Lab 1: MIPS

Arrays, Strings, Loops and Subroutines

Purpose

Learn the basics of the MIPS assembly language by writing a few programs (from
simple to complex). After completing this assignment you should have a basic
understanding of:

* Arrays (Data stored one after another in memory)
* Strings (Arrays of characters)
* Loops

e Subroutines

Method

We will provide you with a skeleton program ---string_functions.s--- which you
will fill in and complete. You will debug and run your program using one of the
available MIPS simulators, SPIM or MARS (the latter is recommended).

Preparation

If you need help with MIPS and SPIM/MARS in order to get started with this lab,
you can go through the respective tutorials available in on the student portal ---
you don't need step 5 for SPIM assignment. It is not mandatory to run the
example files mentioned in the tutorials. The tutorial is only meant to give you an
overview on how to program in MIPS and use the SPIM or MARS simulators, as

well as providing some practice and hands-on experience. After reading the
tutorials, you can work on the main skeleton file for this lab ---stirng_functions.s.
You can skip the tutorials in part or completely if you are already familiar with
MIPS programming and using SPIM or MARS simulators. You should also be
familiar with the basic building blocks of a MIPS CPU:

* Registers

* Program Counter (PC)
* The Stack

* Stack Pointer (SP)

* The Return Address Register (RA)

You should know what a label is. (This is a name for a particular location in
memory, used to make it easier to read and write assembly code.)

You should also know the difference between the registers and the main
memory and how to address bytes and words of memory.

Regarding the stack, you should know how to put items on the stack (push) and
remove them (pop) in MIPS assembly language.

SPIM or MARS allow you to use a set of syscalls. Syscalls are operating system
routines that interact with the rest of the system. We will be using syscalls to
print the program’s results to the console.

All code must adhere to the MIPS Calling Convention.

File to Use

string_functions.s

What to Hand In

No hand-ins are required. Demo your completed lab to the assistants during the
lab sessions.

Getting started

On the Unix system, start SPIM or MARS---please refer to the tutorials; the
commands in this manual are based on SPIM simulator, however you can achieve
the same results in MARS as well. Load the string_functions.s program. To run
the program in SPIM, click on the run button (on Windows you can also press F5).
When you run the program the following popup appears:

Here you can choose at which address to start the execution. Normally you
should not alter this address. Continue by pressing the OK button.

Starting Address: -DK
0x00400000

Cancel |
Command line:

[V Check for undefined symbols

Output from the program appears in a separate console window, you should see
something similar to this:

Have a look at the source file string_functions.s You will see it has several
sections.

The first section starts with a “.data” which indicates that the contents are data
you will use in your programs. In the first .data section you have several labels

that point to the data. In this case there is ARRAY_SIZE (which is a word with the
value 10), the FIBONACCI_ARRAY (which is 10 words), and STR_str, which is a
string.

Under that you have several subroutines. The first one is “integer_array_sum”.
These are the parts you will fill in for the lab.

If you scroll down, you will find the “main” subroutine. This is where the program
starts. You can see that the first thing it is put various string label addresses into
the SvO register and do a syscall to print them out to the console. Then it puts
the FIBONACCI_ARRAY and ARRAY_SIZE addresses into the $a0 and Sal registers
and calls the “integer_array_sum” subroutine with a jal. The rest of the main
function is similar. Make sure you’ve read through it and understand how it is
producing the output you saw when you ran the program.

NOTE: You do not have to make any changes to main.

When you are done with the assignment, the output from the program should
look similar to the following:

The sum of the 10 first Fibonacci numbers is 0 A
str = "A string of characters..."
=tring_length(str) = 4

string_for_each(str, ascii)

string_for_each(str, to_upper) l

str = "A string of characters...'|

The sum of the 10 first Fibonacci numbers is 143
str = "A string of characters..."
string_length(str) = 25

string for_each(str, ascii)
Ascii('A') = 65

Ascii(' ') = 32

A=zcii('s') = 115§

Ascii('t') = 116

Ascii({'r') = 114

Ascii('i') = 105

Ascii{'n') = 110

A=scii{'g') = 103

Ascii(' ') = 32

Ascii{'o') = 111

Ascii('f') = 102

Ascii(' ') = 32

Ascii{'c') = 99

Ascii('h') = 104

Ascii('a') = 97

Azcii{'r') = 114

Ascii('a') = 97

Ascii{'c') = 99

Ascii('t') = 116

Ascii('e') = 101

Ascii({'r') = 114

Azcii('s') = 115§

Ascii('.') = 46

Ascii('.') = 46

Ascii('.') = 46
string_for_each(str, to_upper)
str = "A STRING OF CHARACTERS..."
L Jfim) >
Run

To run the program again, you just press the run button once more.

