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Proportionality on Spatial Data with Context

GEORGIOS J. FAKAS and GEORGIOS KALAMATIANOS, Uppsala University

More often than not, spatial objects are associated with some context, in the form of text, descriptive tags

(e.g., points of interest, flickr photos), or linked entities in semantic graphs (e.g., Yago2, DBpedia). Hence,

location-based retrieval should be extended to consider not only the locations but also the context of the

objects, especially when the retrieved objects are too many and the query result is overwhelming. In this

article, we study the problem of selecting a subset of the query result, which is the most representative.

We argue that objects with similar context and nearby locations should proportionally be represented in

the selection. Proportionality dictates the pairwise comparison of all retrieved objects and hence bears a

high cost. We propose novel algorithms which greatly reduce the cost of proportional object selection in

practice. In addition, we propose pre-processing, pruning, and approximate computation techniques that

their combination reduces the computational cost of the algorithms even further. We theoretically analyze

the approximation quality of our approaches. Extensive empirical studies on real datasets show that our

algorithms are effective and efficient. A user evaluation verifies that proportional selection is more preferable

than random selection and selection based on object diversification.
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1 INTRODUCTION

There is an abundance of public and private datasets which include geo-spatial information exist.
For instance, on the web, there are publicly accessible datasets with GIS objects or POIs (e.g.,
spatialhadoop datasets1), datasets with geo-tagged photographs (e.g., flickr), data from online
geo-social networks (e.g., Foursquare, Gowalla), semantic knowledge graphs (e.g., YAGO [32],
DBpedia), and so on. Acknowledging the significance of discovering datasets and making them

1http://spatialhadoop.cs.umn.edu.
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Fig. 1. Example of proportionality (querying for museums in Stockholm).

universally accessible and useful, Google recently introduced Google Dataset Search,2 which
facilitates the discovering of web-accessible datasets. Acknowledging also the need for retrieval,
various search paradigms have been proposed by the research community. For instance, keyword
search paradigms liberate users from technical details such as understanding the nature and
structure of the data or a programming language [1, 13, 15, 23, 24, 26, 33, 34, 39, 45, 46, 59].

In this article, we focus on the location-based retrieval of spatial entities in datasets. We assume
that the spatial objects, besides having a location, are also enriched with some context. The context
could be either explicit, i.e., in the form of descriptive text or tags, or implicit, i.e., it could be derived
by linked neighboring objects in semantic resource description framework (RDF) graphs. Re-
trieval models that consider the context of spatial objects, typically combine proximity to a query
location and contextual relevance to a set of query keywords [10]. If the context is explicit, popular
information retrieval models, such as cosine similarity or tf-idf, can be used to model relevance.
Examples of datasets on which such models apply are collections of POIs or geo-located flickr
photographs annotated with description tags. If the context is implicit, contextual relevance can
be defined by considering the linked entities in subgraphs, which include the query keywords. For
instance, the search paradigms of [4, 44] consider minimal subgraphs of nodes that collectively
contain the keywords, whereas the object summaries (OSs) paradigm [15, 17, 18] considers trees
rooted at nodes containing the keywords. Examples of datasets on which such models apply are
RDF knowledge graphs (e.g., YAGO, DBpedia) and social networks (e.g., Facebook, Gowalla). It is
important to note that, regardless of the type of spatial objects and datasets, contextual similarity
between objects can be measured using Jaccard similarity between the corresponding sets of items
in their context. Namely, the items can be keywords, tags, dataset nodes, RDF graph nodes.

Example. The OS paradigm [14–17, 19, 20] summarises information about entities and consti-
tutes an example of implicit context in graphs. A spatialOS (sOS) is a tree rooted at a spatial entity
in a database (i.e., a tuple with a location attribute) or an RDF graph and its context is derived by
the set of neighboring important entities (linked either directly or indirectly to the spatial root via
foreign key links or RDF predicates). For example, consider a user that wishes to get information
about museums in Stockholm from DBpedia (Figure 1). A spatial OS will comprise a node repre-
senting the “Swedish History Museum” as a root and child nodes including contextual information,
e.g., “Nordic museum”, “History museum”, “Viking collections”, and so on (spatial OS1).

Overall, the retrieval goal is finding spatial objects, which are near the query user location and
relevant to the query context (e.g., keywords, entities). A retrieval score for each query result can
be defined by combining spatial distance with contextual relevance (e.g., to query keywords). Still,
the query results could be too many and may overwhelm the user. A typical approach is to rank the

2toolbox.google.com/datasetsearch.
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results based on their score and return the top-k objects [10, 44]. However, the most relevant spatial
objects could be in the same direction w.r.t. the query location and/or could be too similar to each
other in terms of context [12, 37, 48]. For instance, consider a user at location q in Figure 1, who is
searching for nearby museums; the top-3 places p1, p2, and p3 are all located in the same direction
with respect to the query and have almost similar context (2 out of 3 are history museums).

Several studies reveal that users strongly prefer spatially and contextually diversified query
results over un-diversified ones and propose algorithms which select a small number of results,
which are not only relevant, but also spatially and contextually diverse [50, 57]. Recently, Cai et al.
[4] introduced diversification on spatial keyword search by combining relevance and diversity.
Namely, the output places, in addition to being relevant to the query, should be diverse w.r.t. their
context and location. For instance, a diversified query result for Figure 1 could include p1 (a history
museum), p3 (ABBA museum) and p4 (Nobel museum). These places are close to the query and at
the same time they are diverse because they are located in different directions w.r.t. the query
location and they have quite different context.

Still, simple diversity measures disregard the spatial and contextual distribution of the objects;
hence, they may fail to retrieve a representative subset of the query results, compromising the qual-
ity of the answers given to the user. For instance, consider the example above, we see that 2 out of
4 places are history museums in the same direction w.r.t query location. More precisely, these two
places share many common nodes (e.g., common Type and Collection nodes) and are located in the
same direction w.r.t. query. This reveals that the general area is dominated by (history) museums
located on the right side of the query. Therefore, by representing proportionally these properties
(at the same time facilitating diversity), we assist users to comprehend the area; diversification
fails to reveal such insightful information. Thus, in this article, we study selecting a subset of the
query results by combining (1) relevance, (2) spatial proportionality w.r.t. the query location and
(3) contextual proportionality w.r.t. the descriptive entities of the objects. In our running example,
a proportional result will include p1, p2 and p4; where similar and proportional p1 and p2 places are
diverse to p4. Our problem definition and solutions are general and can be applied to any search
paradigm where the output is a (ranked) set of spatial entities with (either explicit or implicit)
context.

The proportionality problem introduces efficiency challenges as we need to perform pairwise
comparison to all retrieved objects, in order to determine the frequent common properties. In view
of this, we propose novel efficient algorithms addressing contextual and spatial proportionality.
Our contributions can be summarized as follows:

— We introduce the problem of proportionality in location-based retrieval for objects with
context and show that it is NP-hard. We also propose novel proportionality measures w.r.t.
location and context.

— We propose a generic algorithmic framework which (1) calculates proportionality scores,
(2) applies a prepossessing and pruning algorithm (i.e., P&P ) and (3) adapts existing greedy
diversification algorithms (i.e., IAdU and ABP ) [4].

— We propose efficient algorithms for contextual proportionality (i.e., msJh and apCS
algorithms).

— We propose novel efficient algorithms for the calculation of spatial proportionality (i.e., grid
based algorithms).

— We analyze the approximation bounds of IAdU , ABP , apCS and grid based algorithms.
— We present a thorough evaluation on real datasets demonstrating the efficiency of our algo-

rithms. We conduct a user evaluation verifying that proportional results are more preferable
than non-proportional or diversified results.

ACM Transactions on Database Systems, Vol. 48, No. 2, Article 4. Publication date: May 2023.
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A preliminary version of this paper that introduces the semantics and algorithms on the propor-
tionality problem on spatial objects appears in [36]. In this article, we introduce new algorithms
(P&P and apCS) that reduce the total time by up to one order of magnitude in expensive cases
(Sections 5.2 and 6.2). At the same time, the combination of these two algorithms improves the
proportionality quality of the results (by increasing HPF (R ) score up to 9%). In addition, we en-
rich the theoretical analysis of our algorithms by including proofs of approximation bounds for
apCS and grid based algorithms (Sections 8.2 and 8.3). Finally, we provide a more comprehensive
evaluation of our algorithms.

The rest of the article is organized as follows. Section 2 presents related work. Section 3 contains
the background work. Sections 4 and 5 formalize our problem and introduce the general framework.
Sections 6 and 7 propose efficient contextual and spatial proportionality algorithms. Section 8
provides a theoretical analysis of the approximation bounds of algorithms. Section 9 contains our
experimental evaluation. Finally, Section 10 concludes the article.

2 RELATED WORK

Our proposed proportional selection framework considers (1) the relevance of the objects to the
query (i.e., spatial distance and keywords similarity) (2) contextual proportionality and (3) spatial
proportionality w.r.t. the query location. To the best of our knowledge, there is no previous work
that considers all these together in proportional selection, as Table 1 shows. Hereby, we discuss
and compare related work in diversification and proportionality.

Diversification. Diversification of query results has attracted a lot of attention as a method
for improving the quality of results by balancing relevance to the query and dissimilarity among
results [9, 21, 22, 30, 53]. The motivation is that, in non-diversified search methods, users are
overwhelmed with many similar answers with minor differences [37]. PerK [48] and DivQ [12]
address the diversification problem in keyword search over relational databases; they use Jaccard
distance as a measure of similarity between the keywords in the node-sets that constitute the query
results.

Spatial Diversification. Several works consider spatial diversification, which selects objects
that are well spread in the region of interest [7, 43, 47]. In [29, 35], diversity is defined as a function
of the distances between pairs of objects. However, considering only the distance between a pair
and disregarding their orientation could be inappropriate. In view of this, van Kreveld et al. [52]
incorporate the notion of angular diversity, wherein a maximum objective function controls the
size of the angle made by a selected object, the query location, and an unselected object. Recently,
Cai et al. [4] combine both spatial and contextual diversity and propose a new measure for spatial
diversity (to be described in detail in Section 3).

Contextual Proportionality. [8, 11, 49, 55] facilitate proportional diversity by considering
topics (categories) on items’ characteristics and then by proportionally representing these topics.
In contrast, our work considers proportionality directly on entities (words, nodes, etc.), which is
more dynamic and avoids complications of classifying results in topics (Table 1). In [11] (an early
work on this area), an election-based method is proposed to address proportionality. However,
this method disregards the relevance of items to the query and thus they may result in picking
irrelevant items. In [21, 55], this limitation is addressed by considering relevance in the objective
function. Proportionality has also been studied in recommendation systems. For instance, [56]
facilitates proportionality by considering topics on both users and items’ characteristics. Previous
work does not solve the proportionality problem, considering spatial relevance and diversity in
space and context.

Spatial Proportionality has also been studied on Geographical data. For instance, [28] facili-
tates proportionality by clustering POIs in sub-regions and then by proportionally recommending

ACM Transactions on Database Systems, Vol. 48, No. 2, Article 4. Publication date: May 2023.



Proportionality on Spatial Data with Context 4:5

Table 1. Related Work vs. Our Work ([this])

Contextual Proportionality Spatial Proportionality
Relevance

Entities Topics Query Location Regions

[this], [21] [8, 11, 49, 55] [this] [28] [this], [21, 55]

POIs from these sub-regions. This approach is restrictive since proportionality is based on static

regions rather than dynamic areas around a query location (which is what we propose); in addition,
this approach uses the locations of POIs, but disregards their context (Table 1).

Jaccard Similarity Computation. Our approach involves Jaccard similarity computations for
numerous pairs of (small) sets. Existing work on efficient Jaccard similarity calculation between
sets focuses on the scalability w.r.t. both (1) the size of sets and (2) the number of sets. For instance,
minhash is an approximation algorithm that detects near duplicate web pages. Many of these algo-
rithms are top-k (or threshold based) and thus are designed to terminate fast by pre-processing sets
(e.g., sorting or locality-sensitive hashing (LSH) [3, 40]). Such a processing can be an effective in-
vestment for top-k searches; on the other hand, in our case where we need to compare all pairs, it is
an unnecessary overhead. Some algorithms (e.g., minhash) construct signatures in order to speed-
up comparisons. Similarly, signatures require preprocessing, which is a useful investment on very
large sets; however, for moderate to small sets (as in our case), signatures are not effective and this
preprocessing does not pay off. In summary, existing eminent techniques that address scalability
in operations that involve Jaccard similarity computations are not appropriate for our problem.

