
MIPS and SPIM tutorial
Part One: add, addi, seq, jal, jr

November 2008

karl.marklund@it.uu.se

Your MIPS assembly programming
training starts now – sit down at your
computer and get ready!

From the department Unix system...

...open up a command
shell and type xspim &
and press enter to
launch SPIM.

SPIM is a simulator for MIPS.

http://pages.cs.wisc.edu/~larus/spim.html

If you prefer, you can download
and install SPIM on your private
computer.

On Unix/Linux SPIM looks like this:

On Windows SPIM looks like this:

Here you can
see the
contents in all
32 registers.

Here you can see
the instructions.

Register have names,
for example $2 (R2) is
called $v0.

Here you can see
the contents of the
memory.

On Unix/Linux you have these
buttons. In Windows you will have
to use the menus.

MEMORY

ContentAddress

0xFFFFFFFF

0xFFFFFFFE

0x00000000

0x00000001

0x00000002

0x00000003

.

.

.

0xFFFFFFFC

0xFFFFFFFD

The memory is
divided into
segments.

The machine
instructions are
stored in the
text segment.

Data needed by
the program is
stored in the
data segment.

We start by looking at a small
example program in MIPS assembly.

.text

.globl main

main:

jr $ra

The assembler directive .text instructs
the assembler to treat what follows as
program instructions. The assembler
will translate each line (instruction) to
the binary machine instruction and
store the result in the text segmentet in
memory.

first_try.s
A label is used to
refer to places in
the program.

A label is just a
named address in
memory (text
segment).

The label main must be
decleared global using
the .globl directive.

When SPIM
starts, it will load
your program and
start executing at
the label main.

Your program must
allways end with the
instruction:

jr $ra

Jump Register (ra).

.text

.globl main

main:
addi $t0, $zero, 3
addi $t1, $zero, 2

add $t2, $t0, $t1

seq $t3, $t0, $t1
seq $t4, $t0, $t0

jr $ra

first_try.s

Lets add some
instructions
here...

...this is stuff we
know:

addi (add immediate)
add (addition)
seq (set equal)

The file name of a MIPS assembly
program got the suffix .s

.text

.globl main

main:
addi $t0, $zero, 3
addi $t1, $zero, 2

add $t2, $t0, $t1

seq $t3, $t0, $t1
seq $t4, $t0, $t0

jr $ra
You must document
your code!

.text

.globl main

main:
addi $t0, $zero, 3 # a = 3
addi $t1, $zero, 2 # b = 2

add $t2, $t0, $t1 # c = a + b

seq $t3, $t0, $t1 # d = 1 iff a == b else d = 0
seq $t4, $t0, $t0 # e = 1 iff a == a (sic)

jr $ra # return to caller

first_try.s
A comment starts with #

In the comments we use
normal language – we don’t
use register names!!!

.text

.globl main

main:
addi $t0, $zero, 3 # a = 3
addi $t1, $zero, 2 # b = 2

add $t2, $t0, $t1 # c = a + b

seq $t3, $t0, $t1 # d = 1 iff a == b else d = 0
seq $t4, $t0, $t0 # e = 1 iff a == a (sic)

jr $ra # return to caller

first_try.s
The comments should
describe what your program
does.

You should be able to
understand the program
without the code – only
looking at the comments.

Load the source file
first_try.s

Allway – Allways – Allways

Look for error messages here:

On Unix/Linux you can load the
program using this button.

On Unix/Linux you can also load
the program from the command
line using the –file option

Hmm...

What is this?

This is not the instructions
from our first_try.s

SPIM (not MIPS) comes
with a small operating
system. This code is used
to start your user level
program. To execute one instruction

(single step) – press F10

...and now you can single
step by clicking this button.

On Unix/Linux you single
step by clicking the step
button...

...which opens up this
dialog...

After you pressed F10
(single step) once, the
blue line moves down one
instruction.

This means that the
previous instruction has
been executed

The Program Counter (PC)
is a special register used to
hold the address of the
instruction to be executed.

Here you see the memory
address of each instruction.

