
The VLDB Journal
https://doi.org/10.1007/s00778-020-00610-z

REGULAR PAPER

Diversified spatial keyword search on RDF data

Zhi Cai1 · Georgios Kalamatianos2 · Georgios J. Fakas2 · Nikos Mamoulis3 · Dimitris Papadias4

Received: 18 April 2019 / Revised: 22 November 2019 / Accepted: 10 February 2020
© The Author(s) 2020

Abstract
The abundance and ubiquity of RDF data (such as DBpedia and YAGO2) necessitate their effective and efficient retrieval. For
this purpose, keyword search paradigms liberate users from understanding the RDF schema and the SPARQL query language.
Popular RDF knowledge bases (e.g., YAGO2) also include spatial semantics that enable location-based search. In an earlier
location-based keyword search paradigm, the user inputs a set of keywords, a query location, and a number of RDF spatial
entities to be retrieved. The output entities should be geographically close to the query location and relevant to the query
keywords. However, the results can be similar to each other, compromising query effectiveness. In view of this limitation, we
integrate textual and spatial diversification into RDF spatial keyword search, facilitating the retrieval of entities with diverse
characteristics and directions with respect to the query location. Since finding the optimal set of query results is NP-hard,
we propose two approximate algorithms with guaranteed quality. Extensive empirical studies on two real datasets show that
the algorithms only add insignificant overhead compared to non-diversified search, while returning results of high quality in
practice (which is verified by a user evaluation study we conducted).

Keywords Diversity · Ptolemy’s spatial diversity · Keyword search · Spatial RDF data · Ranking

1 Introduction

With the proliferation of knowledge-sharing communities,
such as Wikipedia, and the advances in automated infor-
mation extraction from the Web, large knowledge bases,
including DBpedia [14] and YAGO [54], are made avail-

B Georgios J. Fakas
georgios.fakas@it.uu.se

Zhi Cai
caiz@bjut.edu.cn

Georgios Kalamatianos
georgios.kalamatianos@it.uu.se

Nikos Mamoulis
nikos@cs.uoi.gr

Dimitris Papadias
dimitris@cs.ust.hk

1 College of Computer Science, Beijing University of
Technology, Beijing, China

2 Department of Information Technology, Uppsala University,
Uppsala, Sweden

3 Department of Computer Science and Engineering,
University of Ioannina, Ioannina, Greece

4 Department of Computer Science and Engineering, HKUST,
Clear Water Bay, Hong Kong

able to the public. Such knowledge bases typically adopt
the resource description framework (RDF) data model. A
knowledge base in RDF is a table of 〈subject, predicate,
object〉 triplets, where subjects correspond to entities and
objects can be other entities or literals (i.e., constants) asso-
ciated with the subjects via the predicates. For example, the
triplet 〈Beethoven, born_in, Bonn〉 captures the fact that the
entity Beethoven was born in the city of Bonn. The English
version ofDBpedia currently describes 4.5Mentities, includ-
ing about 1.4M persons, 883K places, 411K creative works,
241K organizations, 251K species, etc. YAGOcontainsmore
than 10M entities (e.g., persons, organizations, cities) and
120M facts about these entities. Data.gov [13] is the largest
open-government, data-sharing website that has more than a
thousand datasets in RDF format with a total of 6.4 billion
triplets, covering information about business, finance, health,
education, local government, etc.

Recently, RDF has been enriched with spatial semantics.
For example, YAGO2 [34] is an extension of YAGO that
includes spatial and temporal data. Such knowledge bases
enable location-based retrieval. Indicatively, a key research
direction of BBC News Lab is: How might we use geolo-
cation and linked data to increase relevance and expose the
coverageofBBCNews? [6]. To fully utilize spatially enriched

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-020-00610-z&domain=pdf

Z. Cai et al.

RDFdata, theGeoSPARQLstandard [5], definedby theOpen
Geospatial Consortium (OGC), extends RDF and SPARQL
to represent geographic information. RDF stores such as
Virtuoso [53], Parliament [43], and Strabon [39] are devel-
oped to support GeoSPARQL features. However, retrieval on
such systems requires that query issuers fully understand the
query language (e.g., SPARQLorGeoSPARQL) and the data
domain, which is restrictive and discouraging for common
users.

In view of this limitation, keyword search paradigms
facilitate retrieval using only keywords [16–23,26,40,46,50].
Given a query that consists of a set of keywords, an answer
is a subgraph of the RDF graph. The vertices of the subgraph
should collectively cover all the input keywords. The sum of
the lengths of the paths connecting the keywords defines a
looseness score for the subgraph [27,40,50].Compact results,
i.e., subgraphs of low looseness, are more relevant. This is
analogous to finding the smallest (tuple) subgraphs in rela-
tional keyword search [35] and general keyword search on
graphs [32].

RDF keyword search has been enhanced to be location
aware. Shi et al. [45] propose a model for searching spatial
entities, i.e., entities associated with locations. For example,
Bonn is a spatial entity since it has a fixed location, whereas
Beethoven is not. A spatial keyword search query takes as
input a location, a set of query keywords, and an integer
k. The result is the set of top-k spatial entities according
to a ranking function that considers both the spatial distance
between each candidate entity and the query location, and the
graph-based proximity of the keywords to the entity. More
precisely, a qualified place p is a spatial entity for which
there is a compact tree rooted at p that collectively covers all
query keywords. To effectively capture the textual semantics
of each entity, in a preprocessing phase, the original RDF
graph is reduced to a graph for which the keywords on all
emitting edges from an entity are absorbed by the entity.
Hence, a document (i.e., a set of keywords) is generated for
each entity and the edges carry no keyword information. In
addition, each entity document absorbs all literals (i.e., con-
stants) associated with it.

Figure 1a–d shows the preprocessed graph representation
of several triplets extracted from DBpedia. Each node is an
entity associated with a document (denoted by the set of key-
words in curly brackets), predicates, and literals [40]. Squares
correspond to places, for which the locations have been
extracted and are shown in Fig. 1e. Circles are non-spatial
entities of the RDF graph. The edges model the relation-
ships between entities. Assume a top-3 query issued by a
tourist at locationq inFig. 1ewith keywords {ancient, roman,
catholic, history}.According to [45], the result would consist
of places p1 (rooted at subgraph {p1, v1, v2, v3}, Fig. 1a), p2
(Fig. 1b) and p3. This is a good result in terms of semantic
relevance and spatial distance, as the places (1) are rooted at

compact subgraphs covering all query keywords [32,40] and
(2) are geographically close to the query locationq. However,
results based entirely on relevance may have similar content
[15,38,47] and location. For instance, the top-3 places share
nodes v1 and v3, implying similar semantics (they all repre-
sent communes). In addition, they are all located in the same
direction with respect to the query.

Indeed, several studies reveal that users strongly prefer
spatially [49] and textually [56] diversified query results over
un-diversified ones. Thus, in this paper, we introduce diver-
sified spatial keyword search on RDF data. Our framework
enables a trade-off between relevance and diversity. Namely,
the output places, in addition to being relevant to the query,
should minimize the number of common nodes in their sub-
graphs and should have diverse locations w.r.t. direction. For
instance, a diversified query result for Fig. 1 could include
p1, p4 (a river confluence) and p5 (a church). These places
are close to q, their subgraphs are compact, and they con-
tain all keywords. Moreover, they are diverse because they
are located around q and their subgraphs have no common
nodes. For this purpose, we propose a new spatial diversity
metric (Ptolemy’s diversity) which also considers the query
location and has several attractive properties, e.g., it is natu-
rally normalized to range [0, 1], satisfies triangle inequality,
etc. These properties render Ptolemy’s diversity superior to
the existing metrics for spatial diversity that consider either
only the distance [37] or the angle [51] between a pair of
locations.

We show that diversified spatial keyword query evaluation
on RDF data is NP-hard, by a reduction from the maximum
clique problem. Thus, we propose two efficient branch-and-
bound algorithms. The first, referred to as IAdU, generates
the results by adding and updating the scores of candidate
entities. The second algorithm, ABP, incrementally builds
results by adding the best pair at each iteration. IAdU is faster
thanABP, but has an approximationboundof 4,whereasABP
returns a 2-approximation of the optimal solution. This trade-
off renders the investigation of both algorithms interesting.
Concretely, our contributions can be summarized as follows:

– We define the problem of top-k diversified spatial key-
word search and show that it is NP-hard.

– We introduce Ptolemy’s spatial diversity, a novel spatial
diversity metric.

– We propose two efficient algorithms for retrieval of
diverse results.

– We provide a theoretical analysis with approximation
bounds of our algorithms.

– We conduct a thorough experimental evaluation on real
datasets, demonstrating the efficiency of our algorithms,
the effectiveness, and user preference (we conducted a
user evaluation) of our methodology.