3 BACKGROUND

In this section, we describe the type of data that we focus on and how existing methodologies can
be used for their retrieval. We also discuss in more detail the spatial diversity we use.

Spatial objects with context. We consider a large collection of objects which have spatial
locations and some form of context. The spatial locations are described by a set of coordinates
and common distance metrics apply on them (e.g., Euclidean distance). The context can be in
different forms [27, 38]. Specifically, the context can simply be a set of descriptive keywords or
tags. Another type of context could be the set of nodes (or RDF entities), which are linked to the
object in a graph. Regardless the form of the context and without loss of generality, we use Jaccard
similarity to model the similarity between the contexts of two objects.

Retrieval of relevant spatial objects and their relevance score. For a given query, we as-
sume that the result of relevant spatial objects (denoted as S) and the respective relevance score
per object (denoted as rF (pi )) are given to us. This renders our methodology more general and thus
can be combined with any type of retrieval methods (i.e., rF (pi ) definitions) or type of data (i.e.,
implicit or explicit). Hereby, we discuss how and with what speed we can achieve S and rF (pi )
scores.

There is a plethora of existing work, that can facilitate the fast retrieval of spatial objects using
spatial-keyword properties. Such methodologies can be used for both pruning the whole popu-
lation of (infinite) objects (i.e., generation of S) and also for the estimation of respective rF (pi )
scores. For instance, [25] outputs the K nearest objects to a query point where each object covers
all query keywords. [10] outputs a list of K objects ranked based on their spatial proximity to the
query point and textual similarity to the keywords. For such purposes, spatial-keyword indices
are introduced. These indices are usually based on R-Tree and its variants, where each minimum
bounding rectangle keeps the textual information of the objects located within its bounds by using
inverted files [10] or bitmaps [25]. Such methodologies are very fast. According to studies [6], the
retrieval cost is quite low (e.g., it ranges from 5–40 ms in the experiments of Reference [6]). Hence,

ACM Transactions on Database Systems, Vol. 48, No. 2, Article 4. Publication date: May 2023.
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Fig. 2. Ptolemy’s spatial diversity (dS (pA1,pA2) > dS (pB1,pB2) > dS (pC1,pC2)).

our proportional selection problem may be a large factor in the cost of the overall process (i.e., for
the S retrieval and proportional selection times).

Spatial diversity. Cai et al. [4] propose Ptolemy’s diversity, a new spatial diversity metric,
which considers the query location and relative direction of objects from it. Ptolemy’s diversity
between two places pi and pj with respect to a query location q is defined as follows:

dS (pi ,pj ) =
| |pi ,pj | |

| |pi ,q | | + | |pj ,q | |
, (1)

where | |pi ,pj | | is the Euclidean distance between pi and pj . dS (pi ,pj ) is naturally normalized to
take values in [0, 1], since | |q,pi | | + | |q,pj | | ≥ | |pi ,pj | | (triangle inequality). Two places pi and pj

receive a maximum diversity score dS (pi ,pj ) = 1, if they are diametrically opposite to each other
w.r.t. to q; e.g., points pA1 and pA2 in Figure 2. In the same figure, pair of places (pC1,pC2) have
the same distance as pair (pA1,pA2), but dS (pC1,pC2) < dS (pA1,pA2), because pC1 and pC2 are in
the same direction w.r.t q (i.e., north of q). Pair (pB1,pB2) are further from each other compared
to the places in pair (pC1,pC2) and consequently have a higher diversity score (this can be shown
using Pythagorean theorem).

4 PROPORTIONAL SELECTION PROBLEM

Consider a query q and its result S, a set of retrieved places. Each place pi ∈ S carries (1) a
relevance score rF (pi ) combining the distance to q and potentially other criteria (such as relevance
to a set of query keywords [44]), (2) a location, and (3) a context (i.e., a set of contextual items such
as keywords, nodes, etc.). Our objective is to find a subsetR ofS that combines a relevance function

to the query and a proportionality function that considers the location and the context of each place.
IfK and k denote the sizes ofS and R, respectively, then it should be k < K . Note that our problem
definition is general and is independent from any paradigm used to derive the set S of retrieved
objects. For instance, the places can be geo-textual search results [10], spatial object summaries
[15], spatial keyword search results over RDF graphs [44], and so on.

For each place pi in the retrieved set of places S, we assume that the relevance score rF (pi ) of
pi to the query is known. The exact definition of the relevance function rF (pi ) depends on the
retrieval model used; e.g., it could be a linear combination of the Euclidean distance between pi

and the query location q and the relevance of pi ’s context to the query keywords [10, 44].
In this section, we first define proportionality with respect to context and location; then, we

define a holistic score that tradesoff relevance and proportionality; finally, we define the problem
formally. For a place pi , we overload the notation pi to denote its location and contextual set; we
also useC (pi ) to denote the contextual set wherever necessary. Table 2 shows the most frequently
used notation in the article.

4.1 Proportionality Function

Contextual proportionality. We observe in the example of Figure 1 that the places in the re-
trieved set S may have common elements in their contexts. For instance, “History museum”,

ACM Transactions on Database Systems, Vol. 48, No. 2, Article 4. Publication date: May 2023.
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Table 2. Notations

Notations Definition

pi A place (pi also denotes the location and context of the place)

C (pi ) Set of contextual items of pi (e.g., keywords or vertices)

|C (pi ) | or |pi | Number of elements in contextual set of place pi

S A set of K most relevant spatial objects for a given query

R A subset of k of S combining relevance and proportionality

General scores Definition

rF (pi ) Relevance score of pi w.r.t. q

sC (pi ,pj ) Contextual (Jaccard) similarity

sS (pi ,pj ) Ptolemy’s spatial similarity; i.e., 1 − dS (pi ,pj ) (Equation (1))

sF (pi ,pj ) Weighted similarity of pi and pj (Equation (13))

Proportionality scores Definition

pCS (pi ) Contextual proportionality of pi w.r.t. S (Equation (3))

apCS (pi ) Approximated contextual proportionality of pi w.r.t. S (Equation (22))

pCR (pi ) Contextual proportionality of pi w.r.t. R (Equation (4))

pSS (pi ) Spatial proportionality of pi w.r.t. S (Equation (6))

pSR (pi ) Spatial proportionality of pi w.r.t. R (Equation (7))

pFS (pi ) Weighted summation of pCS (pi ) and pSS (pi ) (Equation (11))

pFR (pi ) Weighted summation of pCR (pi ) and pSR (pi ) (Equation (12))

pC (pi ) Contextual proportionality score of pi (Equation (2))

pS (pi ) Spatial proportionality score of pi (Equation (5))

pF (pi ) Combined (contextual and spatial) proportionality of pi (Equation (8))

HPF (pi ,pj ) Holistic proportionality between pi and pj (Equation (15))

HPF (R ) Holistic proportionality score of R (Equation (10))

cHPF (pi ) Proportional contribution of pi if added to R (used by IAdU)

“Nordic museum”, “Viking collections”, and “Jewelry works” appear in both spatialOS1 andOS2 of
S. These contextual elements are representative for the spatial region which includesOS1 andOS2.
Therefore, we argue that in the selection of the subset R, we should favor proportionally places
that include such frequent contextual elements. At the same time, we argue that results forming R
should be dissimilar as to facilitate diversity. In view of these properties we define the proportional
score of a place pi w.r.t. its context as follows:

pC (pi ) = pCS (pi ) − pCR (pi ), (2)

where

pCS (pi ) =
∑

pj ∈S,pi�pj

sC (pi ,pj ), (3)

pCR (pi ) =
∑

pj ∈R,pi�pj

sC (pi ,pj ). (4)

Here, sC (pi ,pj ) measures the contextual similarity of two places as the Jaccard similarity be-
tween the corresponding sets of elementsC (pi ),C (pj ) (e.g., keywords, graph vertices, etc.) in their

contexts; i.e., sC (pi ,pj ) =
|C (pi )∩C (pj ) |
|C (pi )∪C (pj ) | . pCS (pi ) aggregates the similarity between pi and all other

places in S. We also define pCR (pi ) as the similarity of pi to the rest of places in R. The rationale
is that, in our selection, we should penalize pi if it has large similarity pCR (pi ) with the rest places
in R. Hence, to assess the value of pi in R, we subtract pCR (pi ) from pCS (pi ). This is inspired
by earlier work in proportionality [11, 21] that follows the same strategy. The proportional score

ACM Transactions on Database Systems, Vol. 48, No. 2, Article 4. Publication date: May 2023.
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pC (pi ) of a place ranges in [0,K − k], where K and k denote the amount of elements in S and R,
respectively, since each sC (pi ,pj ) ranges in [0, 1].

Spatial proportionality. Similarly, we define the proportionality score of a place w.r.t the query
location. For instance, in our running example, we observe that the area containing places p1, p2,
p3 is a representative neighborhood for the given query (i.e., for both keywords and location), as
opposed to the area containing the spatial outlier p4. Therefore, we argue that we should favor
proportionally places located in such representative neighborhoods w.r.t. the query location. At
the same time, we argue that places should be located in diverse directions w.r.t the query location.
In view of these properties, we define the proportionality score of a place as follows:

pS (pi ) = pSS (pi ) − pSR (pi ), (5)

where

pSS (pi ) =
∑

pj ∈S,pi�pj

sS (pi ,pj ), (6)

pSR (pi ) =
∑

pj ∈R,pi�pj

sS (pi ,pj ). (7)

Here, sS (pi ,pj ) measures the pairwise spatial similarity of two points w.r.t. q by using the com-
plementary of their Ptolemy’s spatial diversity (i.e., sS (pi ,pj ) = 1 − dS (pi ,pj ), Equation (1). The
rationale of the pSS (pi ) definition is to favor a place with many neighbors in S w.r.t q. Simi-
larly, pSR (pi ) favors places spatially diverse to the rest of the places in R. Thus, both pSS (pi )
and pSR (pi ) consider the query location q. pS (pi ) score also ranges in [0,K − k] Like pCS (pi ),
pSS (pi ) also requires computing sS (pi ,pj ) for all pairs of places in S. In Section 6, we propose
data structures that accelerate these computations.

Combined scores. We can combine contextual and spatial proportionality to a proportionality

score as follows:

pF (pi ) = (1 − γ ) · pC (pi ) + γ · pS (pi ), (8)

where γ ∈ [0, 1] controls the relative importance of the two factors. Then, we can combine pro-
portionality and relevance to a holistic score as

HPF (pi ) = (1 − λ) · (K − k ) · rF (pi ) + λ · pF (pi ), (9)

where λ ∈ [0, 1] controls the relative importance of relevance and proportionality. We multiply
the relevance score rF (pi ) by K − k in order to normalize against pF (pi ) that ranges in [0,K − k].
Finally, we can combine these scores for all places in R:

HPF (R ) =
∑

pi ∈R
HPF (pi ). (10)

Additional useful definitions. Before we proceed with the problem definition, we also
introduce additional definitions that are used throughout the article. First, we introduce weighted
(γ ) scores:

pFS (pi ) = (1 − γ ) · pCS (pi ) + γ · pSS (pi ), (11)

pFR (pi ) = (1 − γ ) · pCR (pi ) + γ · pSR (pi ), (12)

sF (pi ,pj ) = (1 − γ ) · sC (pi ,pj ) + γ · sS (pi ,pj ). (13)

pFS (pi ) (resp. pFR (pi )) is the combined similarity (contextual and spatial) of pi and all other
places in S (resp. R), whereas sF (pi ,pj ) is the combined similarity between pi and pj . Based on
the above equations, we can rewrite the definition of the proportionality score pF (pi ) as

pF (pi ) = pFS (pi ) − pFR (pi ). (14)

ACM Transactions on Database Systems, Vol. 48, No. 2, Article 4. Publication date: May 2023.
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We also introduce the following pairwise holistic score that can facilitate the heuristics of our
greedy algorithms (Section 5):

HPF (pi ,pj ) = (1 − λ) · (K − k ) ·
rF (pi ) + rF (pj )

k − 1

+ λ ·
(
pFS (pi ) + pFS (pj )

k − 1
− 2 · sF (pi ,pj )

)
.