Reload

After editing the MIPS assembler source file (string_functions.s) you must press
reload for the updated file to be loaded into SPIM.

Windows: From the top menu, choose simulator->reload.

Step

To be able to follow the execution in more detail, the simulator allows you to
step through the instructions one by one.

Click on step.

You will be prompted by a dialog box where you can choose "number of steps".
Leave this to the default value of 1.

Now, click on step (the button in the newly opened dialog). This will execute the
instruction pointed to by the program counter (PC) and increment the PC by four
(next instruction). If the instruction is a branch, the program counter may be
updated to another value according to the branch target.

Continue clicking on step and you will be able to run the program one instruction
at the time.

By stepping through the program you can easily follow what's happening. For
each instruction you can see the changes in the contents of the registers and
memory.

Windows: To single step, press the F10 key.

Breakpoints

A good way to test your programs is to step through the program as explained
above. For small programs this might be sufficient but for larger programs this
quickly becomes tedious.

A better way is to set a breakpoint in your program. After you added your
breakpoint you can run your program and SPIM will stop at the breakpoint. Once
SPIM has stopped at the breakpoint you can switch to single stepping to
investigate the execution in more detail.

Reload the program. Click on the "breakpoints" button. You will be prompted by
a dialog box. In the address field, type DBG:

Breakpoints

Address: (eq: 0x400000) Add
DBG

o~ - - -
nemnove

Close

Windows: You can set a breakpoint by clicking on the O |button.
Click on "add".
Run the program.

SPIM will execute the program and stop after a while asking if you want to
continue the execution or not. Answer No.

Now you can continue to execute the program one instruction at a time using
single stepping as explained before.

DBG is nothing more than a label. But to be able to function as a breakpoint, the
label must be declared global.

In the beginning of the source file string_functions.s, you will see how the
assembler directive .globl is used to declare the label DBG to be a global label.

.globl DBG

TASK ONE: integer_array_sum

Have a look at the subroutine integer_array_sum. This routine should iterate
through a set of numbers (words, so 4 bytes each) and add them up. The result
should be returned to the caller. Remember that this is a subroutine (function) so
you will have to obey the MIPS calling convention in how you use registers!

As you can see, the label DBG is put here. If we use it as a breakpoint we can run
up to this point in the program and switch to stepping.

It's important to write good comments that describe your program. A common
mistake is to write comments that do not add anything new. (E.g., writing “i=i+4 ;
this line increments i by 4” is not helpful. Instead you should write “this line
increments the index for the string array to the next letter.) Your comments
should describe what your code is doing in terms of the problem you are solving.

As an example of how such "good comments" may look like, each line of the
subroutine already have one comment. There are also some labels defined to
help you insert branches. Giving good names to labels is also important to make
your program easy to understand (and debug).

Your first task is to translate each comment to one line of MIPS assembly. Finish
the subroutine integer_array_sum

Make sure your solution allows for different values for ARRAY_SIZE, especially
the case ARRAY_SIZE = 0 is interesting.

Hints

By a number, we mean a 32 bit number (a word). An array is a sequence of such
numbers stored in the data segment.

If you look at the top of the source file string_functions.s you will see how ten
numbers are stored in the data segment using the directive .word

By means of the label FIBONACCI_ARRAY we can refer to the address of the first
number in the array later in our code. (E.g., wherever you use FIBONACCI_ARRAY
in your code it will be replaced with the address of that data.)

Since each number is a word (32 bit long or 4 bytes), each number is four bytes
apart. Hence the second number is stored at the address given by the following
calculation: FIBONACCI_ARRAY + 4.

The third number is stored at address FIBONACCI_ARRAY + 8. Therefore, since
each word is 4 bytes further along than the previous one, we can calculate the
address of the Nth number with FIBONACCI_ARRAY+n*4. To be able to sum all
the numbers in the array you will need to write a loop that loads each value in
the array and adds them up into a register.