123

Diversified spatial keyword search on RDF data

p1
<Saint_Martin_de_Crau>

<Arles>

<Bouches_du_Rhône>

v1

v2

<France>v3

{ancient,roman}

{catholic}

{history}

[commune]

(a) Tp1

p2

<Arles>

<France>

<Archaeological_museums_in_France>

<Bergerie_de_Baussenq>

v5

v1

v4

v3

<France_history>

{ancient,roman}

{history}

{catholic}

[commune]

(b) Tp2

p4

<Ancient_Greek_geography>

<Catholic_Church>

<Archaeological_museums_in_France><Crau>

v7

v6

v4

v8

<Romance_countries_and_territories>

{history}

{roman}

{ancient,history}[river
confluence]

(c) Tp4

p5

<Ancient_Rome>

<Romanesque_architecture>

<Roman_Catholic_cathedrals_in_Europe>

v12

v9

v10

v11
<Architectural_history>

{roman,catholic}

{ancient}

{history}

[church]

<Mouries>

(d) Tp5

[church]
3SP
3DSP

<Mouries>

<Crau>
[river confluence]

<Saint_Martin_de_Crau>
[commune]

<Caphan>

[commune]
<Bergerie_de_Baussenq>

[commune]

p3

p2

q

p4

p5

p1

(e)

Fig. 1 Example of spatial keyword query and results

The rest of the paper is organized as follows: Sect. 2
presents related work. Section 3 contains the necessary back-
ground on spatial RDF keyword search. Section 4 formalizes
the top-k diversified spatial keyword search problem and
introduces the general framework. Sections 5 and 6 present
the IAdU and ABP algorithms. Section 7 provides a the-
oretical analysis of their approximation bounds. Section 8
contains our experimental evaluation. Finally, Sect. 9 con-
cludes the paper with directions for the future work.

2 Related work

To the best of our knowledge, there is not any previous
work on diversified spatial keyword search over RDF graphs.
Hereby, we briefly discuss work related to keyword search
on RDF data and (spatial) diversification and how it relates
to our work.

Keyword search on RDF data A keyword-based retrieval
model over RDF graphs, such as [18,40,48,50], identifies a
set of maximal subgraphs whose vertices contain the query
keywords. They follow the definition as proposed in earlier
work of keyword search on graphs, [7,8,32,35,36] (which is
also analogous to the definition we use in this work). Diver-
sified keyword search on RDF graphs [9] is limited only to
the diversification of results by considering the content and
the structure of the results.

Diversification Diversification of query results has attracted
a lot of attention recently as amethod for improving the qual-
ity of results by balancing similarity (relevance) to a query
q and dissimilarity among results [12,24,25,30,52]. Diver-
sification has also been considered in keyword search over
graphs and databases, where the result is usually a subgraph

that contains the set of query keywords. In conventional (non-
diversified) keyword search methods, a set of results usually
consists ofmany duplicated answers that contain the same set
of nodes (i.e., nodes containing a query keyword). Thus, users
are overwhelmed with many similar answers with minor dif-
ferences [38]. Two recent works, PerK [47] and DivQ [15],
address this problem by using Jaccard distance on the set
of nodes of the results, namely by considering the com-
mon nodes. In [38], the problem of finding duplication-free
answers is addressed.Liu et al. [42] developed a feature selec-
tion algorithm in order to highlight the differences among
structural XML data.

Spatial diversification Several works consider spatial diver-
sification,whichfinds results such that objects arewell spread
in the region of interest. In [29,37], diversity is defined as
a function of the distances between pairs of objects in R.
However, considering only the distance between a pair and
disregarding their orientation could be inappropriate. In view
of this, van Kreveld et al. [51] incorporate the notion of angu-
lar diversity, wherein a maximum objective function controls
the size of the angle made by an object in R, the query loca-
tion q, and an unselected object.

There is no previous work on spatial diversification over
RDF data. Our work extends the only existing spatial RDF
keyword search framework [45] to support both spatial and
textual diversity. In the next section, we describe [45] in
detail.

3 Background

AnRDF knowledge base can bemodeled as a directed graph,
where each vertex v is an entity associated with a document

123

Z. Cai et al.

ψ containing the entity’s URI, its emitting edges (i.e., pred-
icates), and literals. An entity p is called a place vertex or
place, if it is associated with a spatial location. Each RDF
triplet corresponds to a directed edge from an entity (sub-
ject) to another entity (object). A top-k semantic place (kSP)
query q consists of three arguments: (i) the query location
q · λ, (ii) the query keywords q · ψ , and (iii) the number of
requested semantic places k.

Definition 1 Qualifying Tree Given a kSP query q and an
RDF graph G = 〈V , E〉, a qualifying tree T = 〈V ′, E ′〉 is a
subgraph of G, i.e., V ′ ⊆ V , E ′ ⊆ E , such that T is rooted
at a place vertex and ∪v∈V ′v · ψ ⊇ q · ψ .

Simply speaking, the documents of the vertices in a qual-
ifying tree collectively cover all the query keywords. Given
a kSP query, there may exist multiple qualifying trees with
the same root p, but different sets of vertices. Following the
existing work on keyword search over graphs [32,40], the
looseness of a qualifying tree is defined as follows:

Definition 2 LoosenessGiven aqualifying treeT =〈V ′, E ′〉,
let dg(p, ti) = minv∈V ′∧ti∈v.ψ d(p, v) be the length of the
shortest path from root p to keyword ti ∈ q ·ψ , where d(p, v)

is the shortest path from p to v. The looseness of T is defined
as L(T) = 1 + ∑

ti∈q·ψ dg(p, ti).

Looseness aggregates the proximity of the query key-
words to the root of the tree. 1 is added to the sum of
the paths for normalization purposes. The lower the loose-
ness, the more relevant the root of the tree is to the vertices
that cover the query keywords. Given a place vertex p, the
tightmost qualifying tree (TQT) Tp for the given query key-
words is the qualifying tree rooted at p with the minimum
looseness.1 For instance, all trees in Fig. 1 are TQTs. A
kSP query q aims at finding the k places that minimize
f (L(Tp), S(p)) = α · L(Tp) + (1 − α) · S(p), where Tp

is the TQT of p and S(p) is the Euclidean distance between
the query location and p. Parameter α is used to control the
relative importance of textual relevance and spatial proxim-
ity.

Shi et al. [45] propose the basic semantic place (BSP)
and semantic place retrieval with pruning (SPP) algorithms
for kSP query processing. BSP retrieves the place vertices
in the RDF graph in ascending order of their spatial dis-
tances to the query location using an R-tree [4,33]. For each
retrieved place p, BSP computes the corresponding TQT Tp.
TQT computation is performed by breadth-first search from

1 If multiple trees rooted at p have the same minimum looseness, we
can: (1) select one of them at random or (2) keep all trees. If we use
option (2), each placewould be characterized bymultiple node sets with
respect to the query keywords. The proposed methods are applicable
for both options. For the ease of presentation, we adopt option (1) in
the rest of the paper.

p until the query keywords are covered. SPP is an extension
of BSP that applies two pruning techniques. The first dis-
cards unqualified places for which there does not exist a tree
rooted at them covering all query keywords. This is achieved
by a reachability index (i.e., TFlabel [11]) and a pruning rule
that disregards places whose TQT cannot be constructed.
The second one eliminates places by aborting their TQT
computation, based on dynamically derived bounds on their
looseness. The original algorithms compute and return the
top-k places in a batch; in our implementation, we modify
them to incrementally retrieve the next place at each iteration
according to its relevance score.

4 kDSP problem definition

A top-k diversified semantic place (kDSP) query generalizes
a kSP query by combining a relevance function to the query
and a diversity function on the set of query results that con-
siders their relative location and content. In accordance with
[45,55], we represent the RDF data in their native graph form
(i.e., using adjacency lists) inmemory. Disk-based graph rep-
resentations for RDF data (e.g., [57]) can also be used for
larger-scale data. At a preprocessing phase, we also perform
the following. (1)We extract the document descriptions of all
vertices and index them by an inverted file, which facilitates
the fast search of vertices containing a given keyword. (2)
For each vertex, we store in a table the document description
and the spatial location (in the case of a place entity), which
enables direct access to the keywords and location of a vertex
during graph browsing. (3)We use an R-tree [28] to spatially
index all place entities, which facilitates incremental nearest
place retrieval. Section 4.1 presents the relevance function
by building upon the kSP model of [45]. Section 4.2 intro-
duces the diversity function, and Sect. 4.3 defines the kDSP
problem. Table 1 contains the symbols used throughout the
paper.

