
JIP J. DEKKER - UPPSALA UNIVERSITY
GUSTAV BJÖRDAL - UPPSALA UNIVERSITY
MATS CARLSSON - SICS
PIERRE FLENER - UPPSALA UNIVERSITY
JEAN-NOËL MONETTE - TACTON

AUTO-TABLING FOR
SUBPROBLEM
PRESOLVING

IN MINIZINC

1

Goal: Find an order in which
all cards can be moved into
the middle (the black hole).
Constraint: The solution order
must match the order of the
heaps.
Constraint: Each card in the
solution order must be one
rank apart from the next one.

BLACK HOLE PATIENCE

2

ONE RANK APART

3

WHAT WE WOULD LIKE TO WRITE:
 predicate rank_apart(var 1..52: a, var 1..52: b)
 = abs((a - b) mod 13) in {1,12};

4

WHAT YOU FIND IN THE MINIZINC
CHALLENGE:

 neighbours = array2d(1..(52*2*4), 1..2, [
 1, 2,
 1, 13,
 1, 15,
 1, 26,
 1, 28,
 1, 39,
 1, 41,
 1, 52,
 2, 1,
 2, 3,
 2, 14,
 ...

5

TABLING
Replacing part of the model by a precomputed
table.
This can work because:

Table constraint can provide domain-consistency.
Propagation is faster for table constraints.

It works similarly with other extensional constraints
like regular and MDD.

6

USING OUR TOOL
 predicate rank_apart(var 1..52: a, var 1..52: b)
 ::presolve(autotable)
 = abs((a - b) mod 13) in {1,12};

7

8

MiniZinc is a high-level constraint modelling
language
Focus on modelling, not programming!
Model once, run everywhere! Not just on CP
backends.

9

PREDICATES AND ANNOTATIONS
A way to form “sub-models” within MiniZinc
 predicate rank_apart(var 1..52: a, var 1..52: b)
 ::presolve(autotable)
 = abs((a - b) mod 13) in {1,12};

10

OUR GOAL
Automate the tabulation of MiniZinc predicates.

ADDITIONAL GOALS
Integrate this automation within the MiniZinc
compiler.
The automated tabling should not require change to
the solver backends.

Ease of use is key!

11

THE COMPILATION PROCESS

12

BLACK HOLE MODEL
...
% Card at position
array[1..52] of var 1..52: card;
...
predicate rank_apart(var 1..52: a, var 1..52: b)
::presolve(autotable)
 = abs((a - b) mod 13) in {1,12};
...
constraint forall(i in 1..51)(
 rank_apart(card[i], card[i+1])
);
...
solve satisfy;

13

THE AUTOTABLE SUBMODEL
var 1..52: a;
var 1..52: b;

predicate rank_apart(var 1..52: a, var 1..52: b)
 = abs((a - b) mod 13) in {1,12};

constraint rank_apart(a, b);

solve satisfy;

14

REPLACING THE PREDICATE
% Card at position
array[1..52] of var 1..52: card;

predicate rank_apart(var 1..52: a, var 1..52: b)
 = table_int(
 [a, b],
 array2d(1..416, index_set([a, b]),
 [2, 1, 13, 1, 15, 1, 26, 1, 28, ...])
);

constraint forall(i in 1..51)(
 rank_apart(card[i], card[i+1])
);

solve satisfy;

15

TEST CASES
All our test cases are available on GitHub

MiniZinc Challenges
Black Hole Patience
JP Encoding Problem
Elitserien Handball

Master's Thesis
Block Party Meta-cube

16

TESTED BACKENDS
Constraint Programming

Gecode
Chuffed
or-tools

Other Backends
or-tools/SAT — SAT solver
MinisatID — hybrid solver
MZN/Yices2 — SMT solver
MZN/OscaR.cbls — CBLS solver

17

18

19

20

CONCLUSIONS
Tabling is made easy to use and nonintrusive.
Auto-tabling may make a big difference in model
performance.
Try it! It's open source!

21

FUTURE WORK
The caching of presolving results.
Support for float and set variables
Done: Presolve a�er flattening.
Study whether our presolving observations
generalise.
Presolve into an MDD instead of a table

22

THANKS TO
Justin Pearson
Peter Stuckey
Guido Tack
Diego de Uña Gomez
The anonymous referees for their helpful comments.

Pierre Flener and Gustav Björdal are supported by the
Swedish Research Council (VR) under grant 2015-4910.

23

THANK YOU FOR LISTENING!

JIP J. DEKKER
GitHub:
Twitter:
E-mail:

@Dekker1
@DekkerOne

jip@dekker.one

24

https://github.com/Dekker1
https://twitter.com/DekkerOne
mailto:jip@dekker.one

EXTRA SLIDES
Press the down-button

25.1

DIFFERENT STRATEGIES
Solve in different scopes
Default: the instance-strategy

25.2

MODEL STRATEGY
Solve according to the predicate definition.
Advantages

Allows you to save the result and use for more
instances

Disadvantages
Can't use variable array sizes
Can't use external data
Big resulting tables

25.3

CALLS STRATEGY
Solve for every FlatZinc call separately
Advantages

Small resulting tables
Can use different amounts of variables per call

Disadvantages
High presolving times

25.4

BLACK HOLE REFERENCING

25.5

BLOCK PARTY

25.6

BLOCK PARTY
predicate link_cube_and_symbols(
 array[1..4] of var int: cs
) :: presolve(autotable)
= let{
 var 1..24: pos;
 var int: cube = cs[1];
} in forall(i in 1..3)(
 data[cube,pp[pos,i]]=cs[i+1]
);

25.7

