mapped registers for output of a charactes

Output – Transmitting characters

Ready-Bit: automatically set to 1 when a new character arrives.
Automatically set to 0 when the charecters is consumed (loaded)
from Receiver data.

ASCII value of the received character.

Minnes-mappade register för inmatning av tecken.

Input – Receiving characters

Address in memory for the
memory mapped register
Receiver control.

Address in memory for the
memory mapped register
Receiver data.

Are we there yet?
Are we there yet?

Are we there yet?

Are we there yet?

Are we there yet?

Are we there yet?

Are we there yet?

Yes – it’s called Polled I/O

It’s a simple scheme but wastes valueable
CPU cycles.

We can use the CPU
to watch status bits
and feed data into a
controller register 1
byte at a time!

What happens if
we poll to often?

What happens if
we poll to

infrequent?

Polling is the process of constantly
testing a condition to see if data is
available.

That is, the CPU polls (asks) the
I/0-device if it has data available
or if it is capable of accepting
data.

Pollad I/0

Busy Wait: Loop Until…

There must be a better
alternative...

Interrup-enable: If you want the I/O device to generate an interrupt when
the device is ready to output a new character – set this bit to 1.

Interrup-enable: If you want the I/O device to generate an
interrup when a new character has arrived – set this bit to 1.

Status register:

Register nr 12 in Coprocessor 0.

Interrupt enable:

You must enable
intterupts by setting this
bit to 1. Otherwise the
CPU will not ”listen” to
any interrupts.

$13

$12
$14

$8

We have arrived at
our destination!

CPU hardware has a interrupt report line that the CPU senses after
executing every instruction.

- device raises an interrupt

- CPU catches the interrupt and saves the state (e.g., Instruction pointer)

- CPU dispatches the interrupt handler

- interrupt handler determines cause, services the device and clears the
interrupt

Interrupt-Driven I/O

Besides Polled I/O and Interrupt
driven I/O – are there any other
way to perform I/O?

Sure!

We can use a special purpose
processor called DMA controller.

39

Direct Memory Access (DMA)

With DMA, the CPU would initiate the transfer, do other
operations while the transfer is in progress, and receive
an interrupt from the DMA controller once the operation
has been done.

DMA controller feeds the characters from disk one at the time, without
CPU being bothered. DMA is actually the programmed IO, only with DMA
controller doing the work.

11/16/09 58

• Handshaking between DMA controller and the device controller
• Cycle stealing

– DMA controller takes away CPU cycles when it uses CPU memory
bus, hence blocks the CPU from accessing the memory

• In general DMA controller improves the total system performance

DMA Issues

• For high-bandwidth devices (like disks) interrupt-
driven I/O would consume a lot of processor cycles

• DMA – the I/O controller has the ability to transfer
data directly to/from the memory without involving
the processor
– The processor initiates the DMA transfer by supplying the

I/O device address, the operation to be performed, the
memory address destination/source, the number of bytes
to transfer

– The I/O DMA controller manages the entire transfer
(possibly thousand of bytes in length), arbitrating for the
bus

– When the DMA transfer is complete, the I/O controller
interrupts the processor to let it know that the transfer is
complete

Direct Memory Access Want to put
less load on

the CPU

Interrupt only
when the
transfer is

done

There may be multiple DMA devices in one system

Processor and I/O controllers contend for bus cycles and for
memory

User Mode:

This bit is 0 when cpu runs in kernel
mode and 1 when the cpu runs in
user mode.

In SPIM this bit is constantly set to
1 since SPIM does not implement
kernel mode : (

Some operating systems, such as MS-DOS
(the predecessor to the Microsoft Windows
operating systems) do not have a distinct
kernel mode; rather, they allow user
programs to interact directly with the hardware
components.

However, Unix-like operating systems use
the dual mode mechanism (user mode/
kernel mode) to hide all of the low level
details regarding the physical organization
of the system from application programs
launched by the user as a means of assuring
system stability and security.

When the CPU is in kernel
mode, it is assumed to be
executing trusted software, and
thus it can execute any
instructions and reference
any memory addresses.

User mode software must request use of the kernel by means of a
system call in order to perform privileged instructions, such as process
creation or input/output operations.

A system call is a
request to the kernel in
a Unix-like operating
system by an active
process for a service
performed by the
kernel.

A process is an instance of a
program in execution

A running process can be
run in user mode or
supervisor (also known as
system or monitor or
privileged) mode.

Mode bit in hardware indicates the
current mode – tells if a task is being
executed on behalf of the operating
system (OS) or a user.

User mode used to run user programs
and instructions, while privileged
instructions are run in the supervisor
mode

(Special) instructions
that can cause harm are
called privileged
instructions e.g. open,
create, delete, share
files, using input/output
devices.

Should be executed only
by the OS in supervisor
mode

System call is a special instruction that transfers control from user mode to
supervisor mode to a system-call service routine that is part of the OS.

The OS verifies if the call is correct, legal only then executes the call and
returns control back to the instruction following the system call.

Protects the system – protects the OS from errant/malicious users and errant
users from one another!

You have now completed part five
of your MIPS assembly training.