4.1 Relevance function

Consider a kDSP query, with location q · λ and keywords
q · ψ . Recall that for any place entity p, TQT Tp denotes
the tightmost tree rooted at p that covers all query keywords
q ·ψ . In the context of kDSPqueries, we define the looseness-
based relevance of a place p as follows:

f L(p) = 1 − min(L(Tp), Lmax)

Lmax
, (1)

where L(Tp) is defined according to Definition 2 and Lmax

is the maximum looseness that we can tolerate (the concept
of Lmax has been used often in earlier work, e.g., [36]). For
instance, considering the example of Fig. 1, for Tp1 we have

123

Diversified spatial keyword search on RDF data

Table 1 Notations Notation Definition

q Query with location q · λ, a set of keywords q · ψ and the
number k of requested place entities

p A place vertex on RDF

R Result of a kDSP query, a set of |R| = k places (Def. 3)

Tp The tightmost qualifying tree (TQT) rooted at place vertex p

L(Tp) Looseness of TQT Tp rooted at p (Def. 2)

S(p) Spatial distance between q · λ and p

f L(p) (Normalized) Looseness-based relevance of p w.r.t. query q
(Eq. 1)

f S(p) (Normalized) Spatial distance score of p w.r.t. q · λ (Eq. 2)

f (p) Relevance score of place p w.r.t. q (Eq. 3)

Df (p) Diversity score of p w.r.t. other p′s in R (Eq. 7)

HDf (p) Holistic diversity and relevance function of p (Eq. 8)

Df (p, p′) Diversity between p and p′ (Eq. 6)
dL(p, p′) Contextual Jaccard diversity between p and p′

dS(p, p′) Ptolemy’s spatial diversity between p and p′ (Eq. 5)
HDf (p, p′) Holistic diversity between p and p′ (Eq. 9)
HDf (R) Holistic diversity and relevance score of R (Eq. 10)

f (R) Weighted summation of f (p) for all p in R

Df (R) Weighted summation of Df (p) for all p in R

dL(p) Summation of dL(p, p′) for all p′s in R, excluding p

dS(p) Summation of dS(p, p′) for all p′s in R, excluding p

α Trade-off between L(.) and S(.) in f (L(Tp), S(p))

β Trade-off between f L(.) and f S(.) in f (p) (Eq. 3)

γ Trade-off between dL(.) and dS(.) in Df (Tp, Tp′) (Eq. 6)

λ Trade-off between relevance and diversity in HDf (p) (and
HDf (p, p′)) (Eq. 8 (and 9))

cHD f (p) The contribution of p if added to R (used by IAdU heuristic)

L(Tp1) = 5 and assuming Lmax = 15, then f L(Tp1) = 0.67.
We also define the spatial distance score f S(p) of a place p
as:

f S(p) = 1 − min(S(p), Smax)

Smax
, (2)

where S(p) is the Euclidean distance between p and q and
Smax is the maximum distance that can be tolerated (e.g.,
the largest distance among all pairs of places in the map
of a city; the concept of Smax has also been used in earlier
work, e.g., [2]). Considering the same example for p1 with
S(p1) = 1.93 km and Smax = 5 km, then f S(p1) = 0.61.
Both relevance and distance scores range in [0, 1], which
is helpful when comparing diversification scores (to be dis-
cussed shortly). The holistic relevance f (p) of a place
p is:

f (p) = β · f L(p) + (1 − β) · f S(p), (3)

where β controls the contribution of the two relevance com-
ponents (β = 0 considers only f S(p) and β = 1 only
f L(p)).

4.2 Diversity function

Let Tp and Tp′ be the TQTs of places p and p′. The Jaccard
distance between the vertex sets of Tp and Tp′ provides a sim-
ple and effective way to measure diversity of keyword search
results [15,47]. Specifically, if we overload Tp to denote the
set of nodes in the TQT Tp, we can define:

dL(Tp, Tp′) = |Tp ∪ Tp′ | − |Tp ∩ Tp′ |
|Tp ∪ Tp′ | . (4)

The Jaccard distance ranges in [0, 1] and satisfies triangle
inequality [41] (as we discuss later, this property enables
approximation bounds on the proposed algorithms). For
instance, in our example of Fig. 1, the two trees Tp1 and

123

Z. Cai et al.

qpA1 pA2

B1 B2C1 C2

Fig. 2 Ptolemy’s Spatial Diversity dS(pA1, pA2) > dS(pB1, pB2) >

dS(pC1, pC2)

Tp2 (with two common nodes) will give us dL(Tp1 , Tp2) =
(7 − 2)/7 = 5/7.

To measure geographic variety of two places p and p′
with respect to query location q · λ, we introduce Ptolemy’s
spatial diversity dS(p, p′) as follows:2

dS(p, p′) = ||p, p′||
||p, q · λ|| + ||p′, q · λ|| , (5)

where ||p, p′|| is the Euclidean distance between p and p′.
Similar to Jaccard distance, dS(p, p′) is naturally normal-
ized to range [0, 1], since ||q, p|| + ||q, p′|| ≥ ||p, p′||
(triangle inequality). We illustrate other attractive properties
of our spatial scattering function with the help of Fig. 2.
Two places p and p′ receive a maximum diversity score
dS(p, p′) = 1, if they are diametrically opposite to each
other w.r.t. to q · λ, e.g., points pA1 and pA2. Pair of places
(pC1, pC2) have the same distance as pair (pA1, pA2), but
dS(pC1, pC2) < dS(pA1, pA2), because pC1 and pC2 are in
the same direction w.r.t q (i.e., north of q). Pair (pB1, pB2)
are further from each other compared to the places in pair
(pC1, pC2) and consequently have a higher diversity score.
(This can be shown using Pythagorean theorem.) In addition,
when a place p is far from q, the diversity score of any place
pair (p, p′) that includes p is heavily penalized, because
||p, q · λ|| and ||p, p′|| become similar and dominate over
||p′, q · λ||.

Finally, as we show in Sect. 7, this measure also satisfies
the triangle inequality and helps us derive tight approxima-
tion ratios for our greedy algorithms.

Given dL(p, p′) and dS(p, p′), Df (p, p′) measures the
total diversity between places p and p′:

Df (p, p′) = γ · dL(p, p′) + (1 − γ) · dS(p, p′), (6)

where γ controls the contribution of the two diversification
components. The weighting parameters β, γ can be unified
to a single parameter which captures the relative importance

2 We name this metric after the Greco-Roman mathematician Ptolemy
because we later use Ptolemy’s inequality to prove that it satisfies tri-
angle inequality.

of content and location in the computation of relevance and
diversity.

The diversity score D f (p) of p in the query result R,
containing k places, is computed as:

Df (p) =
∑

p′∈R,p′ �=p

D f (p, p′). (7)

Equation 8 shows the holistic score HD f (p) of place p
that combines relevance and diversity, where λ adjusts their
trade-off. A linear function and the respective trade-off λ

have been used extensively in earlier work in diversity, e.g.,
[52].3 We multiply f (p) by k − 1 in order to normalize both
components in the same range (since Df (p) compares p
against the other k − 1 elements in the result set R). The
relevance f (p) of p is computed by Eq. 3.

HDf (p) = (1 − λ) · (k − 1) · f (p) + λ · Df (p). (8)

To simplify the presentation, we introduce the holistic
diversity function of a pair of places, where we re-define
our objective as:

HDf (p, p′)=(1 − λ) · (f (p) + f (p′)) + 2λ · Df (p, p′).
(9)

Df (p, p′) is scaled up by a factor of 2 to balance the two
values of f (p) and f (p′). Note that computing the holistic
diversity function, denoted as HDf (R), of all places of a set
R using either Eq. 8 or Eq. 9 gives the same result:

HDf (R) =
∑

p∈R

HD f (p) =
∑

p,p′∈R,p �=p′
HDf (p, p′).

(10)

In addition, we introduce notations f (R) and Df (R) for
the weighted and normalized summation of f (p) and Df (p)
scores, respectively, of all p ∈ R. Namely, HDf (R) =
f (R)+Df (R), where f (R) = (1−λ) ·(k−1) ·∑p∈R f (p)
and Df (R) = λ · ∑

p∈R D f (p). We also denote dL(Tp)

(as dL(Tp) = ∑
p′∈R,p′ �=p dL(Tp, Tp′) and analogously,

dS(p) = ∑
p′∈R,p′ �=p dS(p, p′). We can easily see that

Df (p) = γ · dL(Tp) + (1 − γ) · dS(p).

4.3 Problem definition

Finally, we can define the diverse kSP place (kDSP) retrieval
problem as follows.

3 We observed, by experimentation, that the default setting (i.e., λ =
β = γ = 0.5) produces effective results; hence, in practice, these tuning
parameters can be dropped, rendering our framework fairly simple to
apply.

123

Diversified spatial keyword search on RDF data

Definition 3 kDSPProblemDefinition. Given a query q with
location q · λ, set of keywords q · ψ , and an integer k, the
kDSP query returns a set R of k place entities that have the
highest HDf (R) score.

Since the objective function HDf (p) of a place p necessi-
tates the comparisonwith the other k−1 places of a candidate
R set, we have to consider all O(nk) candidate R sets. This
problem as proven by Theorem 1 is NP-hard. In view of
this limitation, in the next sections, we propose efficient
greedy algorithms with approximation guarantees. Note that
the above definition is equivalent to the max-sum problem
[52].

Theorem 1 The kDSP problem is NP-hard.