(15)

This score is defined in such a way that the summation of HPF (pi ,pj ) scores of all pairs of
places in R will give us the same score as the summation of HPF (pi ) scores of all places in R
(i.e., HPF (R ) =

∑
pi ∈R HPF (pi ) =

∑
pi ,pj ∈R,pi�pj

HPF (pi ,pj )) (Note that Equation (9) can also be

defined as HPF (pi ) = (1 − λ) · (K − k ) · rF (pi ) + λ · (pFS (pi ) − pFR (pi ))). Then, the summations

of rF (pi ), pFS (pi ) and pFR (pi ) for all places in R are equal to the summations of
r F (pi )+r F (pj )

k−1 ,
pF S (pi )+pF S (pj )

k−1 and 2 · sF (pi ,pj ) for all pairs in R, respectively, i.e.,
∑

pi ∈R rF (pi ),
∑

pi ∈R pFS (pi )
and

∑
pi ∈R pFR (pi ), respectively. Thus, we have:

HPF (R ) = (1 − λ) · (K − k ) ·
∑

pi ∈R
rF (pi ) + λ · ��

�

∑
pi ∈R

pFS (pi ) −
∑

pi ∈R
pFR (pi )��

�
. (16)

4.2 Problem Definition

We define the proportional selection problem as follows.

Problem Definition 1. Given a set of K places S (where each place carries a relevance score,

location and set of contextual items), a query location q, and an integer k < K , find a set R of k places

that have the highest HPF (R ) among all k-subsets of S.

As proven below, this problem is NP-hard; thus, we resort to greedy algorithms for solving it.

Theorem 4.1. Problem 1 is NP-hard.

Proof. In order to prove the hardness of our proportionality problem, we construct a reduction
from the independent set problem. Given an undirected graphG (V ,E) and a positive integerk, (k ≤
|V |), the independent set problem is to decide if G contains an independent set R of size k (i.e.,
there is not any edge connecting any pair of nodes in R).

We generate an instance of our problem as follows. Each vertex vi in V corresponds to a place
pi with a contextual setC (pi ). For every edge (vi ,vj ) in E, we add an elementvi, j to the contextual
sets of both pi and pj . We now construct the complete set of places S as follows. First, we add
to S all places that correspond to vertices of V . Let d be the maximum degree of any vertex in
V . For each vertex vi ∈ V , for which the degree deд(vi ) is less than d , we add d − deд(vi ) new
places in S and “connect” them to vi . Namely, for each such new place pj , we add an element vi, j

to the contextual sets of both pi and pj . Finally, we add to the contextual set C (pj ) of each new
place pj d − 1 elements which are unique to pj (i.e., no other place has any of these elements in its
contextual set). As a result, each pi corresponding to a vertex in V with a degree less than d will
have exactly one common element with each of the new places linked to it. In general, all places
pi , which correspond to vertices in V will have identical pCS (pi ) scores because (1) they all have
exactly one common element with exactly d places in S and (2) all places in S have exactly d
elements in their contextual sets. In addition, all places pj which do not correspond to vertices in
V (i.e., all places added later), will have exactly one common element with exactly one place in S.
This means that the pCS (pi ) scores of all pi s corresponding to vertices in V are equal and strictly
larger than the pCS (pj ) scores of all other places pj .
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Fig. 3. Example of reduction.

We can now prove that the k-subset R of S, which maximizes HPF (R ) is a k independent set
in the original graph G. We consider a special case of our problem, where λ = 1 (i.e., we disregard
relevance) andγ = 0 (i.e., we disregard Ptolemy’s diversity). First, all k-subsets ofS, which include
only vertices in V have a common

∑
pi ∈R pFS (pi ) score (equal to

∑
pi ∈R pCS (pi ), since γ = 0),

which is higher than the corresponding score of all k-subsets, which include some vertex outside
V . This is because all vertices in such a subset have the maximum possible pCS (pi ) score (as
discussed above). Second, all k independent sets from V correspond to k-subsets for which the
quantity

∑
pi ∈R pFR (pi ) is zero. This is because all pairs of places in such a set have no common

elements. The reduction takes polynomial time, since the maximum degree of any vertex in |V | is
|V | − 1, which means that we should add at most |V | · ( |V | − 1) edges and vertices. This completes
the proof. �

Figure 3 shows an example of the reduction. Consider the graph shown in Figure 3(a),
which includes four vertices, such that v1 is connected to all vertices and there are no other
edges. A 3-independent set in this graph is {v2,v3,v4}. For the reduction, we initially define
C (p1) = {v1,2,v1,3,v1,4}, C (p2) = {v1,2}, C (p3) = {v1,3}, and C (p4) = {v1,4}. Then, for each one
of the vertices {v2,v3,v4}, we connect it to two new vertices, add the corresponding new places to
S, and update the corresponding contexts. This results in all four original vertices inV to have the
same (maximum) degree 3; hence, all corresponding places have 3 elements in their contexts and
any subset with k = 3 such vertices have the same (maximum) sum of pFS (pi ) scores. At the same
time, each vertex in the independent set R = {v2,v3,v4} has a zero pFR (pi ) score. Overall, any k
independent set problem can be converted to a special case of our problem for λ = 1 and γ = 0.

5 GENERIC PROPORTIONALITY ALGORITHMIC FRAMEWORK

Our problem (Definition 1) requires rF (pi ), pCS (pi ), pSS (pi ) and sF (pi ,pj ) scores. In contrast to
the rF (pi ) score which is given to us, the calculation of pCS (pi ) and pSS (pi ) is very challenging
as it dictates the comparison of all pairs (pi ,pj ) of places in S (i.e., a quadratic number of pairs),
in order to calculate their sF (pi ,pj ). We propose a three-step algorithmic framework (Figure 4). In
step 1, we compute the pCS (pi ) and pSS (pi ) scores. In step 2, we use a prepossessing and pruning
algorithm. Finally, in step 3, we apply greedy algorithms that find R. As we explain below, our
main contribution are the first two steps, since we use previously known greedy algorithms for
the third step.

5.1 Step 1: Compute Proportionality Scores of S
In this step, we calculate the proportionality scores pCS (pi ) and pSS (pi ). As we discuss in the
following sections, baseline approaches for calculating sub functions sC (pi ,pj ) and sS (pi ,pj )
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Fig. 4. Generic algorithmic framework.

require up to |C (pi ) | (size of the contextual set) and 20 operations, respectively. Hence, we need
a total of O (K2 · ( |C (pi ) | + 20)) operations for all pairs of places in S. We introduce tailored
algorithms that greatly reduce this complexity in practice (Sections 6 and 7). We also compare
them with such baseline approaches [4]. During this step, our algorithms (except from the apCS
algorithm) need also to calculate pairwise scores sF (pi ,pj ) before computing proportionality
scores. We cache these scores and reuse them during the execution of our greedy algorithms (as to
save time).

Note that the calculation of sC (pi ,pj ) and pCS (pi ) can be significantly more expensive than the
calculation of sS (pi ,pj ) andpSS (pi ). In view of this, we also propose a very fastpCS (pi ) calculation
algorithm (i.e., apCS), which avoids pairwise scores calculation. In this case, we employ step 2,
which prunes fruitless places and during step 3 we only need to calculate pairwise scores for a
significantly smaller subset of S.

5.2 Step 2: Preprocessing and Pruning of S (P&P )

During this step, we prune places that cannot make it in R. Such a pruning is very effective for
our approximate apCS algorithm (Section 6.2), which bypasses sC (pi ,pj ) computations and delays
them until step 3. More precisely, the apCS algorithm can calculate very fastly pCS (pi ) by avoid-
ing sC (pi ,pj ) pairwise comparisons and caching. Recall that the pairwise sC (pi ,pj ) comparisons
are among our most expensive computations (requiring also quadratic time). Thus, an effective
pruning can reduce expensive fruitless pairwise comparisons.

Given the scores for rF (pi ), pCS (pi ), and pSS (pi ), we can estimate useful bounds of HPF (pi )
that can facilitate pruning of places. We can rewrite Equation (9) as follows:

HPF (pi ) = (1−λ) · (K−k ) ·rF (pi )+λ ·[(1−γ ) ·pCS (pi )+γ ·pSS (pi )]−λ[(1−γ ) ·pCR (pi )+γ ·pSR (pi )].
(17)

All components of Equation (17) are known except from the component HPFx (pi ) = λ[(1−γ ) ·
pCR (pi ) + γ · pSR (pi )]. This component ranges in [λ · k, 0] facilitating the definition of an upper
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ALGORITHM 1: Preprocessing and Pruning of S (P&P )

Input: Set S, where each pi in S carries rF (pi ), pCS (pi ) and pSS (pi ) scores

Output: Pruned and ranked set S

1: for each pi in S do

2: calculate HPFub (pi ) and HPFlb (pi ) using Equations (18) and (19)

3: sort(S) on HPFlb (pi )
4: pk ← S.дet (k )
5: for each pi in S do

6: if HPFub (pi ) < HPFlb (pk ) then

7: Remove pi from S

bound HPFub (pi ) and lower bound HPFlb (pi ) as follows:

HPFub (pi ) = (1 − λ) · (K − k ) · rF (pi ) + λ · [(1 − γ ) · pCS (pi ) + γ · pSS (pi )], (18)

HPFlb (pi ) = HPFub (pi ) − λ · k . (19)

We can calculate the HPFub (pi ) and HPFlb (pi ) for all pi ∈ S. Then, we sort S on HPFlb (pi )
and we can easily retrieve pk , the place with the kth highest HPFlb (pi ) score. We then compare
the scores HPFub (pi ) for i ∈ [k + 1,K] and prune places for which HPFub (pi ) < HPFlb (pk ). We
formally describe this process in Algorithm 1.

We can see that the known components HPFub (pi ) and HPFlb (pi ) are bounded by K − (1 −
λ) · k and K − k , respectively, whereas the unknown component HPFx (pi ) is bounded by only
λ · k . Hence, as K increases against k , these bounds differences against HPFx (pi ) also increase
and so is the effectiveness of this pruning. More precisely, our experiments have shown that we
can achieve pruning of S up to 90%. This pruning was empirically proved to be very effective
only for the case of apCS algorithm (which avoids sC (pi ,pj ) pairwise comparisons). Thus after
this pruning, we will need pairwise comparisons only among the non pruned places (which are
now approximately only 10% of the total S). We delay sC (pi ,pj ) computations and perform them
during the third step. In summary, by combining apCS with pruning and greedy algorithms, we
can achieve savings of up to one order of magnitude on the total time. This combination very
interestingly has also achieved up to 9% improvement on the holistic HPF (R ) score (recall apCS
is an approximation). This is because we rank and process places considering theirHPFlb (pi ) score.
More precisely, during step 3, we feed our greedy algorithms with places in this order. Empirically,
our greedy algorithms perform better processing places in HPFlb (pi ) order instead of rF (pi ) order
(since rF (pi ) < HPFlb (pi )).

This algorithm has the following time costs. First, we need to calculate the bounds of HPF (pi )
for all places inS, which requiresO (K ). Then, we need to sort all places which requiresO (K ·loдK ).
Finally, we need to scan and prune S, which requires O (K ) time. This results in the total cost of
O (K + K · loдK ).