TASK TWO: string_length

For this task you will write a subroutine that takes the memory address of a
string and returns the number of characters in that string.

A string is nothing more than an array of bytes (8 bits, or 1/4 of a word) where
each byte encodes one character using the ASCIl encoding. To mark the end of
the string, the special ASClI-value NULL (0x00) is used to terminate the string.

The length of a string is the number of characters before the terminating NULL.
To calculate the length of a string we can loop through the characters and keep
count of the number of characters until a terminating NULL is found.

Because each character is one byte, we must only increase the address by 1 byte
each time in the loop. Finish the subroutine string_length and be sure to include
clear comments.

TASK THREE: string_for_each

This routine will take the memory address of a string and the memory address of
another subroutine. It will go through every letter in the string and for each letter
call the subroutine. We will use this to convert every letter in the to upper case
later by providing a string and a function that converts letters to uppercase.

High-level languages can take a string and print out each character on a separate
line. For example, the string "ABCabc" would be print out as:

Ascii('A') = 65 (0x41)
Ascii('B') = 66 (0x42)
Ascii('C') = 67 (0x43)
Ascii('a') = 97 (0x61)
Ascii('b") = 98 (0x62)

Ascii('c') =99 (0x63)

We would like to have something similar to this in MIPS assembly.

We can achieve this by writing a subroutine string_for_each taking the address
to a string as the first input parameter and the address to a callback subroutine
as the second input parameter. The subroutine then loops through all characters
in the string and for each character, calls the callback subroutine with the
address of the characters as input. In pseudo code it looks like this:

string_for_each(string, callback) {
for each character in string {

callback(address_of(character))

}

Translating this to MIPS assembly, the input to the callback, the address to a
character is put in the $a0 register.

In the source file string_functions.s there is a subroutine called
“print_test_string” that takes an address to a character in memory and writes
out the ASCII value as shown above. (E.g., “Ascii(‘A’) = 65 (0x41)” if we give it the

address of the value ‘A’.)

Your task is to complete the subroutine string_for_each. When you’re done, the
main program should be able to write out all the ASCIl values in the string
correctly. Be sure to test with various strings, especially the empty string "". You
can test with different strings by either modifying the string used by the main
subroutine or by creating your own strings.

TASK FOUR: string_to_upper

Here you will write a subroutine that takes an address to a letter, determines the
upper case version of that letter, and stores it back into the same memory
location. (E.g., it changes the data in memory to uppercase.) We will then use
this in the string_for_each subroutine to convert a whole string to uppercase.

HINT: Have a look at the ASCII table below... What is the difference between a
lower case 'a' and the upper case 'A'? When do you need to change the character
and when not? (To read the table, you can see that ‘A’ = 0x41 and ‘a’ = 0x61.)

TASK FIVE: reverse_string

Werite a subroutine to reverse a string. When given a string such as “ABC” as
input it should produce “CBA” as the output.

Write a new subroutine called “reverse_string” from scratch. This subroutine
should modify the characters in the original memory space of the string and not
create a new one.

You will need to add new code to “main” to print out the results on the console.

0 |1[2[3[a]s5][6]7
OtNlJL‘DLE'space;O‘@’P.‘?p
* s 1 1A Q3] g
2 [sx|oc2| * 2B IR B |t
3 e |[fF #[3/C |8 |c|s
4 [eot|oce| ¢ (4D [T |d|t
5 ENa NaK| % |5 E U | e u
6 ax|syw & | B | F V| f |y
7 (eelem| * [72 16 [W|g|w
8 s |ean| ([8 [H | X | h | x
o [wr[em|)y [B[1 XY |ily
Alr(se| | BOPZ Tz
B v |esc| « [PN [BkY
clrlr] . | < BN \ Bl |
D & [os| - [= M|] [ml}
Elsolrs| | > BN »~ Bl ~
Fla|us| 7 [72 el _ Pol e

Hint: How can you use the address of the string and the string_length subroutine
you already wrote to swap the first and last letters? Can you then write a loop
that on the next iteration swaps the 2nd and 2nd-to-last letters? When would
this loop end? What about even-length and odd-length strings?