Proof In order to prove the hardness of kDSP, we construct
a reduction from the clique problem: given an undirected
graph G(V , E) and a positive integer k, (k ≤ |V |), the deci-
sion problem is to answer if G contains a clique of size k.
We start the reduction, by creating the complementary graph
G ′(V , E ′) of G, where E ′ contains the edges not present in
E , i.e., for each pair of vertices vi , v j , edge (vi , v j) ∈ E ′ iff
(vi , v j) /∈ E . Then, we generate an instance of kDSP as fol-
lows. Each vertex vi in V corresponds to a place pi that has a
TQT Tpi , rooted at node pi of the RDF graph. For every edge
(vi , v j) in E ′, we add node vi, j as a child of roots pi and p j

in the TQT Tpi and Tp j , respectively. This reduction takes
polynomial time, since the cost is O(1) per edge, and the
number of edges is O(|V |2). After generating the TQTs, we
set λ = 1 (i.e., we disregard relevance) and γ = 1 (i.e., we
disregard Ptolemy’s diversity) and construct a kDSP query,
such that, based on the query location and keywords, (i) the
places retrieved are those corresponding to the vertices of
G and (ii) the TQTs of the places are exactly those defined
above. Then, the original graph G contains a clique of size
k, iff there is a kDSP result R with holistic diversity function
HDf (R) = k · (k − 1).

To explain this, assume that there is a clique of k vertices
v1, . . . vk in G. Consider a kDSP result that contains the k
corresponding places R = {p1, . . . pk}. Since there is no
edge connecting vertices (vi , v j) in G ′, each pair (Tpi , Tp j)

of TQTs have zero overlap, and their contextual diversity
(Eq. 4) is dL(Tpi , Tp j) = 1. For γ = 1, the total diver-
sity between two places equals their contextual diversity,
i.e., Df (Tpi , Tp j) = dL(Tpi , Tp j) = 1. Based on Eq. 9,
for λ = 1, the holistic diversity of a pair (pi , p j) of places
becomes HDf (pi , p j) = 2 · Df (Tpi , Tp j) = 2. Finally,
according to Eq. 10, the holistic diversity of the result R is
the total diversity for the k · (k − 1)/2 distinct pairs of places
in R, i.e., HDf (R) = k · (k − 1). Conversely, if there is no
clique of size k in G, any result R of k places in kDSP has
holistic diversity HDf (R) < k ·(k−1). This is because there
is at least a pair of places (pi , p j) in R, whose corresponding

v1

v2

v4

v3

Tp1 = {p1}
Tp2 = {p2, v2,3, v2,4}
Tp3 = {p3, v2,3}
Tp4 = {p4, v2,4}

(b)(a)

Fig. 3 Example of reduction

vertices (vi , v j) are connected in G ′. Subsequently, there is
a common node vi, j in trees Tpi and Tp j . Thus, based on
Eq. 4, their contextual diversity is dL(Tpi , Tp j) < 1, and the
holistic diversity of all the pairs in R cannot reach k · (k−1).
This completes the proof. ��

Figure 3b shows (as sets of nodes) the resulting TQTs
for the input graph of Fig. 3a. The gray dashed lines rep-
resent edges of G ′. Each of these edges (e.g., (v2, v4))
adds the same node (e.g., v2,4) under the roots of the
corresponding trees (e.g., Tp2 and Tp4). The holistic diver-
sity of the 4DSP query containing all four places is: 2 ·
(Df (Tp1 , Tp2) + Df (Tp1, Tp3) + Df (Tp1, Tp4) + Df (Tp2 ,

Tp3) + Df (Tp2 , Tp4) + Df (Tp3, Tp4)) = 2(1 + 1 + 1 +
0.75 + 0.75 + 1) = 11 < 4 · 3. Thus, we can state that
there is no clique of size 4 in G. On the other hand, the
result R = {p1, p3, p4} of the 3DSP query has holistic diver-
sity: 2 · (Df (Tp1 , Tp3) + Df (Tp1 , Tp4) + Df (Tp3 , Tp4)) =
2 · (1+1+1) = 3 ·2. Consequently, there is a clique involv-
ing {v1, v3, v4} in G. In general, any result of k places with
score k · (k − 1) corresponds to a clique of size k.

As a final note, we can easily construct the TQTs, shown
in the example, as follows. We consider as many query key-
words as the maximum degree of a vertex in G ′ (i.e., 2
keywords w1 and w2 in this example). Then, we assume that
each node added to the trees contains one of the keywords
(e.g., v2,3 containsw1 and v2,4 containsw2). For every vertex
with the highest degree in G ′, the root node (e.g., p2) of the
corresponding TQT does not contain any of the query key-
words. For each of the other vertices, the root node contains
the keywords that are not covered by the non-root nodes (e.g.,
p3 contains w2 and p1 contains both keywords). Again, the
construction can be done in PTIME.

5 Incremental addition and update (IAdU)
algorithm

We apply a greedy heuristic in a combination with a
branch-and-bound approach that can be injected to any kSP
algorithm (e.g., BSP, SPP) [45]. The heuristic iteratively
constructs the result set R by selecting a new place entity
p that maximizes the contribution it can make toward the
overall score HDf (R). The contribution cHD f (p) of a

123

Z. Cai et al.

Algorithm 1 The IAdU Algorithm
IAdU (q)
1: R = ∅; MaxHeap H = ∅, ordered by cHD f (·)
2: θ = ∞
3: repeat
4: if (max(H) ≥ θ) then
5: cur P = H .deHeap()
6: add cur P to R
7: for each p in H do
8: cHD f (p) += HDf (p, cur P)

9: θ = (1 − λ) · (
∑

p′∈R f (p′) + |R| · fmin) + 2λ · |R|
10: else
11: Get next cur P using a kSP algorithms (e.g., BSP, SPP or

SP); fmin = f (cur P)

12: if (R == ∅) then
13: cHD f (cur P) = f (cur P)

14: addOnR(cur P)
15: else
16: for each p in R do
17: cHD f (cur P)+ = HDf (p, cur P)

18: H .add(cur P , cHD f (cur P))
19: θ = (1 − λ) · (

∑
p′∈R f (p′) + |R| · fmin) + 2λ · |R|

20: until |R| = k
21: return R

p to be added to the current result set R is defined as
follows:

cHD f (p) =
{
f (p), if R = ∅,
∑

p′∈R HD f (p, p′), otherwise.
(11)

cHD f (p) considers the f (p) score and also the diversity
of p against the existing elements in R. In the first itera-
tion, R is empty; thus, the available contribution of a place
can only be the corresponding f (p) score. The contributions
of all other places are then updated to reflect the new entry
in R. Then, the algorithm iteratively selects the place that
maximizes cHD f (p) to R, adds it to R, and updates the
score of the unselected places. The population of all valid
places can be prohibitively large and expensive to calcu-
late. Thus, we employ a branch-and-bound paradigm that
incrementally generates and processes places in combination
with a threshold. More precisely, we reuse kSP algorithms
to incrementally retrieve places in descending order of their
f (·) scores. Note that the kSP algorithms of [45] do not
produce results incrementally but return the top-k results as
a batch; still, we can easily modify them to generate results
incrementally. (More precisely, we can use a revised thresh-
old that facilitates the output of the current largest result.) In
summary, we have to update cHD f (p) scores in two cases:
(1) when a place is added to R, where we need to update
the score of all seen elements and (2) when a new place is
emerged from our kSP algorithms, where we need to calcu-
late its diversity score against all elements in R. Finally, IAdU
algorithm uses a threshold, θ , that facilitates the pruning of
unseen places if they cannot qualify in R.

Fig. 4 Example of the IAdU algorithm

Algorithm1 illustrates the pseudo-code of the IAdUAlgo-
rithm.Amaxheap H maintains seen places according to their
cHD f (·) values and is initially set to null (line 1). In addi-
tion, a threshold of cHD f (·) score, θ , of all unseen places is
also maintained and is initially set to ∞ (line 2). The algo-
rithm starts by adding the place p with the largest f (p) score
on R (obtained by kSP algorithms; lines 12–14). During the
next iterations, new places are added to the heap H accord-
ing to their cHD f (·) score (lines 15–19) which is calculated
against places already in R (lines 16, 17). The threshold θ is
updated accordingly (line 19). More precisely, θ considers
the minimum value f (·) of a seen place and the maximum
diversity (i.e., 1) against all elements in R. If the top place on
the heap H , which has the largest score, has a score greater
than the current threshold, then this place will have the next
largest score. Thus, we de-heap it and add it on R (lines 4–6).
Due to the new addition on R, we need to update accordingly
the cHD f (·) score of all places still in H (lines 7 and 8) and
the threshold of unseen places (line 9). The algorithm termi-
nates when the size of R becomes k (line 20).

Example We demonstrate the IAdU algorithm with the
example in Fig. 4 for k = 4. In Fig. 4, we show the cur-
rent value of (i) cur P (with its respective f (p)), (ii) heap
H , (iii) θ and (iv) R. At first, the place with the largest f (.)
score is added on R (i.e., p6). Then, iteratively, we retrieve
and compute the scores of the next places that are retrieved
by the kSP algorithm and add them to the heap (according to
their HDf (,) values against p6, which is currently the only
element in R) and also update the threshold. After processing
p4, max(H) (corresponding to p3) becomes larger than the
threshold; thus, p3 is de-heaped and added on R. Then, all
elements in H and θ are updated accordingly. We repeat this
until we obtain the 4 results.