5.3 Step 3: Compute R
The problem is NP-hard, as we have already shown. We use two alternative greedy algorithms from
previous work [4], i.e., IAdU and ABP . These heuristics have approximation guarantees and have
been successfully used by previous works addressing similar problems such as diversification and
dispersion [4], [42], and [31]. Hereby, we will focus our description on the heuristics, the respective
adaptations and their complexity (efficiency aspects can be found in Reference [4]). In Section 8,
we study their approximation bounds.
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Both algorithms assume the existence of a ranked set S of places. In general, we process places
ranked on rF (pi ) score. The algorithms also require sF (pi ,pj ) scores which have already been
computed and cached during step 1. On the other hand, in case we use the combination of P&P
and apCS algorithms, we process places ranked on HPFlb (pi ). Since the apCS algorithm does not
provide sC (pi ,pj ) scores, we calculate them here (our experimental times also include this cost).

Although the respective algorithms in Reference [4] employed a dynamic threshold in each
iteration as to facilitate an early termination, for our problem definition the threshold was not
effective. Our experiments revealed that almost in all cases, the use of a threshold made little
difference to the efficiency of the algorithms and thus we avoided using it for simplicity. We only
use the pruning of step 2 for the case of apCS algorithm.

IAdU. This algorithm iteratively constructs the result setR by selecting each time the place from
S that maximizes the contribution it can make toward the overall scoreHPF (R ). The contribution
cHPF (pi ) of pi to be added to the current result set R is defined as follows:

cHPF (pi ) =
⎧⎪⎨⎪⎩
rF (pi ), if R = ∅,∑

pj ∈R HPF (pi ,pj ), otherwise.
(20)

cHPF (pi ) considers the relevance score and the proportionality of pi against existing elements
in R. In the first iteration, R is empty, thus the available contribution of a place can only be the
corresponding rF (pi ) score. The contributions of all other places are then updated to consider the
new entry in R. Then, the algorithm iteratively selects the place pi that maximizes cHPF (pi ) w.r.t.
the current R, adds pi to R, and updates the contribution of the places not in R. The complexity
of the algorithm isO (K ·k · loдK +K2). This time includes K ·k heap updates (for each place in S)
and K2 updates of HPF (pi ,pj ) (for all pairs of places in S).

ABP. This algorithm greedily constructs the result set R by iteratively selecting the pair of
places (pi ,pj ) with the largest HPF (pi ,pj ) score (Equation (15)). ABP selects the next pair (pi ,pj )
based on only its HPF (pi ,pj ) value, independently of the relationships of pi or pj to places already
in R (in contrast to IAdU ). Once a pair is selected, both its constituent elements and any pairs they
make are removed from further consideration by the algorithm (in a lazy fashion). Since a single
pair is selected in each iteration, 
k/2� iterations apply when the value of k is even. When k is
odd, an arbitrary place is chosen to be inserted in the result set R as its last entity. The worst case
complexity of the algorithm is O (K2 · log(K2)), which is higher than that of IAdU .

6 CONTEXTUAL PROPORTIONALITY CALCULATION

pCS (pi ) scores require the calculation of Jaccard similarity of all pairs of contextual sets of places
in S, which can be an expensive process. We propose two novel algorithms, micro set Jaccard

hashing (msJh) and apCS, which are tailored to the characteristics of our sets (i.e., numerous sets
of moderate size). Jaccard similarity is a generic measure, appropriate for any type of contextual
items (e.g., for sets of keywords, tags, RDF entities, nodes, etc.).

Baseline approach. We first discuss a baseline approach for computing the contextual simi-
larities of all pairs of places in S. This approach, for each pair, first creates a hash table with the
elements of the first set and then uses it to check for each element in the second set if it appears
in the first set. For comparing all pairs in S, we still need to hash all K sets in S. Assume, for sim-
plicity, that all sets have the same size |pi |. The hashing phase costsO (K · |pi |), as we have to scan
all elements from all sets. The comparison phase costs O (K2 · |pi |), because for each of the O (K2)
pairs, we need |pi | checks in the worst case. The baseline approach is expensive ifS contains many
places; for instance, for K = 100 and |pi | = 5, we need approximately 25,000 operations.

Minhash is an eminent technique for the fast calculation of Jaccard similarity on vast amounts
of sets of large size. This approach works in two steps. During the first step, we apply t hash
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ALGORITHM 2: Micro Set Jaccard Hashing (msJh)

Input: set S
Output: (1) sC (pi ,pj ) for all pairs of places in S, (2) pCS (pi ) for each place in S

1: for each pi in S do

2: for each element v in pi do

3: if msht[v] does not exist then

4: Generate newmsht[v] list {Step 1}

5: Add pi in the front ofmsht[v] list

6: for each pi in S do

7: for each element v in pi do

8: for each pj inmsht[v] with j > i do

9: Update Jaccard Score (pi ,pj ) {Step 2}

10: Update pCS (pi )

functions (i.e., K · t operations) on each set (where we get t minimum values). During the second
step, each pair is compared against the respective t minimum values (i.e., in totalK2·t/2 operations).
Thus, in order to compare all pairs, we need in total of K2 · t/2 +K · t operations. Apparently, this
approach can be very efficient when the number of elements (|pi |) in the contextual set of each
placepi is large, as |pi | does not affect the cost. We implemented this algorithm, in order to compare
it with our proposed msJh algorithm, but it failed to perform well on our data, where the sets are
relatively small.

6.1 Micro Set Jaccard Hashing (msJh) Algorithm

In view of the limitations of the previous algorithms, we propose the micro set Jaccard hashing
(msJh) algorithm. The algorithm generates an inverted list for each element with the sets wherein
the element appears (i.e., msht ). The rationale of the msht hash table is that we can facilitate a
targeted Jaccard comparison. Namely, we facilitate the comparisons of sets only if we know they
have common elements (by using msht ). Our technique is very efficient for small sets and, at the
same time computes it exactly (in contrast to minhash and apCS). The algorithm consists of two
steps (i.e., Algorithm 2). Figure 5 illustrates an example.

Step 1: Generate msht. We parse all sets and add on a hash table all elements and the sets
wherein they appear (i.e., micro set hash table, denoted as msht; lines 1–5). More precisely, for
each element, we maintain a reverse list of the sets wherein the element appears (the reverse
order of the places in the inverted list facilitates avoidance of redundant checks and we explain
this in the following step). Figure 5(b) illustrates the msht for the example of Figure 5(a).

Step 2: Compare sets. We compare pairs in an economical fashion by utilising msht. More
precisely, we calculate the intersection of any pair pi and pj , for pairs with i < j and for each
element v in pi (lines 6–10). For instance, in our example of Figure 5(a), we will process first p1.
For each element in p1 (i.e., {a,b, c,d }), we consult the msht as to see in which sets these elements
appear. Then, we update the Jaccard (partial) scores accordingly. e.g., a of p1 appears in p3, p2 and
p1. Then, we process b of p1, which appears in p4, p2 and p1. Recall that we add elements on msht

in a reverse order. Thus, we can stop processing an element against sets that have been previously
processed or against the set itself. For instance, while processing p1, we will not compare a against
p1; also, while comparing p2, we will not compare a against p2 and p1. An illustrative example of
the savings of this algorithm (against the baseline algorithm) can be shown in the comparison of
p3 and p5. Where, according to msht, the two sets have no common elements and this will result
in zero operations. On the other hand, the baseline approach will still have to compare these two
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Fig. 5. Example of themsJh algorithm.

sets. Finally, given the intersection of |pi | and |pj |, we can infer the union by subtracting the size
of the intersection from |pi | + |pj |.

The algorithm has the following time costs. During the first step, we need to create the micro
hash table, which requires O (K · |pi |) time, where |pi | is the average number of elements in a set
in S. During the second step, we build the intersections of all pairs of pi s. Thus, assuming again
for simplicity that all sets have common size |pi |, we need O (K2 · |pi |) time (i.e., the worst case is
when all sets are equal), i.e., the same cost as the baseline approach in the worst case. However, in
practice, the pairs of sets will not have high overlap; hence, the algorithm is much faster than the
baseline approach, as we verify experimentally.

6.2 apCS: Approximate Calculation of pCS Algorithm

Our previous algorithms, baseline and msJh, dictate the calculation of sC (pi ,pj ) for all pairs in
order to calculate the pCS (pi ) score, which still requires quadratic time. Our experiments revealed
that their costs remain significantly more expensive than the spatial and greedy algorithms costs
and dominate the total time. Thus, we propose apCS, a linear algorithm that bypasses pairwise
comparisons and can very efficiently calculate a high quality approximation of pCS (pi ) (denoted
as apCS (pi )). The algorithm’s rationale is based on the relaxation of the Jaccard similarity by
replacing the normalizing denominator of a specific pair (i.e., |pi ∪ pj |) to a generic normalization
denominator, which is common for all pairs (i.e., |pi | by assuming a common size |pi | of sets).
In this article, we focus on the case of sets with a common size (although our approach can be
generalized for variable sizes), which is often a requirement by many applications. For instance,
keyword extraction frameworks typically produce a top-k set of keywords [5, 51, 54, 58]. On graphs,
object extractions frameworks also typically employ a top-k nodes paradigm (e.g., Size-l object
summaries) [15, 21].

More precisely, we propose to use asC (pi ,pj ) =
|pi∩pj |
|pi | as the approximation of sC (pi ,pj ) =

|pi∩pj |
|pi∪pj | . Thus, we have the approximated pCS (pi ) score as follows:

apCS (pi ) =
∑

pj ∈S,pi�pj

asC (pi ,pj ) =
∑

pj ∈S,pi�pj

|pi ∩ pj |
|pi |

, (21)

which can also be defined as

apCS (pi ) =
∑

tj ∈pi

c (tj ) − 1

|pi |
, (22)
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ALGORITHM 3: apCS: Approximated Calculation of pCS Algorithm

Input: set S
Output: apCS (pi ) for each place in S

1: for each pi in S do

2: for each element v in pi do

3: if cH [v] does not exist then

4: Generate new entry cH [v] with c (v ) = 1 {Step 1}

5: else

6: c (v ) = c (v ) + 1

7: for each pi in S do

8: for each element v in pi do

9: apCS (pi ) = apCS (pi ) +
c (v )−1
|pi | {Step 2}

Fig. 6. Example of the apCS algorithm.

where c (tj ) is the number of occurrences of tj in all places in S. Namely, c (tj ) − 1 indicates in
how many other contextual sets tj appears. Therefore, for any pair, for each common tj , we have
an increment by 1 to |pi ∩ pj |. Thus, by accumulating them and normalizing with |pi | we get
apCS (pi ) as defined above. Note that this simplification would have not be possible if we did not
have a common denominator in our Equation (21).

The algorithm is described in Algorithm 3 and consists of two steps. Figure 6 exemplifies the
algorithm using the example of Figure 5.

Step 1: Generate hash table cH . We build a hash table (cH ) with the number of times an
element occurs within places in S. Namely, we parse all sets and create an entry for each unique
elementv on cH . For each subsequent occurrence of an element, we increment its cardinality c (v )
by 1 (lines 1–6, Figure 6(b)). The cH table can facilitate the efficient computation of apCS (pi ) as
defined by Equation (22).

Step 2: Compute apCS (pi ). We iteratively parse all contextual sets and sum up the cardinalities
of the participating elements by using cH . Using Equation (22), we then compute the score of each
place in S (lines 7–9, Figure 6(a)).

Note that this algorithm bypasses pairwise comparisons and caching, which are also needed by
the greedy algorithms. Hence, we calculate these scores on demand during the greedy algorithms
using Equation (21). The combination of this algorithm with P&P algorithm (Section 5.2) that
prunes a significant number of fruitless places renders this algorithm very beneficial toward the

ACM Transactions on Database Systems, Vol. 48, No. 2, Article 4. Publication date: May 2023.



Proportionality on Spatial Data with Context 4:17

ALGORITHM 4: Grid Based pSS Calculation

Input: (1) set S, (2) G (Gc ,Gz , |G |) (grid parameters)

Output: (1) sS (pi ,pj ) for all pairs of places in S, (2) pSS (pi ) for each place in S

1: Generate empty grid G (q, 2 · f p, |G |) {Step 1}

2: for each p in S do

3: Assign p to the cell ci which contains p {Step 2}

4: |ci | = |ci | + 1

5: for each cell ci with |ci | > 0 do

6: for each cell c j with |c j | > 0 and j ≥ i do

7: pSS (ci ) = pSS (ci ) + |c j | · sS (cci , cc j ) {Step 3}

8: pSS (ci ) = pSS (ci ) − 1

required total time (as without pruning, this algorithm may not be that beneficial since contextual
comparisons are expensive).

