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Goal: Find an order in which
all cards can be moved into
the middle (the black hole).
Constraint: The solution order
must match the order of the
heaps.
Constraint: Each card in the
solution order must be one
rank apart from the next one.

BLACK HOLE PATIENCE
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ONE RANK APART
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WHAT WE WOULD LIKE TO WRITE:
    predicate rank_apart(var 1..52: a, var 1..52: b) 
        = abs( (a - b) mod 13 ) in {1,12}; 
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WHAT YOU FIND IN THE MINIZINC
CHALLENGE:

    neighbours = array2d(1..(52*2*4), 1..2, [ 
        1, 2, 
        1, 13, 
        1, 15, 
        1, 26, 
        1, 28, 
        1, 39, 
        1, 41, 
        1, 52, 
        2, 1, 
        2, 3, 
        2, 14, 
        ... 
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TABLING
Replacing part of the model by a precomputed
table.
This can work because:

Table constraint can provide domain-consistency.
Propagation is faster for table constraints.

It works similarly with other extensional constraints
like regular and MDD.
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USING OUR TOOL
    predicate rank_apart(var 1..52: a, var 1..52: b) 
    ::presolve(autotable) 
        = abs( (a - b) mod 13 ) in {1,12}; 
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MiniZinc is a high-level constraint modelling
language
Focus on modelling, not programming!
Model once, run everywhere! Not just on CP
backends.
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PREDICATES AND ANNOTATIONS
A way to form “sub-models” within MiniZinc
  predicate rank_apart(var 1..52: a, var 1..52: b) 
  ::presolve(autotable) 
      = abs( (a - b) mod 13 ) in {1,12}; 
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OUR GOAL
Automate the tabulation of MiniZinc predicates.

ADDITIONAL GOALS
Integrate this automation within the MiniZinc
compiler.
The automated tabling should not require change to
the solver backends.

Ease of use is key!
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THE COMPILATION PROCESS
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BLACK HOLE MODEL
... 
% Card at position 
array[1..52] of var 1..52: card; 
... 
predicate rank_apart(var 1..52: a, var 1..52: b) 
::presolve(autotable) 
    = abs( (a - b) mod 13 ) in {1,12}; 
... 
constraint forall(i in 1..51)( 
    rank_apart(card[i], card[i+1]) 
); 
... 
solve satisfy; 
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THE AUTOTABLE SUBMODEL
var 1..52: a; 
var 1..52: b; 

predicate rank_apart(var 1..52: a, var 1..52: b) 
    = abs( (a - b) mod 13 ) in {1,12}; 

constraint rank_apart(a, b); 

solve satisfy; 
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REPLACING THE PREDICATE
% Card at position 
array[1..52] of var 1..52: card; 

predicate rank_apart(var 1..52: a, var 1..52: b) 
    = table_int( 
        [a, b], 
        array2d(1..416, index_set([a, b]), 
            [2, 1, 13, 1, 15, 1, 26, 1, 28, ...]) 
    ); 

constraint forall(i in 1..51)( 
    rank_apart(card[i], card[i+1]) 
); 

solve satisfy; 
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TEST CASES
All our test cases are available on GitHub

MiniZinc Challenges
Black Hole Patience
JP Encoding Problem
Elitserien Handball

Master's Thesis
Block Party Meta-cube
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TESTED BACKENDS
Constraint Programming

Gecode
Chuffed
or-tools

Other Backends
or-tools/SAT — SAT solver
MinisatID — hybrid solver
MZN/Yices2 — SMT solver
MZN/OscaR.cbls — CBLS solver
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CONCLUSIONS
Tabling is made easy to use and nonintrusive.
Auto-tabling may make a big difference in model
performance.
Try it! It's open source!
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FUTURE WORK
The caching of presolving results.
Support for float and set variables
Done: Presolve a�er flattening.
Study whether our presolving observations
generalise.
Presolve into an MDD instead of a table
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THANK YOU FOR LISTENING!

JIP J. DEKKER
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E-mail: 

@Dekker1
@DekkerOne

jip@dekker.one
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EXTRA SLIDES
Press the down-button
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DIFFERENT STRATEGIES
Solve in different scopes
Default: the instance-strategy
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MODEL STRATEGY
Solve according to the predicate definition.
Advantages

Allows you to save the result and use for more
instances

Disadvantages
Can't use variable array sizes
Can't use external data
Big resulting tables
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CALLS STRATEGY
Solve for every FlatZinc call separately
Advantages

Small resulting tables
Can use different amounts of variables per call

Disadvantages
High presolving times
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BLACK HOLE REFERENCING
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BLOCK PARTY
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BLOCK PARTY
predicate link_cube_and_symbols( 
    array[1..4] of var int: cs 
) :: presolve(autotable) 
= let{ 
   var 1..24: pos; 
   var int: cube = cs[1]; 
} in forall(i in 1..3)( 
    data[cube,pp[pos,i]]=cs[i+1] 
); 
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