Complexity. The running time of the algorithm is dominated
by the retrieval of the necessary places, in increasing order
of their relevance, using the kSP algorithm, until the result

123

Diversified spatial keyword search on RDF data

Algorithm 2 The ABP Algorithm
ABP (q)
1: R = ∅
2: θ = ∞
3: FList = ∅
4: repeat
5: if (|FList | < 2) ∧ (max(max Pair H) ≥ θ) then
6: (pi , p j) = max Pair H .deHeap()
7: add pi and p j to R
8: if (|R| < �k/2�) then
9: delete PairsH [pi], PairsH [p j]
10: delete pi and p j from FList
11: θ = (1 − λ) · (max(FList) + last(FList)) + 2 · λ

12: Update(max Pair H)
13: else
14: Get next p using a kSP algorithm (e.g., BSP, SPP)
15: add p to FList
16: for each p′ in FList do
17: HDf (p, p′) = (1−λ) · (f (p)+ f (p′))+2λ ·Df (p, p′)

18: add pair (p, p′) to PairsH [p]
19: deheap and add top pair of PairsH [p] on max Pair H
20: θ = (1 − λ) · (max(FList) + last(FList)) + 2 · λ

21: until |R| ≥ �k/2�
22: if k is odd then
23: add an arbitrary place from FList to R
24: return R

Update(maxPairH)
1: while (max(max Pair H) ∩ R �= ∅) do
2: (pi , p j) = max Pair H .deHeap()
3: if (pi ∩ R == ∅) then
4: repeat
5: (pi , pl) = PairsH [pi].deHeap()
6: if (pl not in R) then
7: add (pi , pl) on max Pair H
8: until (pl ∩ R == ∅) ∨ (|PairsH [pi]| == 0)

is finalized. Let K be the number of these places; the cost
of their retrieval is O(K · kSPT), where kSPT is the time
required to generate a result incrementally using a given kSP
algorithm. An additional cost is due to the updates to the
contributions of the retrieved places and heap updates due to
emergence of new results. This cost is bounded by the K · k
heap updates, i.e., it is O(K · k · logK). Finally, we have to
add the cost for updating the contributions which is O(K 2)

because for all pairs (p, p′) of retrieved places we have to
compute HDf (p, p′). Thus, the complexity of the algorithm
is O(K · (kSPT + k · logK + K)).

6 Add best pairs (ABP) algorithm

The add best pairs (ABP) algorithm greedily constructs the
result set R by iteratively selecting the pair of places (p, p′)
with the best HDf (p, p′) score. As opposed to IAdU, which
selects the next place by considering its diversity to the places
already selected, ABP selects the next pair (p, p′) based on

only its HDf (p, p′) value, independently of p or p′’s diver-
sity to places already in R. Once a pair is selected, both its
constituent elements and any pairs they make are removed
from further consideration by the algorithm (in a lazy fash-
ion). Since a single pair is selected in each iteration, �k/2�
iterations apply when the value of k is even. When k is odd,
an arbitrary place is chosen to be inserted in the result set R
as its last entity.

In a nutshell, ABP efficiently implements this heuris-
tic by iteratively processing the places and by managing
(1) a ranked list, FList , of places in descending order of
their f (p) scores, (2) one max heap PairsH(p) for each
p in FList , containing pairs (p, p′) with previously seen
places p′ (organized by their HDf (p, p′) score), (3) a max
heap, max Pair H , which organizes all top elements of the
PairsH(p)’s. Finally, we maintain (4) a threshold θ , which
helps us to checkwhether the top pair onmax Pair H is guar-
anteed to be the one with the highest HDf (·, ·) among pairs
which have not been added to the result R yet.

Algorithm 2 illustrates the pseudo-code of the algorithm.
We start with an empty result set R, an empty list FList of
retrieved places, and a threshold θ = ∞. Initially, lines 14–
20 retrieve the two most relevant places, say p1 and p2, to q
using the kSP algorithm and add them to FList . PairsH [p1]
is an empty heap because there is no place in FList before
p1. After obtaining the second place p = p2, then we add
on PairsH [p], the first pair (p = p2, pi = p1), which
becomes the top pair in all PairsH ’s, so it is then de-heaped
and added to max Pair H .

Then, the θ threshold takes as value the best possible
case for a place pair which consists of the next place (not
retrieved yet) and one of the places in FList (line 20). This
case happens, when the place in FList with the maximum
relevance (denoted bymax(FList)) is combined with a place
from those not seen yet having the maximum possible rele-
vance. This place should have the same relevance (at most) as
the relevance of the last accessed place by the kSP algorithm
(denoted by last(FList)). At the same time, these two places
should have the maximum possible diversity score (i.e., 2).

As soon as there are at least two places in FList , the algo-
rithm can check at line 5 whether the top pair inmax Pair H
has a score greater than θ . If so, this pair (pi , p j) is de-
heaped from max Pair H and added to R. Then, the heap
PairsH [pi], which keeps track of the pairs that include pi
and other places in FList is deleted, since it will not be of any
further use. The same happens with PairsH [p j]. pi and p j

are also removed from FList . Then, the threshold θ is updated
to reflect these changes. Finally, max Pair H is updated in a
lazy fashion in order for the currently best pair on the top of
this heap to be a valid pair (function Update()).

Specifically, in the Update() function, while the top pair
of max Pair H includes a place in R (this place is already
selected and cannot be selected again), then we de-heap this

123

Z. Cai et al.

pair (pi , p j). If the place in this pair which is not yet in
R is pi , we then have to replace it with a new pair from
PairsH [pi], so that the top of this heap is not a pair (pi , pl)
for which pl ∈ R. Hence, while for the top pair (pi , pl), we
have pl ∈ R, we keep de-heaping (pi , pl). If, in the end,
for the top (pi , pl) of PairsH [pi], pl is not in R, we add
(pi , pl) onmax Pair H and stop the updates. If PairsH [pi]
becomes empty, then a replacement from it is not achievable.
Then, we iteratively repeat this process for the new top of
max Pair H (line 1); namely, we check if the top pair inter-
sects with R and if so repeat the process until the current top
pair does not.

In the main algorithm, if the top of max Pair H does not
have a score better than θ (line 5), then ABP retrieves the
next place p using the kSP algorithm and creates the cor-
responding PairsH [p] by comparing p with all places in
FList (lines 14–18). max Pair H is also updated to include
the top of PairsH [p], i.e., the best pair that includes p (line
19). The threshold θ is then decreased (line 20) because the
last relevance score last(FList) is updated to the relevance
score of p (which is smaller compared to the places retrieved
before p). Hence, potentially at the next iteration, the condi-
tion of line 5 becomes true due to (i) the decrease in θ , (ii) the
new addition to max Pair H , which may increase the score
of its top element.

ABP terminates as soon as �k/2� pairs are added to R. If
k is even, then we are done; if k is odd, ABP adds one arbi-
trary place from FList to R, e.g., the one with the maximum
relevance.

Note that each heap, PairsH [p], includes all pairs of p
having as elements previously seen places in FList . Thus,
each pair can appear only once in the list of these heaps,
i.e., on the heap of the constituent element with the smallest
f (.) score. During the execution of the algorithm, if a pair
is added on R, then the two respective heaps are deleted for
further consideration. However, still other heaps may con-
tain pairs that contain the two newly added to R places. We
apply a lazy approach in managing these pairs. More pre-
cisely, we only delete a pair that includes an added place,
if it is de-heaped from the heap (as it is on the top of the
heap). Therefore, a heap may still include pairs with many
elements that have already been added on R. Similarly, on
max Pair H , we apply a lazy approach to manage this heap
by ensuring only that the top pair includes elements that are
not in R. Namely, the heap may still include pairs (other than
the top) containing elements that have already been added
on R. We only de-heap as to disregard a pair, when it is on
the top of the heap. In such cases, we replace it with the next
pair from the respective PairsH [.] heap.

Example The example of Fig. 5 illustrates ABP for k = 4
(i.e., 2 pairs). We iteratively retrieve places and their respec-
tive f (p) scores and add them on FList . In Fig. 5a, the pair

(a)

(b)

Fig. 5 Example of the ABP algorithm

(p3, p6) is first de-heaped and added on R, since it qualifies
the threshold. However, note that p6 and p3 may still appear
in other pairs of the heap, i.e., in pairs (p4, p6), (p1, p3),
and (p2, p6). ABP deletes such pairs in a lazy fashion when
needed. Hence, the next top pair (p4, p6) to (p3, p6) is dis-
regarded (indicated with strike-through format). Then, ABP
de-heaps the next pair from the respective PairsH heap
(PairsH [p4]), which is (p4, p3). We disregard this pair as
well, since p3 is already in R. Then, we de-heap pair (p4, p2)
and add on max Pair H (Fig. 5b). Now, (p1, p3) becomes
the top of the heap which also needs to be replaced with
(p1, p2); (p1, p2) becomes the top of the heap. θ in Fig. 5a
is defined based on p6 and p4 as they represent the first and
last elements in the FList . In Fig. 5b, θ will be based on p2
and p5, as they represent the current first and last elements
of the list.