This algorithm can be orders of magnitude faster than msJh and baseline algorithms. The effect
of this approximation (1) on the HPF (R ) score is surprisingly positive (and this is because of
its combination with the P&P algorithm) and (2) on the ranking S is rather minor. We provide
theoretical analysis (e.g., apCS against pCS guarantees an approximation ratio of 2) and extensive
experimentation that verify these advantages.

The algorithm has the following time costs. We first need to create the cardinality hash table,
which requires O (K · |pi |) time, where |pi | is the common number of elements in a set in S. We
then process all places in S and update their apCS (pi ) score by consulting the hash table inducing
an additional O (K · |pi |) cost. Thus, the total cost remains O (K · |pi |), which is linear to K .

7 SPATIAL PROPORTIONALITY CALCULATION

The computation of pSS (.) is demanding as we need to compare allO (K2) pairs inS. Furthermore,
computing Ptolemy’s sS (pi ,pj ) is expensive. Specifically, for each distance | |pi ,pj | | between two

places we need six operations, i.e.,
√

(pi .x − pj .x )2 + (pi .y − pj .y)2. We need three distance compu-

tations per pair (i.e., for | |pi ,pj | |, | |pi ,q | | and | |pj ,q | |). Finally, we also need two more operations,
i.e.: (1) the addition of | |pi ,q | | and | |pj ,q | | at the denominator and finally (2) the division of the
nominator and denominator. Thus, in total, we need 20 operations for each dS (pi ,pj ). We refer to
this brute-force computation approach as the baseline algorithm. Considering its high cost, we
propose Grid based pSS (.) approaches, which reduce the cost by one order of magnitude (at some
approximation loss).

7.1 Grid Based pSS Calculation

We propose an efficient grid based algorithm for pSS (.), which accelerates the computation of
Ptolemy’s similarity sS (pi ,pj ). We investigate its application on two grid structures, i.e., a squared
and a radial grid structure. More precisely, we create a regular grid centered on q, which covers the
locations of all places inS and assign each place pi inS to the corresponding cell. We approximate
sS (pi ,pj ) of any pair of places by replacing their real coordinates with the coordinates of the centers
of the respective cells. This approach can decrease drastically the computational cost of pSS (pi )
at a small compromise on approximation. The rationale of proposing a radial grid is that it has
smaller cell sizes near the query location and could give a better approximation when many places
are located very close to query location. The grid-based approach also has an important and useful
property (which we prove). Namely, the sS (, ) of the centers of any two cells is independent from
the size of the cells. Thus, we can pre-compute the sS (, ) scores for the centers of any pair of cells
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Fig. 7. pSS Grid examples (annotated with |ci |).

and use these scores for any query. Recall that sS (, ) calculation requires up to 20 operations. Hence,
if we use the pre-computed scores, we reduce this cost to 1 operation only. Algorithm 4 illustrates
the algorithm with a pseudo code, and Figure 7 illustrates a running example.

7.1.1 Squared Grid and Algorithm. Hereby, we describe the steps of the algorithm when using
a squared grid.

Step 1: Generate the pSS (.) grid. We define the grid G by a triplet G (Gc ,Gz , |G |). The grid is
divided into square cells and hence itself is a square. Gc is the center of the grid and it is aligned

to the query location q. Gz is the length of each of the grid’s sides, which is set to 2f p, where f p
is the distance between q and the furthest point from q in S (see the example of Figure 7(a)). |G | is
the number of cells in the grid. A larger |G | decreases the approximation error but also increases
the cost of pSS (pi ) computation.

Each grid row or column has |д | cells, where |д | =
√
|G |. Value |д | should be an even number,

because the number of cells on the left (bottom) of the grid’s center GC is equal to the number

of cells on the right (top) of GC , as determined by f p. Each cell ci contains a number of places,
denoted by |ci |. For each query, a good choice of |G | should be such that |G | ≈ K , according to our
experiments.

Step 2. Allocate places to cells. We allocate each placep to the cell that containsp and maintain
a counter |ci | for the number of places in each cell. For each cell ci , its center, denoted as cci ,
represents (i.e., approximates) the locations of all places in ci .

Step 3. Calculate pSS (, ). Let us assume that sS (cci , cc j ) between the centers (cci , cc j ) of every
pair of cells (ci , c j ) has been pre-computed and is accessible from a matrix sSM . We calculate the
pSS (ci ) of a cell, by considering the cardinality |ci | and the cardinality |c j | of all other cells together
with the precomputed sS (cci , cc j ) scores, by adapting Equation (6) as follows:

pSS (ci ) =
∑

c j ∈G
|c j | · (sS (cci , cc j )) − 1. (23)

pSS (ci ) represents the score for any place p residing in ci and will be the same for all places in ci ,
i.e., pSS (p) = pSS (ci ) for each p in ci . In the computation of pSS (ci ), we also consider all places
in ci ; ci includes |ci | collocated places with sS (p,pj ) = 1 for all p,pj in ci . We subtract 1 in order to
disregard the comparison of a place against itself. We consider all cells with |ci | > 0.

Precomputation. The algorithm requires that the sS (cci , cc j ) scores between all cell centers
are pre-computed for any resolution and position of G. This is possible because of the nature of
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Ptolemy’s similarity, which makes it independent from the scale of distances between points; only
their relative orientation to q matters. We prove this property in Theorem 7.1, at the end of this
section. Specifically, the sS (cci , cc j ) score depends on the relative position of cells ci and c j w.r.t.
the center of the grid, where this position is measured in terms of number of cells. For example,

in Figure 7, sS (cc−1,1, cc−1,−1) equals to 1 − 1/
√

2 and depends only on the relative positions of the
cells w.r.t. the grid center, but not on their sizes. Hence, by pre-computing all scores for a large
grid GMAX which can be superimposed on top of any query, we can use the pre-computed values.
If the query requires a smaller grid (recall that |G | ≈ K ), where |G | ≤ |GMAX |, then we use only
the pre-computed scores of the respective subset of GMAX .

Complexity. For step 1, in order to generate the grid, we need O ( |G |) time. During Step 2, we
needO (K ) operations to assignK places to cells. For step 3, in order to calculate thepSS () for a pair
of cells, we need two operations (i.e., multiplying |c j | by sS (cci , cc j )). In the worst case, theK places
will be in different cells. Thus, for calculating pSS (ci ), we will need 2 ·K operations. Hence, for the
whole grid with K cells, we will needO (K2) operations in the worst case. The space complexity is
O (K ), since |G | ≈ K , while the storage requirements for pre-computation are O ( |GMAX |).

7.1.2 Radial Grid. An alternative to the square grid approximation is a radial grid R, which is
defined by sectors formed by (1) circles and (2) lines as follows. We use a set of rc homocentric
circles, all centered at the grid center Rc (i.e., the query location q). These circles have as radii

multiples of a constant cz , where the outmost circle has diameter 2 · f p. We also use a set of Rd

lines that divides the space into equal slices (any two consecutive lines have a common angle).
These lines’ lengths are set to the diameter of the outmost circle (Figure 7(b)). The algorithm (i.e.,
Algorithm 4) remains the same; but here, we have a radial grid and sectors (instead of cells). The
rationale of using a radial grid is that it has smaller cell sizes near the query location and could
give a better approximation when many places are located very close to q. We set Rd = 2 ·rc , which
results in |R | = 2 · Rd · rc sectors. Hence, the radial grid can be denoted by R (Rc ,Rz , |R |), where (1)

Rc is the center of the grid (q), (2) Rz is the length of the diameter and is set to 2· f p, and (3) |R | is the
number of sectors (cells) in the grid (i.e., R2

d
). Note that Rz = 2 ·rc ·cz . Each si may contain a number

of places, denoted as |si |. We use the center sci of a sector si as the representative point, defined by
the intersection between a circle having as radius the average radii of the two circles that define it
and the diameter having as angle the average angle of the two diameters that define the sector. We
can see that Theorem 7.1 (i.e., we can pre-compute and reuse the sS (, ) of sectors) applies here as
well. Finally, we can easily see that the same time and space analysis as of the square grid applies
here as well. For instance, during step 3, which is the most demanding step, in the worst case, the
K places will be placed in K different sectors; thus, we will still need O (K2) operations.

7.1.3 Scale-Free Property of Ptolemy’s Similarity. Given a pair of points (pi ,pj ) and a query
location q, we now prove that their sS (pi ,pj ) score remains the same if we multiply their difference
to q in all dimensions by the same factor f . Formally:

Theorem 7.1. Let pi and pj be two points with coordinates (xi ,yi ) and (x j ,yj ), respectively. Let

q be a query location with coordinates (xq ,yq ). Let p ′i and p ′j be two points with coordinates (x ′i ,y
′
i )

and (x ′j ,y
′
j ), respectively, such that:

(x ′i −xq ) = f · (xi −xq ), (y ′i −yq ) = f · (yi−yq ), (x ′j −xq ) = f · (x j−xq ), and (y ′j−yq ) = f · (yj−yq ).

It holds that sS (pi ,pj ) = sS (p ′i ,p
′
j ).

Proof. We have sS (p ′i ,p
′
j ) = 1 − | |p′i ,p′j | |

| |p′i ,q | |+ | |p′j ,q | |
= 1 −

√
(x ′i−x ′j )2+(y′i−y′j )2

√
(x ′i−xq )2+(y′i−yq )2+

√
(x ′j−xq )2+(y′j−yq )2

.
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We also have x ′i −x ′j = f · (xi −xq )− f · (x j −xq ) = f · (xi −x j ) and similarlyy ′i −y ′j = f · (yi −yj ),

x ′i − xq = f · (xi − xq ), y ′i − yq = f · (yi − yq ), x ′j − xq = f · (x j − xq ), y ′j − yq = f · (yj − yq ).

Hence, sS (p ′i ,p
′
j ) = 1 −

√
f ·(xi−x j )2+f ·(yi−yj )2

√
f ·(xi−xq )2+f ·(yi−yq )2+

√
f ·(x j−xq )2+f ·(yj−yq )2

=

1 −
√

(xi−x j )2+(yi−yj )2

√
(xi−xq )2+(yi−yq )2+

√
(x j−xq )2+(yj−yq )2

= 1 − | |pi ,pj | |
| |pi ,q | |+ | |pj ,q | | = sS (pi ,pj ). �

Now, consider a gridG that is centered at q. For every pair of cells ci , c j in the gridG, let (cci , cc j )
be the corresponding pair of cell centers. Based on Theorem 7.1, score sS (cci , cc j ) is independent
from the cell size cz and only depends on the relative positions of ci , c j w.r.t. the grid’s center,
measured in terms of number of cells. For example, in Figure 7, the grid cells are given identifiers,
based on their relative position (in number of cells) to the grid center. Based on Theorem 7.1, the
sS (cca,b , ccc,d ) score between any two cell centers cca,b and ccc,d depends only on the grid-based
coordinates (a,b) and (c,d ) of cells ca,b and cc,d and not on the sizes of the cells. This is because in
two gridsG andG ′, the ratio of the differences between cell centers cca,b ∈ G and cc ′

a,b
∈ G ′ and the

corresponding grid centers in each dimension is the same for any (a,b). In addition, sS (cca,b , ccc,d )
is the same for any position of the grid center. Summing up, the same pre-computed sS (cca,b , ccc,d )
values are used for any query location q and any grid size Gz and number of cells |G |.

8 THEORETICAL ANALYSIS

In this section, we analyze the approximation bounds of our (squared and radial) grid based algo-
rithms, the apCS algorithm, and greedy algorithms (IAdU and ABP ).

8.1 Bounds of Greedy Algorithms

Our proofs are based on the assumption that HPF (u,v ) satisfies the triangle inequality. For this
purpose, we first investigate when does HPF (u,v ) satisfy the triangle inequality. Then, by using
this key observation, we can trivially prove the approximation loss.

