
Uppsala University

Algorithms and Data Structures I
1DL210 Autumn 2020 - Group 13

Assignment 2

Copyright authors:
Henrik Schulze, Neethu Joseph

3rd October 2020

ABSTRACT

• Unless you have asked for and received special permission, solutions must be prepared in pairs,
triples or quadruple. If you got special permission for the first assignment, you also have special
permission for this assignment.

• The provided skeleton code is supposed to be run on the Unix/Linux system.

• If you are not using the python skeleton code, make sure that your program behaves similarly.
In this case, you probably need to re-implement yourself a test() function to test your program.

• When you have completed the assignment, you should have four files: three sorting programs
and one Pdf document explaining the differences between them.

• Submit the resulting these files to Studentportalen. Only one of you needs to do this.



1 Implementation of Sorting Algorithms

In this section, you are going to implement three different sorting algorithms based on their
textbook descriptions that you can also find in the lecture slides. Each algorithm is to be
implemented as its own program.

• Your program should read a file called nums.txt, which can be assumed to contain in-
tegers separated by newlines, sort them using the algorithm in question, and then output a
file nums_sorted.txt of the same form but with all numbers sorted.

• Additionally, your program should verify that your result matches the output of the already
given bubblesort algorithm.

Note that the arrays in the textbook are indexed from 1, whereas in most programming languages
they are indexed from 0.

1.1 Skeleton Code

We provide some skeleton code in Python, which is the language we recommend for the assign-
ments in this course. You are of course free to implement the algorithms in the language of
your choice as long as the programs meet the requirements. The skeleton code consists of the
following:

• rangen.py takes an integer argument n and outputs a file nums.txt containing n rows with
random numbers in the range {0, ..., n− 1}. Example of usage: python rangen.py 61.

• sort.py contains an implementation of the bubblesort algorithm along with the function test
that verifies the output of your implementation matches the output of the provided sorting
algorithm bubblesort. Example of usage: python sort.py. Look at function test for the code
for time measurement, and use it in your implementation. Also, you need to use import time
at the beginning of your file.

1



1.2 Insertion sort (2p)

Implement insertion sort.

Answer.
See the file insertionsort.py attached as a separate file.

1.3 Heapsort (3p)

Implement the functions Max-Heapify, Build-Max-Heap, and Heapsort as you have seen in the
lectures.

Answer.
See the file heapsort.py attached as a separate file.

1.4 QuickSort (3p)

Start by implementing Partition. Then use it to implement QuickSort.

Answer.
See the file quicksort.py attached as a separate file.

2



1.5 Comparison (2p)

Run your implementation of InsertionSort, HeapSort and QuickSort for five times for each cat-
egory of input sizes 1000, 10000 and 20000. Measure the running times, calculate the average
running time for each category of inputs. Do the same for Bubblesort. Compare average running
times of four algorithms for each input category and plot a graph. What can we deduce?

Answer.
For bubblesort, see the file bubblesort.py attached as a separate file.

Our results are as shown in the following table, where all times are given in seconds.

1000 10000 20000
bubblesort 0.128 13.881 55.969
insertionsort 0.039 4.212 15.926
heapsort 0.006 0.051 0.119
quicksort 0.003 0.028 0.055

We conclude that heapsort and quicksort are considerably faster than both insertion sort and
bubblesort for large data sizes. This is well in line with what we should expect from the theoretical
result saying that heapsort and quicksort both belong to the time complexity class Θ(n log(n)),
where n is the size of the data (in the case of quicksort when data is “well shuffled”). Whereas
insertion sort and bubblesort belong to Θ(n2).

3