Complexity The running time of the algorithm is dominated
by the retrieval cost of the places by the kSP module and the
management of the list of heaps Pair H [] and max Pair H .
The former (similar to the IAdUAlgorithm) is O(K ·kSPT)

time where kSPT is the cost of retrieving a place and K is
the number of places that have to be retrieved until ABP’s
termination. Each Pair H [p] heap has a maximum size K .
Since each of the K 2 pairs can appear only once in all heaps,
the total time managing all these heaps is bounded O(K 2 ·
log(K 2)). The max Pair H heap also has maximum size of

123

Diversified spatial keyword search on RDF data

q

w
u

Fig. 6 Ptolemy’s spatial diversity (Lemma 1)

K 2, since we may have to en-heap all pairs from Pair H [p]
heaps, and themanagement ofmax Pair H also costs O(K 2 ·
log(K 2)). Hence, the worst case complexity of the algorithm
is O(K · (kSPT + K · log(K 2))). Hence, the complexity of
this algorithm is higher than that of IAdU. In practice, both
algorithms performwell, because K is relatively small. Their
costs are dominated by the kSPT factor, which is typically
larger that the other ones.

7 Theoretical analysis

In this section, we analyze the approximation bounds of our
algorithms (IAdU and ABP). We first deduce some prelimi-
nary results from our problem formulation, which enable us
to achieve tight bounds for the algorithms. Our proof is based
on two key observations: (i) for a result set R, the summa-
tion of the HDf (u, v) values of all pairs (u, v) ∈ R equals
HDf (R) (Eq. 10) and (ii) HDf (u, v) satisfies the triangle
inequality (proved below).

7.1 Preliminary results

Lemma 1 Given u, v, w ∈ V , the Ptolemy’s spatial diversity
dS(u, v) satisfies triangle inequality, as given by

dS(u, v) + dS(v,w) ≥ dS(u, w).

Proof We use Fig. 6 to support our construction. By defini-
tion of dS(u, v), the inequality in Lemma 1 can be rewritten
as

‖u, v‖
‖q, u‖ + ‖q, v‖ + ‖v,w‖

‖q, v‖ + ‖q, w‖ ≥ ‖u, w‖
‖q, u‖ + ‖q, w‖ .

By multiplying both sides of the inequality by (‖q, u‖ +
‖q, v‖)(‖q, u‖ + ‖q, w‖)(‖q, v‖ + ‖q, w‖), we get

(‖q, u‖ + ‖q, w‖)(‖q, u‖ · ‖v,w‖
+ ‖u, v‖ · ‖q, v‖ + ‖v,w‖ · ‖q, v‖ + ‖u, v‖ · ‖q, w‖)

− ‖u, w‖ (‖q, u‖ + ‖q, v‖)(‖q, v‖ + ‖q, w‖) ≥ 0.

(12)

For the rest of the proof, we assume that ‖u, w‖ �= 0, since
when ‖u, w‖ = 0, the inequality in question becomes obvi-
ous. To prove Eq. 12, we make use of Ptolemy’s inequality
[3], which gives a relationship between the side lengths and
the diagonals of a quadrilateral with vertices q,u,v, and w as

‖u, v‖ · ‖q, w‖+‖q, u‖ · ‖v,w‖ ≥ ‖u, w‖ · ‖q, v‖ . (13)

We now consider Eq. 13 for two cases:

(i) ‖q, v‖ = 0, or
(ii) ‖q, v‖ = ‖u,v‖·‖q,w‖+‖q,u‖·‖v,w‖)

‖u,w‖ .

Under condition (i), Eq. 12 reduces to:

‖q, u‖2 · ‖v,w‖ + ‖q, u‖ · ‖q, w‖
× (‖u, v‖ + ‖v,w‖ − ‖u, w‖)
+ ‖u, v‖ · ‖u, w‖2 ≥ 0.

(14)

Under condition (ii), Eq. 12 is simplified to:

‖q, u‖ · ‖q, k‖ ((‖u, v‖ + ‖v,w‖)2 − ‖u, w‖2)
+ ‖u, v‖ · ‖v,w‖ (‖q, u‖ − ‖q, w‖)2 ≥ 0.

(15)

Both Eqs. 14 and 15 hold as a consequence of the triangle
inequality on u, v, w, i.e., ‖u, v‖ + ‖v,w‖ − ‖u, w‖ ≥ 0.
This completes the proof. ��
Lemma 2 Given u, v, w ∈ V , the diversification function
D f (u, v) (where D f (u, v) = dL(u, v)+ dS(u, v)) satisfies
triangle inequality, as given by

D f (u, v) + Df (v,w) ≥ Df (u, w).

Proof Bydefinition of Df (u, v), the inequality can be rewrit-
ten as: (dL(u, v) + dS(u, v)) + (dL(v,w) + dS(v,w)) ≥
(dL(u, w) + dS(u, w)). From Lemma 1, we know that
dS(u, v) satisfies the inequality. Additionally, Levandowsky
and Winter [41] have shown that Jaccard distance is also
a metric, and hence, it satisfies the triangle inequality,
which means that dL(v,w) (defined as the Jaccard distance
between two node sets) also satisfies the inequality. Thus, the
two inequalities satisfied are:

dL(u, v) + dL(v,w) ≥ dL(u, w)

dS(u, v) + dS(v,w) ≥ dS(u, w).
(16)

The addition of these equations completes the proof. ��
In general, the diversity function Df (u, v) maintains its

triangle inequality properties as long as the constituent com-
ponents follow triangle inequality.

123

Z. Cai et al.

Theorem 2 Given u, v, w ∈ V , HD f (u, v) (Eq. 9) satisfies
triangle inequality, i.e.,

H D f (u, v) + HDf (v,w) ≥ HDf (u, w).

Proof By expanding HDf (u, v) according to its definition,
we get: (f (u) + f (v) + 2 · Df (u, v)) + (f (v) + f (w) +
2 · Df (v,w)) ≥ (f (u) + f (w) + 2 · Df (u, w)) �⇒ 2 ·
f (v) + 2 · Df (u, v) + 2 · Df (v,w) ≥ 2 · Df (u, w) �⇒

f (v) + (Df (u, v) + Df (v,w) − Df (u, w)) ≥ 0. (17)

From Lemma 2, we know that Df (u, v) + Df (v,w) ≥
Df (u, w), and hence, Eq. 17 holds. ��

Note that the triangle inequality property of HDf (u, v)

is independent to f (.). Namely, f (.) does not need to satisfy
the triangle inequality and can have an arbitrary value. It is
easy to see that the triangle inequality property of HDf (u, v)

is independent to the value of the tuning parameters (i.e., β,
γ , and λ).

7.2 Approximation bounds

Theorem 3 IAdUalgorithm achieves an approximation ratio
of 4.

Proof Consider a complete undirected graph, where each
node u corresponds to a place entity and an edge (e.g.,
e(u, v)) corresponds to the distance between the corre-
sponding pair of places. More precisely, each edge has its
HDf (u, v) value as edge weight. IAdU selects, at every
iteration, the place u that has the maximum available con-
tribution cHD f (u). The heuristic used in IAdU is similar to
the one proposed by Ravi et al. [44]. The difference lies in the
selection of its first edge, i.e., the first step. In particular, they
first (i) select the pair of nodes with the maximum pairwise
distance in the entire graph and (ii) complete the remaining
top-k result set by successively selecting the next element
that maximizes the distance to the set of already selected
elements. They prove by mathematical induction that their
greedy heuristic achieves an approximation of 4.

To achieve our desired analysis, we show a different
deduction for the base case of the inductive step. For the
base case of k = 1 IAdU adds the node with the highest
f (u) score in V . We can easily see that this constitutes the
optimal result for k = 1. With the second addition, IAdU
adds a new node v that participates in an edge with u and
has the maximum HDf (u, v) score. We prove below that
the value of HDf (u, v) is at least half the maximum value
of HDf (u, v) in the optimal solution for k = 2. ��
Lemma 3 The first two nodes added by IAdU form an edge
with a score at least half of the maximum score of all edges
in the complete graph.

x y

vu w(u,v) ≥ wmax /2

wmax

Fig. 7 Case 3 of the inductive step of k = 2 (IAdU algorithm)

Proof Let us assume that the optimal solution for k = 2 (i.e.,
the best edge) is the edge e = (x, y) and has a weight of
wmax. Now consider the greedy selection of IAdU of edge
(u, v) in the first two iterations, where node u is selected
before node v. Three cases arise:

Case 1 |{u, v} ∩ e| = 2 (namely, the selected edge is the
optimal edge e). Trivial. The optimal edge is selected.

Case 2 |{u, v} ∩ e| = 1 (i.e., only one node of the selected
edge belongs to the optimal edge). W.l.o.g. assume that u =
x . For the subcase (a), node u is selected before v; then,
the optimal edge will be selected by the greedy heuristic of
IAdU. For the subcase (b), where v is selected first, it is easy
to see that between edges (v, x) and (v, y), the one with
the larger weight is selected. This edge’s weight is at least
wmax/2 according to the triangle inequality between v, x ,
and y.