Lemma 8.1. Given a set of distance functions dF 1 (u,v ), . . . ,dFn (u,v ) that satisfy triangle inequal-

ity, then their weighted summation (denoted as dF (u,v ) =
∑
wi · dF i (u,v )) also satisfies triangle

inequality, as given by

dF (u,v ) + dF (v,w ) ≥ dF (u,w ).

Proof. By definition of dF (u,v ), the inequality can be rewritten as:
∑
wi · dF i (u,v ) +

∑
wi ·

dF i (u,w ) ≥ ∑
wi · dF i (v,w ). Thus,

w1 · dF 1 (u,v ) +w1 · dF 1 (v,w ) ≥ w1 · dF 1 (u,w ),
...
wn · dFn (u,v ) +wn · dFn (v,w ) ≥ wn · dFn (u,w ).
The addition of these equations completes the proof. �

In general, any diversity function dF (u,v ) maintains its triangle inequality properties as long
as the constituent components follow triangle inequality. Since from Reference [4], we know that
dS (u,v ) (i.e., 1 − sS (u,v )) satisfies the inequality and from Reference [41] we see that dC (v,w )
(i.e., 1−sC (u,v )), which is a Jaccard distance is a metric and hence satisfies the triangle inequality;
then, we can infer that dF (u,v ) (i.e., 1 − sF (u,v )) also satisfies triangle inequality.

Theorem 8.2. HPF (u,v ) (Equation (15)) satisfies the Triangle Inequality when rF (v ) ≥
λ ·(k−1)

(1−λ) ·(K−k ) .
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Proof. By expanding HPF (u,v ) we get:

(1−λ) · K−k
k−1 · (rF (u)+rF (v ))+ λ · ( 1

k−1 · (pFS (u)+pFS (v ))−2 ·sF (u,v ))+ (1−λ) · K−k
k−1 · (rF (v )+

rF (w ))+ λ · ( 1
k−1 · (pFS (v ) + pFS (w )) − 2 · sF (v,w ))

≥ (1 − λ) · K−k
k−1 · (rF (u) + rF (w ))+ λ · ( 1

k−1 · (pFS (u) + pFS (w )) − 2 · sF (u,w ))

=⇒ (1 − λ) · K−k
k−1 · rF (v ) + λ · 1

k−1 · pFS (v ) −λ · sF (u,v ) − λ · sF (v,w ) ≥ −λ · sF (u,w )

=⇒ (1 − λ) · K−k
k−1 · rF (v ) + λ · 1

k−1 · pFS (v ) −λ · (sF (u,v ) + sF (v,w ) − sF (u,w )) ≥ 0

=⇒ (1 − λ) · K−k
k−1 · rF (v ) + λ 1

k−1 · pFS (v ) −λ · (1 − dF (u,v ) − dF (v,w ) + dF (u,w )) ≥ 0.

Considering that dF (u,v ) ranges in [1, 0] and satisfies triangle inequality (according to Lemma
8.1), then the minimum value for dF (u,v ) + dF (v,w ) − dF (u,w ) is 0. Then we have:

(1 − λ) · K−k
k−1 · rF (v ) + λ 1

k−1 · pFS (v ) − λ · 1 ≥ 0
=⇒ (1 − λ) · (K − k ) · rF (v ) + λ · pFS (v ) ≥ λ · (k − 1)

=⇒ rF (v ) ≥ λ ·(k−1)
(1−λ) ·(K−k ) . �

For further simplification, we drop pFS (v ) (which is the summation of K − k places (including
sF (u,v ) and sF (v,w )) and thus should be a significant value.

If we see more carefully this inequality, it holds in most pragmatic cases and our default settings.

For λ = 0.5 and K = 10 · k = 10k , then we get: rF (v ) ≥ k−1
10k−k

=⇒ rF (v ) ≥ k
9k
=⇒ rF (v ) ≥ 1/9.

In summary, we have triangle inequality when rF (v ) ≥ 0.1. This is a pragmatic case as results
with smaller rF (v ) are not really relevant and they never make it in the S.

Approximation Bounds. Given HPF (u,v ) satisfies triangle inequality, IAdU and ABP algo-
rithms can achieve approximation ratios of 4 and 2, respectively. For such conditions, these bounds
are proved by Reference [4] and are based on earlier work in References [31] and [42].

8.2 Bounds of the apCS Algorithm

We study the worst-case of the apCS (pi ) produced by the apCS algorithm against the exact
pCS (pi ). Recall that in this algorithm, we assume that all places have a common set size. The
algorithm considers a relaxation of Jaccard similarity (asC (pi ,pj )) by replacing the denominator
|pi ∩ pj | with |pi | (where |pi | = |pj |).

Theorem 8.3. Given a set S of places with a common contextual set size, in the worst case apCS
will give us

apCS (pi )
pCS (pi ) = 2.

Proof. pCS (pi ) and apCS (pi ) are sums of the pairwise components sC (pi ,pj ) (i.e., the Jaccard

similarity
|pi∩pj |
|pi∪pj | ) and asC (pi ,pj ) (

|pi∩pj |
|pi | ), respectively. Thus, we have the following ratio:

asC (pi ,pj )

sC (pi ,pj )
=

|pi∩pj |
|pi |
|pi∩pj |
|pi∪pj |

=
|pi ∪ pj |
|pi |

< 2. (24)

Since |pi | is fixed forS, we can easily see that the ratio is maximized when |pi ∪pj | is maximized.
More precisely, this is the case when there is only one common element between the two sets. In
this case, we get |pi ∪ pj | = 2 · |pi | − 1, thus this makes the worst case ratio less than 2. Note that
although |pi∩pj | is maximized when |pi∩pj | = 0, this case will result to asC (pi ,pj ) = sC (pi ,pj ) = 0.
We can now see that the following also holds:

apCS (pi )

pCS (pi )
=

∑
pj ∈S asC (pi ,pj )∑
pj ∈S sC (pi ,pj )

< 2. (25)

This completes the proof. �
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Fig. 8. Cases D: Error decrement (hexagons and circles indicate the original and new location of places,

respectively; numbers indicate the amount of co-located places).

Note that we can achieve this worst case ratio even when the two sets do not have the same size.
Namely, when we normalize asC (pi ,pj ) using the size of the largest set between |pi | and |pj |. We
can get the same worst case when we consider pi is marginally larger (or equal to pj ). For instance,
consider the case of two sets, p1 and p2 with sizes |p1 | = 99 and |p2 | = 100 and also consider
they have one element in common. Then, their Jaccard similarity will be 1/198. By considering the
denominator being |p2 | = 100, then we have 1/100.

Furthermore, we have another useful property among sC (pi ,pj ), asC (pi ,pj ) and |pi ∩ pj |. They
have a monotonic relationship. Namely, the relative order of any pair of sets remains the same for
sC (pi ,pj ), asC (pi ,pj ) and |pi ∩ pj | scores. This property has a positive impact on the ranking of S
and HPF (R ) scores, which is also verified experimentally.

Theorem 8.4. sC (pi ,pj ) > sC (pk ,pl ) ⇔ asC (pi ,pj ) > asC (pk ,pl ) ⇔ |pi ∩ pj | > |pk ∩ pl |.

Proof. sC (pi ,pj ) > sC (pk ,pl ) ⇔ |pi∩pj |
|pi∪pj | >

|pk∩pl |
|pk∪pl | ⇔

|pi∩pj |
2 |pi |− |pi∩pj | >

|pk∩pl |
2 |pi |− |pk∩pl | ⇔

2|pi | |pi∩pj |− |pi∩pj | |pk∩pl | > 2|pi | |pk∩pl |− |pi∩pj | |pk∩pl | ⇔ |pi∩pj | > |pk∩pl |. Since all sets
have a common size, we can see that the above inequality also holds for asC (pi ,pj ) > asC (pk ,pl )
(i.e., by dividing by |pi |). �

8.3 Bounds of Grid Based Algorithms

We study the worst-case of the approximation quality of pSS (S) =
∑

pi ∈S pSS (pi ) produced by
our grid based algorithms. More precisely, we study how the ratio, ap, of the optimal pSS (S)
(denoted as pSSo (S)) to the approximated pSS (S) (denoted as pSSa (S)) ranges (i.e., its lower
and upper bounds). As we will discuss shortly, our approximation algorithm can either increase
or decrease the sS (pi ,pj ) score of a pair of places, which consequences to have both an upper and
lower bound of ap.

We prove our bounds by induction. We first study base cases for small values of K and prove the
bounds of their worst case. Namely, for K = 4, we found that ap ranges between a lower bound of
APLB = 1/4 and an upper of APU B = 5. Then, we prove the respective worst cases of the induction
cases. We prove that APLB · K−1

K+1 ≤ ap ≤ APU B · K+1
K−1 (Theorems 8.5 and 8.6). For large values of K ,

we can easily see that both K+1
K−1 and K−1

K+1 become negligible.
Our approximation algorithm can compute either a higher or a lower value compared to the

actual score sS (pi ,pj ) of a pair of places. Thus, we study the bounds of the worst case of the two
cases separately:

— Error due to sS (pi ,pj ) decrement (Case D, Figure 8); i.e., after relocation, sS (pi ,pj ) scores
of pairs are decreased, e.g., the maximum decrease from 1 to 0.

— Error due to sS (pi ,pj ) increment (Case I, Figure 9); i.e., after relocation, sS (pi ,pj ) scores
of pairs are increased, e.g., the maximum increase from 0 to 1.
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Fig. 9. Cases I: Error increment (hexagons and circles indicate the original and new location of places, re-

spectively; numbers indicate the amount of co-located places).

8.3.1 Estimation of the ap Upper Bound Due to sS (pi ,pj ) Decrement (Case D) on Squared Grid.

Base Case. We illustrate this case, that can give us an upper bound of ap (i.e.,APU B = 5 forK =
4), with Figure 8. Where, all places are collocated on the center of the grid, which maximizes their
sS (, ) (i.e., sS (, ) = 1) and therefore also maximizes the pSSo (S) score (i.e., pSSo (S) = K · (K − 1)).
Then, we assume that our algorithm relocates these places in such a way that minimizes pSSa (S),
thus maximizing ap.

ForK = 2, we can have the worst case (DG .1), i.e., pSSo (S) = 2, pSSa (S) = 0 and ap = ∞; when
two places co-located on the center of the grid are then relocated to the centers of diametrically
opposite cells. This will result to the maximum loss of sS (, ) of the pair, from 1 to 0. Following the
same scenario of co-located places, the addition of a third place will result to the maximum ap, if
the three places are relocated in three different cells (case DG .2). Namely, pSSo (S) = K · (K − 1) =

3 · 2 = 6 and pSSa (S) = 2 · 0 + 4 · a = 1.2 (where a = 1 − 1/
√

2 ≈ 0.3); thus ap = 6
1.2 = 5. For a

fourth place, we get a maximum ap when all places are relocated in four different cells (case DG .3).
Namely, pSSo (S) = 4 · 3 = 12 and pSSa (S) = 4 · 0 + 8 · a = 2.4, thus ap = 12

2.4 = 5. Note that any
other arrangement, e.g., such as DG .4 or DG .5 will not give a higher ap. In case DG .4, where our
grid based algorithms co-locate two places, we get ap = 2/6. The case of DG .5, where one place is
located on the border with another cell, if our grid algorithm relocates this place to another cell
(which increases ap), this will result to ap = 2

1.1 = 1.8; note that the fact that the third place is not
co-located with the two places reduces the pSSo (S). In summary, with this base case, we have for
K = 4 APU B = 5.

Induction. Hereby, we study the induction step of this case.

Theorem 8.5. Given a set S with K places where the upper bound of ap is APU B , we would like to

prove that the upper bound APU B · k+1
k−1 holds for S′ with K + 1 places (i.e., by adding a new place).