Keep single stepping until
you reach this instruction

Look at PC

Look at the $ra register

You might
have to
scroll down

The next instruction to be
executed is:

jal main

Jump And Link (jal)

The jal main
instruction
will jump to
the main
label in the
first_try.s
program.

Hold your eyes at
the $ra register!

You can now
procede with a
new single
step!

The jal main
instruction changed
the PC

$ra changed from
00000000 to 00400018

Execution
now
continúes in
main.

The next instruction
to be executed is:

Addi $t0, $zero, 3

The first instruction in
main.

$ra is used to store the
return address so we
can return from main.

The operating system is
calling main and we use
$ra to return back to the
caller.

$ra now hold the address to the
instruction following the jal main.

Look at the $t0 register

$zero means $r0, this
is a specail read-only
register holding the
value 0 (zero).

Next instruction to be executed.

Machine instruction: 0x20080003

BinärtDecimaltHexadecimalt

3*160 = 3
0
8* 2*160 = 8
2*161 = 32

0000 0011
0000 0000
0000 1000
0010 0000

0x03
0x00
0x08
0x20

001000 00000 01000 0000 0000 0000 0011

rsop rt immediate

OP code for addi we
know how the rest of the
bist are used...

Register 8Register 0 Immediate constant 3

addi $8, $0, 3

Machine instruction: 0x20080003

BinärtDecimaltHexadecimalt

3*160 = 3
0
8* 2*160 = 8
2*161 = 32

0000 0011
0000 0000
0000 1000
0010 0000

0x03
0x00
0x08
0x20

001000 00000 01000 0000 0000 0000 0011

rsop rt immediate

OP code for addi we
know how the rest of the
bist are used...

Register 8Register 0 Immediate constant 3

addi $8, $0, 3

You can now
procede with a
new single
step!

$t0 now changed from
00000000 to 00000003

You can now
procede with a
new single
step!

The result from

addi $t0, $zero, 3

, can now be seen in
the $t0 register.

$t1 now changed from
00000000 to 00000002

You can now
procede with a
new single
step!

The result from

addi $t1, $zero, 2

, can now be seen in
the $t1 register.

$t2 now changed from
00000000 to 00000005

You can now
procede with a
new single
step!

The result from

add $t2, $t0, $t1

, can now be seen in
the $t2 register.

You can now
procede with a
new single
step!

ALERT!!!!

The seq instruction is
not translated to one
machine instruction,

The seq instruction is a
pseudo instruction:

There is no such machine
instruction. Instead several
other machine instructions
are used to perform the seq
instruction.

single step
again!

Still not done with the
pseuod instruction...

You can now procede
and single step
through the next seq
instruction.

Now we are done with
the seq pseudo
instrucion.

To execute the seq
pseudo instruction,
four real machine
instruction where used.

$t3 is still 00000000 because $t0
is not eaual to $t1.

Stand by!

The next instruction
is important.

$t4 now changes from 00000000
to 00000001 because $t0 is equal
to $t0.

We will now
return back to the
caller of main...

Look at PC

Normaly the next instructin is four bytes
ahead of PC (00400054).

Jump Register $ra

Using the stored return
address in $ra we can jump
back to the caller.

Look at the $ra register
You might
have to
scrol down

When you single
step once more,
PC will be set to
the value in $ra.

And we´re back

We are now back to the
operating system right after
the jal main.

PC now changed from
00400050 to 00400018

Singel step
again.

Shut down
To exit from spim the operating system
first set register $v0 to 10 using load
immediate (li).

Single step
again.

Syscall
In SPIM you can use a number of
system calls (syscall).

Each system call has a call code.

The call code for exit is 10.

You specify the call code in $v0.

Single step
again.

If you try to single
step again,
nothing will
happen.

PC is now 00000000

The the simulated machine is halted.

To run the program again, reload the
assembly file.

Click yes.

On Unix/Linux you reload using
this button.

assembly file

... makes the following option
vissible.

Clicking the reload button...

assembly file

To complete the reload you must
point the mouse here.

After the reload you can
run the program again
using single step

Or you can run from start
to finish by pressing the F5
key.

...press OK.

On Unix/Linux you run from
start to end using the run
button...

...which opens up this
dialog...

You are now done with part
one of your MIPS assembly
programming training.