Case 3 |{u, v}∩e| = 0 (i.e., none of the selected edge’s nodes
belongs to the optimal edge). We use Fig. 7 to illustrate this
case. W.l.o.g. assume that node u was selected first by IAdU.
By the triangle inequality, we have w(u, x) + w(u, y) ≥
w(x, y) = wmax. And due to the greedy selection of IAdU,
w(u, v) > w(u, x), w(u, y). Hence, w(u, v) ≥ wmax/2.

This completes the inductive step for k = 2. The rest of
the proof (i.e., the inductive case for k > 2) follows directly
from [44]. ��
Theorem 4 ABP algorithm achieves an approximation ratio
of 2.

Proof Wemake the samemapping as above, namely we have
a complete undirected graph, where each node corresponds
to a TQT and caries an f (u) score, and each edge (u, v)

carries its HDf (u, v) score as edge weight. The greedy
heuristic in [31] achieves the approximation ratio of 2 in
the case where edge weights satisfy the triangle inequality.
This heuristic chooses in every iteration a new pair of ele-
ments that has the maximum pairwise distance. In ABP, we
efficiently implement the same heuristic under the suggested
mapping, wherein at each iteration we add to R the edge
(u, v) with the current maximum HDf (u, v) score in G and
then delete this edge and all its adjacent edges from G. We
continue until we get the k/2 edges. Since HDf (u, v) satis-

123

Diversified spatial keyword search on RDF data

(a) (b) (c)

Fig. 8 Efficiency on DBpedia

fies the triangle inequality, it follows that ABP also achieves
an approximation of 2. ��

8 Experiments

We evaluate the efficiency of the proposed greedy algorithms
and the effectiveness (and approximation quality) of the pro-
posed kDSP framework against the kSP framework of [45].
Finally, we present a user evaluation comparing kSP and
kDSP results.

8.1 Setup

Datasets We used the datasets and settings that have been
used in [45], namely DBpedia and YAGO (version 2.5). The
DBpedia RDF graph has 8,099,955 vertices and 72,193,833
edges. Among all vertices, 883,665 are places with coor-
dinates. It has 2,927,026 unique words; a word appears
on average in the documents of 56.46 vertices. YAGO has
8,091,179 vertices and 50,415,307 edges. Among these ver-
tices, 4,774,796 are places. It has 3,778,457 distinct words,
and each word appears on average in 7.83 nodes. For both
datasets, we use an inverted index to organize the documents
of nodes.

Queries We defined the query points to be in metropolitan
areas (e.g., New York, London, Beijing, Tokyo), which con-
tain plethora of places. For each of these cities, we extracted
queries with locations and keywords that can return many
results. More precisely, we used queries which, according
to the kSP framework, can produce at least five times more
results than our largest k. Specifically, as we discuss below
in our experimental settings, the largest k is 20; thus, we
generated queries (80 in total) for which the non-diversified
version (i.e., kSP) can retrieve at least 100 results.

Experimental settings Our methodology is evaluated by
varying the (i) number k of requested places, (ii) the number
of query keywords |q ·ψ | and the diversification parameters,

(iii) λ, (iv) β, and (v) γ . By default, k = 10, |q · ψ | = 2,
λ = β = γ = 0.5 (i.e., the default setting). In each exper-
iment, we vary one parameter while fixing the remaining
ones to their default values. Specifically, we report the result
when parameter k varies in {5, 10, 15, 20}, |q · ψ | varies in
{1, 2, 3, 5} and λ, β, γ vary in {0.25, 0.50, 0.75}.

We set Lmax as 5 ∗ |q · ψ | (the concept of Lmax has been
used often in earlier work, e.g., [36]). We set Smax as the
largest distance in the map of the city. (this concept has also
been used in earlier work [2])

Platform All methods were implemented in Java and evalu-
ated on a 2.7 GHz dual-core, quad-thread machine, with 16
GBytes of memory, running Windows 10.

Indexes and preprocessing costs The time and space costs
of constructing the indexes and the data structures aremoder-
ate (see [45] for more details). For instance, the construction
of the R-tree of the DBpedia and YAGO datasets requires
about 3 min and 31 min and occupies 50 MB and 273
MB, respectively. The inverted index construction requires
about 4 min and 1 min and occupies 1307 MB and 231 MB
respectively. The DBpedia data is richer in terms of text,
and therefore, it needs more time to build the corresponding
inverted indexes. The reachability index (TFlabel) [11] con-
struction requires 22min and 6min, respectively. The R-tree,
TFlabel index, and RDF graph are all memory resident; on
the other hand, the inverted index is disk resident.

8.2 Efficiency evaluation

In the first set of experiments (Figs. 8, 9), we measured the
average run-time costs of the tested algorithms on the 80
queries for the various parameter values on DBpedia and
YAGO. We show (the average of) the combined costs of
our algorithms (IAdU and ABP) with the kSP algorithms
(BSP and SPP). Recall that our methods (IAdU and ABP)
use as a module a kSP algorithm to incrementally retrieve
the places in order of relevance to the query q. Hence, there
are four combinations: BSP+IAdU, BSP+ABP, SPP+IAdU,

123

Z. Cai et al.

(a) (b) (c)

Fig. 9 Efficiency on YAGO2

and SPP+ABP. Each bar adds up the total cost of the corre-
sponding combination; the top part is the cost of applying
the corresponding kSP algorithm without diversification to
retrieve the same number of places as the complete kDSP
algorithm. We also show, at the bottom at each bar, the
average number K of places (and the corresponding TQTs)
retrieved by the diversification algorithms.

The results show that kSP retrieval dominates the com-
bined cost. Naturally, SPP outperforms BSP because of the
two pruning rules employed by SPP [45]. The diversifica-
tion algorithms, IAdU and ABP, require insignificant time
(in comparison with kSP algorithms). In all cases, this cost is
1 ms or less. Hence, although ABP costs up to twice the time
required by IAdU, this extra time is negligible when com-
bined to the place retrieval costs by BSP and SPP. Overall,
the additional overhead required to achieve diversification
is negligible in comparison with the kSPs cost; however,
the number of places K that have to be retrieved in order
to answer a kDSP query is roughly K = 5 ∗ k. Still, their
retrieval is necessary in order to ensure that the results qualify
the diversification requirements.

Varying k. In Figs. 8a and 9a, we depict the effect of k. As
expected, K and all respective costs increase with k. Observe
that the kSP retrieval costs continue to dominate the overall
cost of kDSP queries.

Varying |q · ψ |. Figures 8b and 9b show how the number of
keywords affects the running time. As |q ·ψ | increases, both
kSP and kDSP costs slowly increase. kSP algorithms need
to explore more RDF vertices in order to discover the TQTs
covering all keywords. This also results in an increase in the
size of the TQTs; in turn, kDSP algorithms spend more time
on computing Jaccard distances. On the other hand, |q · ψ |
has almost negligible impact on K .

Note that for theDBpedia dataset, the costwhen |q·ψ | = 5
drops for the following two reasons. In these experiments, we
use different sets of queries for each value of |q · ψ | (e.g.,
{ancient} for |q · ψ | = 1, {ancient, roman} for |q · ψ | =
2, etc.). This is in contrast to the experiments comparing k

(a) (b)

Fig. 10 Efficiency on DBpedia

(a) (b)

Fig. 11 Efficiency on YAGO2

and λ (e.g., Fig. 8a, c), where we have the same query for
all experiments, and we just vary the values of k and λ. In
addition, for larger values of |q · ψ |, we could run fewer
queries because there are not many places that include all
keywords in their trees. Indicatively, in Fig. 8b, the number
of queries that we ran for of |q · ψ | = 3 is 80, while the
number of queries that we ran for |q ·ψ | = 5 is 63. Naturally,
these queries included mostly keywords which are frequent
and their graph distance to the places that include them is not
large. Hence, the retrieval of these places may be easier (i.e.,
their looseness scores may be easier to compute) compared
to places retrieved for queries with smaller |q · ψ | values.
Varying λ, β, γ . Figures 8c and 9c show the effect of λ on
the running time on the two datasets. Figures 10 and 11 show
the effect of β and γ . The results show that the various values

123

Diversified spatial keyword search on RDF data

(b) (c)(a)

Fig. 12 HDF(R) scores on DBpedia

(a) (b) (c)

Fig. 13 HDF(R) scores on YAGO2

of these parameters have no significant impact on the total
time.

8.3 Effectiveness

We assess the effectiveness of the two frameworks (kSP
against kDSP) by comparing their respective HDf (R) and
Df (R) scores. (Note that the use of either BSP or SPPmakes
nodifference, since both these algorithms return the same sets
of places in the same order.) Figures 12, 13, 14, and 15 show
the average of the HDf (R) scores of the kSP approach and
those of the IAdU and ABP algorithms for the two datasets
(recall that we cannot obtain the optimal HDf (R) scores due
to the high computational cost required). The top (bottom) of
each bar shows the f (R) (Df (R)) score of each method. We
also show the (average) percentage of the HDf (R) improve-
ment of IAdU and ABP against kSP by using the single lined
arrows (placed on the top side of the respective bar). In addi-
tion, we also show the (average) percentage of the Df (R)

improvement of IAdU and ABP against kSP by using the
double lined arrows (placed in the middle of the respective
bar).