Proof. Let’s assume that we have all places co-located, so we have sS (, ) = 1 for all pairs,
which will give us the maximum possible score for K , i.e., pSSo (S) = K · (K − 1). After applying
the grid based algorithm, let’s assume that, the places are distributed in such a way that APU B =

pSSo (S)/pSSa (S), thus we can infer that pSSa (S) = pSSo (S)/APU B .
Let’s study the case where we add the new place (K + 1). Let pSSo (S′) and pSSa (S′) be the

optimal and approximated scores, respectively, for this new set (S′). Let’s assume again that
the new place is co-located with the existing K places, which will give us the maximum pos-
sible score for K + 1 places, i.e., pSSo (S′) = (K + 1) · K . After applying the grid based al-
gorithm, let’s assume that the places are arranged in such a way that minimizes the pSSa (S′)
score. Let’s assume that pSSa (S′) can be as bad as pSSa (S), i.e., pSSa (S′) = pSSa (S). Note
that since, pSS (S′) = pSS (S) +

∑
pi ∈S pSS (pj ), we can easily see that pSS (S′) score is a mono-

tonic function with regards to K , i.e., by adding new places, the score can only increase; thus,
we can safely infer that this score can remain the same in the worst case. Now, we can calculate

ap =
pSSo (S′)
pSSa (S′) =

pSSo (S′)
pSSa (S) =

pSSo (S′)
pSSo (S)
APU B

=
K ·(K+1)

K ·(K−1)
APU B

= APU B · K+1
K−1 . �
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Fig. 10. Base cases of the radial grid algorithm.

8.3.2 Estimation of the ap Lower Bound Due to sS (pi ,pj ) Increment (Case I) on Squared Grid.

Base Case. Analogously, we illustrate this case, that can give us a lower bound ofap (i.e.,APLB =

1/4 for K = 4), with (Figure 9). In this case, we assume that originally places were located in such a
way that minimizes pSSo (S). Then, our algorithm relocates all places on the same location which
will give us the maximum pSSa (S) = K · (K − 1) score.

For K = 2, we can have the worst case (IG .1), i.e., pSSo (S) = 0, pSSa (S) = 2 and ap = 0;
when the first place is on the center and the second on the edge of a cell (i.e., sS (, ) = 0). After
relocation, both will be relocated on the center of the cell, thus pSSa (S) = 2. Following the same
scenario, let’s assume that a third place exists in such a way that minimizes sS (, ) with the existing
place not placed on the center. We can easily see that if the two non centered places are on the
remote corners of the cell (case IG .2), this will result to the minimum possible sS (, ) among these
two places, so pSSo (S) = 0.6 and pSSa (S) = 6, thus ap = 1/10. Let’s assume a fourth place exists
on the fourth corner (case IG .3); this way, the three places will be as remote as possible w.r.t. center,
then we have pSSo (S) = 2.94, pSSa (S) = 12 and ap = 1/4. In summary, with this case, we have
for K = 4 APLB = 1/4.

Induction. Hereby, we study the induction step of this case.

Theorem 8.6. Given a set S with K places that give us ap = APLB , we would like to prove that the

lower bound APLB · k−1
k+1 holds for S′ with K + 1 places (i.e., by adding a new place).

Proof. We can easily reverse the previous proof. Let’s assume that our grid based algorithm
relocates all places on the same location, thus we havepSSa(S) = K ·(K−1), which is the maximum

score we can get for K . Given that APLB =
pSSo (S)
pSSa (S) , we can infer that pSSo (S) = APLB · pSSa (S).

Let’s study the case where we add the new place (K+1). Let’s assume that the places are arranged
in such a way that minimizes the pSSo (S′) score, i.e., pSSo (S′) can be as bad as the pSSo (S)
(pSSo (S′) = pSSo (S)) (recall that pSS (S) scores are monotonic to newly added places). Let’s
assume again that the new place is relocated on same location with the existing K places, thus

pSSa (S′) = (K + 1) · K . Now, we can calculate ap =
pSSo (S′)
pSSa (S′) =

pSSo (S)
pSSa (S′) =

APLB ·pSSa (S)
pSSa (S′) =

APLB ·K ·(K−1)
K ·(K+1) = APLB · K−1

K+1 . �

8.3.3 Radial Grid. The bounds of the worst cases of the radial grid algorithm have the same
behavior as the squared grid based algorithm. We can easily see that we can achieve the same
worst case bounds for both base and induction cases. More precisely with Rd = 2 and K = 4, we
can construct analogously the same respective cases and get the same upper and lower bounds of
ap, i.e., APU B = 5 and APLB = 1/4, respectively (cases DR .1 and IR .1, Figure 10). Note that as Rd
increases, we achieve better ap bounds for the base cases (i.e., closer to 1), (cases DR .2 and IR .2,
Figure 10). Finally, we can easily see that we can use the same inductions here as well. Thus, the
bounds remain the same as for the squared grid based algorithm.
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9 EXPERIMENTS

In this section, we evaluate the efficiency and approximation quality of the proposed proportion-
ality framework. Finally, we present a user evaluation and testing of our approach.

9.1 Setup

Datasets. We used the datasets that have been used in References [4, 44]; namely, DBpedia and
Yago2 (version 2.5). The DBpedia RDF graph has 8,099,955 vertices and 72,193,833 edges. Among
all vertices, 883,665 are places with coordinates. Yago2 has 8,091,179 vertices and 50,415,307 edges.
Among these vertices, 4,774,796 are places. In general, our techniques had similar behavior on
both datasets; for brevity, we present all results on DBpedia and skip some results on Yago2 if
they are similar. For the experiments, where we test the performance of our grids, we also used
synthetically generated data, which will be discussed in detail later.

Queries. In the evaluation, we selected locations and keywords, to form a total of 100 queries,
such that the number of retrieved places per query is at least 2,000. For each place pi in the query
result, we compute its relevance score rF (pi ) to the query q by combining the Jaccard similarity to
the keywords and the normalized distance of pi to the query location (normalization by dividing
to the largest distance of the city) [2, 4].

Experimental settings. Our methodology and algorithms are evaluated by varying a different
number of problem parameter values. First, we experimented with different sizesK of the retrieved
set S. For a given query, for each value K , we selected from the query results, the K most relevant
places to form S according to rF (pi ). K varies in {20, 50, 100, 200, 400, 1,000, 2,000}, with 100 being
the default value (we also present extensive results for K = 1,000). Second, we experimented
with different values of |pi |, i.e., the number of elements in the contextual sets of pi s in S. In all
experiments, we use a common set size |pi | per pi . For a given S, we formed the contextual sets of
the places included in it, by using keywords from neighboring vertices to pi in the corresponding
RDF graph, until the desired |pi | is reached for each |pi |. That is, we enriched (or constrained) the
contextual sets of the places on demand by adding (or removing) keywords, in order to satisfy the
requirement of the required |pi | by the experiment. During this phase, we can detect and remove
any noise in the data such as repetitions that can impact the quality of our algorithms. The tested
|pi | values range in {20, 40, 50, 60, 100, 150, 200, 400}, with 100 being the default value. Third, we
experimented with different values of the grid size |G |; i.e., values in {36, 64, 100, 144, 196} with a
default of |G | = 100. Fourth, we experimented with values of k in {5, 10, 15, 20}with a default value
of 10. We experimented with different values of the weights λ and γ , with default λ = γ = 0.5.

Platform. All methods were implemented in Java and were conducted in memory. We used a
2.7 GHz dual-core (boost @ 3.48 GHz) quad-thread machine with 16 GB (DDR4 @ 3,300 MHz) of
memory, running Windows 10.

9.2 Efficiency

In this section, we measured the average run-time costs of the tested algorithms on our queries
for the various parameter values.

9.2.1 Contextual and Spatial Proportionality Algorithms. We study the efficiency of our solu-
tions for contextual and spatial proportionality computation, presented in Sections 6 and 7.

Contextual Proportionality. Figure 11 compares the performance of our msJh and apCS al-
gorithms against the baseline algorithm for calculating pCS (pi ) for all pi ∈ S. Figure 11 reveals
that all algorithms have similar behaviour with regards to K and |pi | increments, namely, required
times also increase. As expected, apCS is the fastest, then msJh and lastly the baseline algorithm.
We also observe that as K and |pi | increase the time difference among these algorithms also in-
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Fig. 11. Efficiency of msJh and apCS algorithms (Jaccard).

creases. For instance in DBpedia for K = 100 and |pi | = 100, the required times are 0.6 ms, 1.3 ms,
and 46.9 ms, whereas for K = 2,000 and |pi | = 100 the required times are 14.2 ms, 240.8 ms, and
14908.9 ms, respectively. We see that apCS can be more than one and three orders of magnitude
faster than msJh and baseline algorithms, respectively.

We also implemented minhash and compared it with apCS and msJh. However, minhash per-
formed poorly for our settings, minhash never outperforms apCS and outperforms msJh only
when K and |pi | become larger than 1,000 and 200, respectively. For instance for K = 1,000 and
|pi | = 400, apCS requires only 33.6 ms, whereas msJh and minhash requires 569.4 ms and 310.3
ms, respectively. Thus, we do not present further details.

Spatial Proportionality. In Figure 12, we present the performance of our squared and radial
grids techniques against the baseline algorithm for calculating the pSS (pi ) for all pi ∈ S (i.e., for
all pairs in S). We see that our algorithms outperform the baseline algorithm by at least one order
of magnitude for all settings and datasets. We also observe that the squared grid approach is almost
always slightly faster than the radial one. Figures 12(a) and 12(c) show that the performance gap
between the baseline and the grid-based algorithms increases withK . Figures 12(b) and 12(d) show
that the size of the grid |G | marginally affects the time of the grid-based algorithms. We get similar
results on both datasets. Finally, in Figure 12(e), we tested the efficiency of grid-based proportion-
ality computation on synthetically generated locations of places. For this purpose, we generated
20, . . . , 2,000 (K ) random locations around the query location q to model the retrieved set S, using
different spatial distributions: uniform and Gaussian. In the Gaussian distributions each place
coordinate was generated having as mean the corresponding coordinate of q and a standard devi-
ation of either 0.25 or 0.5. Note that the baseline approach had much larger cost and was omitted
from this sub-figure in order for the difference between the other methods to be easier to see.
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Fig. 12. Efficiency of squared and radial grid algorithms.

9.2.2 Generic Proportionality Algorithmic Framework (Greedy Algorithms). Next, we measure
the (average of) the combined costs of the greedy (IAdU and ABP ) with the prepossessing and
pruning, contextual and spatial proportionality algorithms. For the proportionality calculation,
we compare our optimized algorithms (i.e., msJh, apCS and grid based algorithms, which are the
most efficient options) against the respective baselines. Figure 13 shows the results on DBpedia
and Yago2 for different values of K and k (the results on Yago2 are similar and they are partly
omitted for brevity). Each bar adds up the total cost of the corresponding combination. (1) The
bottom part is the cost of the P&P (when applicable) algorithm, (2) the second part is the cost of
the greedy algorithm, (3) the third part is the cost of computing spatial proportionality scores and
(4) the top part is the cost of computing contextual proportionality scores (This order was chosen
as to facilitate better visibility). For each parameter setting, we depict six bars. Namely, we com-
bine each greedy algorithm with the baseline algorithms (first and fourth bars), we combine each
greedy algorithm with the fastest approximated algorithms (grid and apCS) (third and sixth bars),
which also include the P&P cost. Finally, we also include for comparisons against the best case of
Reference [36], the combination of each greedy with msJh and grid based algorithms (second and
fifth bars).
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Fig. 13. Efficiency of the generic algorithmic framework (total time by combining all algorithms).

According to our generic proportionality framework, we compute proportionality scores for all
places and pairs just once in step 1 and then reuse these scores multiple times in step 3. However,
in the case where we combine P&P and apCS (where we do not have pairwise sC (pi ,pj ) scores),
we calculate them during step 3 (thus, for this case, our greedy times also include this task).

We study the total time required by our framework. More precisely, we focus on large values of
K where required total time increases significantly. We see that our fastest combination is (1) P&P ,
apCS and grid based algorithms; (2) then, we have the combination of the msJh and grid based
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Table 3. P&P Pruning Effectiveness (for Both Datasets)

Pruning

K 20 50 100 200 400 1000 2000

% 0 15 62 73 84 87 89

Pruning

k 5 10 15 20

% 76 62 42 19

algorithms; and (3) lastly, we have the baselines. For small values of K , the first two combinations
are similarly good (i.e., (1) P&P , apCS with grid based algorithms and (2) msJh with grid based
algorithms). Furthermore, we also observe that IAdU is always faster than ABP ; where for small
values of K the difference is minor but as K increases, the differences increases dramatically.

In general, the respective total times increase as K and k increase and so are also their time
differences. For instance, in DBpedia for K = 100 and k = 10, the required total times are for IAdU
2.19 ms, 1.40 ms, 48.35 ms, and for ABP 3.10 ms, 3.82 ms, 50.77 ms, whereas for K = 2,000 the
required total times are for IAdU 28.73 ms, 242.63 ms, 15440 ms and for ABP 30.04 ms, 9640 ms,
24838 ms, respectively. We see that for large K , our fastest combination (P&P , apCS) is up to one
order of magnitude faster than its counterparts.

We observe that the time of P&P remains a small proportion of the total time and that also
increases withK . IAdU always requires small proportional times. On the other hand,ABP becomes
very expensive for large K (note that P&P reduces K and this reduces ABP time). Recall that when
using theapCS algorithm, we do not get the pairwise sC (pi ,pj ) scores and we perform them during
step 3; this justifies why the greedy algorithms need more time in this case.

In Table 3, we also illustrate the pruning effectiveness of P&P on S. More precisely, we depict
the percentage (average) of pruned objects from S for the default settings for both datasets. As
discussed in Section 5.2, we see that as the difference between K and k increases the pruning
also increases. Furthermore, our experimental analysis revealed that as K increases, the relevance
of the newly added objects significantly decreases (e.g., an object is added which is very far and
minimally relevant to the query). These new objects, with very small relevance scores, are pruned
by our algorithms. This further increases the pruning effectiveness of P&P for largeK . In summary,
for large values of K this algorithm becomes very efficient.

We have also tested the P&P algorithm in combination with our other proportionality algo-
rithms. However, we did not get any time improvements on the total times thus, we avoided
any further discussion and presentation of results. Our experimentation showed that the achieved
pruning could not compensate for the additional overhead of the algorithm. More precisely, the
total costs can be up to 30% higher than simply processing all places in S by using pre-calculated
sF (pi ,pj ) scores.

As expected, the weights λ and γ have impact only on the greedy algorithms and thus their
impact remains insignificant against the total time (thus we omit further discussion due to lack of
space).

In summary, the IAdU algorithm in combination with P&P , apCS and grid based algorithms
constitute the fastest approach. The experimental results justify our focus on processing efficiently
the contextual and spatial proportionality scores and use them as many times as necessary in the
greedy algorithms.

9.3 Approximation Quality

9.3.1 apCS Algorithm. We study the behavior of the approximated apCS (pi ) on (1) the ranking
of places in S and (2) the holistic score HPF (R ) of R. In Figure 14, we compare the rankings of S
based on pCS (pi ) and apCS (pi ) using the Spearman correlation metric. We can see that the two
rankings are highly correlated, in most cases their correlation is above 90% (e.g., for K > 20 or for
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Fig. 14. Ranking correlation of S sorted on pCS (pi ) versus apCS (pi ).

Fig. 15. Effectiveness of squared and radial grid algorithms (Relative approximation error).

|pi | > 20). We also studied how this approximation affects HPF (R ) (Figure 16), which we discuss
shortly in Section 9.3.3.

9.3.2 Grid Based Algorithms. We compare the approximate pSS (pi ) scores for the wholeS (i.e.,∑
pi ∈S pSS (pi )) produced by the two grid approaches against the optimal one (produced by base-

line). Figure 15 presents the relative approximation error of the
∑

pi ∈S pSS (pi ) of the competitive
approaches. We observe that the squared grid is always better than the radial grid and that K
does not affect this error. We also observe that increasing |G | (i.e., making the grid finer) leads to
a reduction of the relative approximation error and that, in general, a |G | ≈ K is a good choice
(see Figure 15(b)). We also tried various distributions (Figure 15(d)) that also present similar re-
sults. We conclude that the squared grid with |G | ≈ K is an appropriate choice with a negligible
error of around 5% or lower in practice. We also studied how this approximation affects HPF (R )
(Figure 16), which we discuss in Section 9.3.3.

9.3.3 Generic Proportionality Algorithmic Framework (Greedy Algorithms). We assess the ap-
proximation quality of the combination of the two greedy algorithms with the approximated and
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Fig. 16. Approximation quality.

exact contextual and spatial algorithms. Figure 16 shows the HPF (R ) scores for these combi-
nations, different values of K and k and default settings. Each bar adds up the (normalized av-
erage) total score of the corresponding weighted combination. Namely, the top part represents

1
4·(K−k )

∑
pi ∈R pC (pi ) (denoted as pCex or pCap obtained by using the exact or approximated

pCS (pi ), respectively), the middle part represents 1
4·(K−k )

∑
pi ∈R pS (pi ) (i.e., pSex , pSap ) and the

bottom part the relevance 1
2 ·

∑
pi ∈R rF (pi ) (i.e., rFI AdU , rFABP ). Recall that we cannot obtain the

optimal HPF (R ) scores due to the high computational cost required. ABP , in most cases, achieves
(marginally) betterHPF (R ) score than the respective IAdU combination, which reflects their (com-
parative) approximation quality. For instance, for the default settings, ABP performs 1.76% better
HPF (R ) score than IAdU (i.e., 75.7% − 74.4% for the baseline case).

Very interestingly, the use of the approximated apCS (pi ) improves the HPF (R ) score (e.g., up
to 9% for K = 50 and k = 10) instead of worsening it. This is because we combine it with the P&P
algorithm. P&P (apart from pruning fruitless results) also ranks them on HPFlb (pi ) and then feed
them in this order to the greedy algorithms. The use of this ranking (instead of the rF (pi ) ranking)
appeared to improve greedy algorithms’ performance with respect to the final HPF (R ) score as
HPFlb (pi ) can be significantly larger than rF (pi ).

The approximation compromise of the grid based algorithm is minor. For the default settings,
the difference on HPF (R ) scores using the exact spatial scores against the approximated spatial
scores on IAdU and ABP is 4.8% and 5.9%, respectively. On the other hand, the combination of
the grid based algorithm with the apCS and P&P algorithms achieves an improvement over the
baseline HPF (R ) scores of 7.38% on IAdU and 2.66% on ABP .

Regarding the parametersK and k , we observe a consistent overall effect on the resulting scores.
Increasing K generally correlates with an increase in HPF (R ) since there are more places avail-
able to construct the best possible R. This, however, does not hold for all cases as the greedy
algorithms do not guarantee to return the best result. Increasing k causes a decrease in HPF (R ) in
all cases. This is a reasonable result since each additional place added in R contributes to HPF (R )
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less than the already selected places. The λ and γ weights have marginal impact on the relative
approximation quality (thus details are omitted for brevity).

9.4 User Evaluation

We also conducted a user evaluation (i.e., user preference and usability testing), which confirms
the preference of users to proportional results. We asked help from ten evaluators (none of them
was involved in this article). First, we familiarized them with the query concepts and relevance
metrics. We also explained to them the concepts of proportionality and diversity; to avoid any
bias, we avoided to discuss their advantages or disadvantages. Then, we presented to them ten
random queries from both datasets and their results according to the three alternative frameworks.
Namely, Sk (i.e., the top-k places in S with the largest rF (pi )), ABPD (i.e., diversification results
produced by ABP [4], since ABP was shown to have superior approximation quality to IAdU )
and our proportional ABPP&P (i.e., proportional results produced by the combination of ABP with
apCS and P&P , since this combination was shown superior among other options). For each task,
we asked them to give a score in a scale of one to ten. In order to assist evaluators with their tasks,
we also presented a map with the places (Figure 18 illustrates such examples of maps with places),
their contextual sets and useful statistics (for each query). We presented the output of each method
in a random order (to avoid any bias).

9.4.1 User Preference Study. In this study, we asked evaluators to evaluate and express their
preference w.r.t. (P1) the general content of results (by considering how representative and infor-
mative they are) and (P2) their ranking. The P1 and P2 bars in Figure 17(a) and (b) average the
evaluators’ preference scores of the three methodologies, for the two criteria (i.e., general content
and ranking), for k = 10 and k = 20 (using the default settings). For the first criterion (general
content), we observe that the users prefer proportional, then diversified and lastly non diversified
results. For the second criterion (ranking), users prefer proportional and diversified results. For
instance for k = 10, the average scores of Sk , ABPD , ABPP&P on the two tasks are 5.7, 6.5, and
7.5, respectively. The study revealed that the top places are typically proportional at the same time
facilitating both diversity and representation of S; whereas, only some bottom results had some
similarity to previous ones. e.g., the top five places are proportional and repetitions appear in the
bottom 5 places (e.g., additional museums). This type of bird’s eye view is preferable by users.

9.4.2 Usability Test. We conducted a comparative study of the usability of the three paradigms.
Usability is the ease of use and learnability of a human-made object; namely, how efficient it is to
use (for instance, whether it takes less time to accomplish a particular task), how easy it is to learn
and whether it is more satisfying to use.3 We gave them three tasks to complete (for each query
and paradigm) and asked them to give a score and also to justify their answers (where possible).
Namely, to score them considering (1) the ease of accomplishing each task, (2) how easy and (3)
satisfying are to learn and use.

The three tasks were about the understanding and the extraction of information about the
queries’ results and the entire S. Task 1 (T1) “How easily can you infer the area with many col-
located places of interest?” For instance in Stockholm, how easily can you infer that Gamla Stan
is an area with many collocated museums; so someone can visit this area and can visit more than
one museums. Task 2 (T2) “How easily can you infer the most representative type of places in the
area?” e.g., an arts or history museum in Stockholm. Task 3 (T3) “How easily can you infer at least
three different types of places of interest in the area?” e.g., so someone can choose from all types
of museums in Stockholm.

3www.wikipedia.org/wiki/Usability.
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Fig. 17. User evaluation and usability test.

The T1–T3 bars in Figure 17(a) and (b) average the evaluators’ usability scores of the three meth-
ods per query and per task. The results show that evaluators preferred firstly proportional, then
diversified and lastly non-diversified results for both datasets. For instance for k = 10, the average
scores of Sk , ABPD , ABPP&P on the three tasks are 6, 6.7, and 7.5, respectively. The evaluators also
provided justifications for their scores. They explained that, in general, they prefer the concept
of proportionality as it also considers frequent properties; which is a property other types do not
consider. They found diversification very useful in covering the most diverse places (addressing
T3); however, they pointed out that rare but important elements may appear, which again can
be to some extend misleading. They found the non-diversified results more misleading as very
important and relevant places are too dominant in them.

Figure 17(c) depicts the preference of users for the various values of λ and γ for k = 10 using
the ABPP&P algorithm. Other settings also gave interestingly good results; however, in most cases
results from the default setting were more preferable.

10 CONCLUSIONS

In this work, we extend spatial keyword search to support proportional selection of the retrieved
places. Our framework combines relevance and proportionality, w.r.t. both context and location.
After proving the hardness of the problem, we identify the bottlenecks of proportional selection
and propose techniques that greatly reduce its computational cost in practice. We use our methods
as modules of two greedy algorithms (IAdU and ABP ). Our experiments on real data verify the ap-
proximation quality and efficiency of our algorithms and confirm that our framework is preferred
by human evaluators. More precisely, the greedy IAdU algorithm in combination with the apCS
and squared grid algorithms appears to be the best choice for our paradigm as it is the fastest of
all options and at the same time achieves the best HPF (R ).

In our future work, we will study alternative scoring functions for the contextual and spatial
search components (e.g., road network distance in place of Euclidean distance). Another direction
of future work is the study of fairness, as our algorithms can also facilitate fairness. For instance,
consider areas associated with demographic or political groups, we can use our contextual or spa-
tial proportionality algorithms as to ensure fair representation of places in such areas.
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APPENDIX

A USER EVALUATION (EXAMPLES OF PLACES ON MAPS)

Fig. 18. The Top−10 results for the keyword historical on DBpedia using the default setting (big circles indi-

cate selected places (with a number indicating their ranking) and small circles indicate unselected places).
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