The improvement of IAdU and ABP against kSP in terms
of HDf (R) can be significant (up to 10% and 13.75%,
respectively, for DBpedia and up to 8.9% and 14.9% for

(a) (b)

Fig. 14 HDF(R) scores on DBpedia

YAGO2 for the default settings). (Note that the HDF(R)

improvement after diversification is capped by λ = 0.5.)
The improvement of diversity alone, Df (R), is significantly
larger than that of the respective holistic HDf (R) score (up
to 33.5% and 37.1% for DBpedia and 31.6% and 40.1% for
YAGO). ABP always achieves (marginally) better improve-
ment than IAdU with respect to both HDf (R) and Df (R)

scores. The gap reflects their (comparative) approximation
quality. ABP performs 3.8% (i.e., 13.7–9.9%) and 6% (i.e.,
14.9–8.9%) better than IAdU on the two datasets, respec-
tively.

In order to assess the approximation quality of IAdU and
ABP, we conducted an experiment where we compared their

123

Z. Cai et al.

(a) (b)

Fig. 15 HDF(R) scores on YAGO2

results to those of a brute force (BF) baseline algorithm.
BF finds the combination R of k places that maximizes
HDf (R). Since BF is very slow, we could only run it for
values of k up to 7. The HDf (R) score of the solution com-
puted by BF is at most 1.5% (at least 0.74%) and 3.5% (at
least 0.92%) compared to the HDf (R) scores of the solu-
tions returned by ABP and IAdU, respectively. On the other
hand, as expected, BF is up to several orders of magnitude
slower and does not scale well with k. This confirms that
the proposed algorithms indeed yield high-quality solutions,
efficiently.

Varying k. Figures 12a and 13a show the effect of k on
HDf (R) and Df (R) scores. As the value of k increases,
the improvement of the diversification algorithms against
kSP reduces, because it becomes harder to find more diverse
results (especially in the two-dimensional space of locations).

Varying |q ·ψ |. Figures 12b and 13b show that as the number
of keywords |q · ψ | increases, the improvement of HDf (R)

and Df (R) also increases. This is because the size of TQTs
increases and it becomes easier to find more diverse ones.
Namely, more nodes (and more new paths) are included in
the TQTs; this results in a larger expected Jaccard distance
between two TQTs.

Varying λ, β, γ . Figures 12c and 13c show the effect of λ on
HDf (R) and Df (R) scores. We observe that as the value
of λ increases, so does the improvement of both HDf (R)

and Df (R). This is expected, as bigger λ values favor diver-
sity and consequently magnify the difference between the
approaches. Figures 14 and 15 show the effect of β, γ on
HDf (R) and Df (R) scores. An interesting observation here
is that as γ increases, the improvement gap drops (recall that
γ is a trade-off between spatial and content diversity). Larger
γ values give higher weight to content diversity and since
it is easier to find diverse results in terms of content than
in the 2-dimensional space of locations, the results of kSP
and IAdU have higher chances to find more diverse place
sets.

(a) (b)

Fig. 16 Ranking correlation

8.3.1 Re-ranking

Diversification achieves an effective re-ranking of search
results by combining both relevance and diversity. This facil-
itates a bird’s eye view of results, which is preferable by users
[1,10] (also verified by our own user evaluation, Sect. 8.4).
Figure 16a, b depicts the average correlation of the place
rankings by kSPwith that of each kDSP algorithm (i.e., IAdU
and ABP) for all tested queries (for the default settings). As
k increases, the correlation of the kSP ranking against the
kDSP ranking drops. Namely, the kSP ranking of places dif-
fers significantly from the corresponding kDSP ranking. Our
user evaluation (Sect. 8.4) revealed that the top kSP results are
very similar whereas the top kDSP results are very diverse,
offering a bird’s eye view of results whichwas favored by our
evaluators. Hence, our approach is useful even for large val-
ues of k, for which the HDF(R) improvement is not large as
we discussed before (see Figs. 12, 13). The figure also shows
that the rankings by IAdU and APB are highly correlated
(i.e., their results have high overlap).

8.4 User evaluation

We also conducted a user evaluation on kDSP and kSP
queries, which confirms the preference of users to diversi-
fied results and the effectiveness of re-ranking. We asked
help from ten evaluators, who are professors and researchers
from our universities. (None of them was involved in this
paper.) First, we familiarized them with the query concepts
and relevance metrics (distance and looseness). In addition,
we explained to them the concepts of (1) diversity and (2)
ranking facilitating a bird’s eye view; to avoid any bias, we
avoided to discuss their advantages or disadvantages. Then,
we presented to the evaluators ten random queries and their
top-k kSP and kDSP results and ask them to evaluate: (1)
the general content of the results and (2) their ranking. For
each set of top-k results, we showed a map with the places
and the TQT of each place. We presented the output of each
method in a random order (to avoid any bias) and asked the
evaluators to give a preference score in a scale of one to ten,
considering how representative and informative the overall
top-k results were.

123

Diversified spatial keyword search on RDF data

(a) (b) (c) (d)

Fig. 17 User evaluation

Figure 17a, d averages the evaluators’ preference scores
of the two methodologies (i.e., kSP and kDSP), for the two
criteria (i.e., general content and ranking), for various val-
ues of k, for the two datasets (using the default settings).
For kDSP, we used ABP (since IAdU and ABP give similar
results). For the first criterion (general content), we observe
that the users prefer diversified results (kDSP) for small val-
ues of k (i.e., for k = 5 and k = 10). For larger values of
k, we observe that the gap between preference of kDSP and
kSP results is reduced. This is because the results of these
two methodologies have higher overlap for larger k. On the
other hand, for the second criterion (ranking), users prefer
kDSP over kSP for all values of k. The study revealed that
for small values of k (i.e., k = 5 and k = 10), the results
of the kSP approach included many similar places (e.g., for
k = 3 for the example of Fig. 1, all three places were com-
munes located in the same area); on the other hand, the results
of the kDSP approach included almost completely diverse
places (e.g., for k = 3, only one place was a commune).
This finding justifies the preference for kDSP ranking for
large values of k. The top places are typically diverse to each
other, whereas only some bottom results had some similarity
to previous ones; this bird’s eye view is preferable by users.
For example, for k = 20, the top 10 places are all of differ-
ent types (e.g., a commune appears only once), and some of
these types also appear in the bottom 10 places (e.g., addi-
tional communes). In general, the user evaluation findings are
in accordance with the effectiveness findings (discussed in
Sect. 8.3).

Figure 17b averages the evaluators’ preference scores of
the two methodologies for various values of |q · ψ | (for
k = 10). We observe that users prefer for all values of
|q · ψ | diversified results. More precisely, we observe that
the value of |q · ψ | does not affect significantly the dif-
ference between the preference of kSP over kDSP results.
Namely, the difference between the user preferences for
the two criteria remains approximately the same for differ-
ent values of |q · ψ |. Figure 17c averages the evaluators’
preference scores of the two methodologies for various
values of λ (k = 10). Note that when λ = 0, kDSP
gives the same results as kSP. We observe that users pre-
fer diversified results; more precisely, users prefer results

produced with λ = 0.5 as they facilitate more effective
diversification.

8.5 Discussion

In conclusion, the combination of SPP and ABP appears to
be the best choice for diversified spatial keyword search on
RDF data. SPP is very fast (compared to BSP) for kSP incre-
mental search, while ABP is negligibly more expensive than
IAdU and achieves better approximation and effectiveness
scores. For example, search on DBpedia using SPP+ABP
never requires more than a second; hence, real-time results
can be obtained. Although the increase in k reduces the
effectiveness improvement, the achieved re-ranking based on
relevance and diversification remains useful for all values of
k. Finally, our user evaluation confirms the users’ preference
for kDSP over kSP results and ranking.

9 Conclusions

In this work, we enrich spatial keyword search on RDF data
with the ability to diversify query results. Our framework
combines relevance and diversification, w.r.t. both content
and location. We propose two greedy algorithms (IAdU and
ABP) andprovide theoretical guarantees for their quality.Our
experiments on real data verify the effectiveness, approxima-
tion quality, and efficiency of our algorithms (where ABP is
shown to be superior to IAdU) and confirm that our frame-
work is preferred by human evaluators. In our future work,
we will study alternative scoring functions for the spatial
and content-based search components (e.g., road network
distance in place of Euclidean distance).

Acknowledgements Open access funding provided by Uppsala Uni-
versity. Zhi Cai was supported by National Key R&DProgram of China
(No. 2017YFC0803300) and the Beijing Natural Science Foundation
(No. 4172004). Nikos Mamoulis was partially funded by the European
Union’s Horizon 2020 research and innovation programme under Grant
AgreementNo. 657347.Dimitris Papadiaswas supported byGRFGrant
16231216 from Hong Kong RGC.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as

123

Z. Cai et al.

long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Adomavicius,G.,Kwon,Y.: Improving aggregate recommendation
diversity using ranking-based techniques. IEEETrans.Knowl.Data
Eng. 24(5), 896–911 (2012)

2. Ahuja, R., Armenatzoglou, N., Papadias, D., Fakas, G.J.: Geo-
social keyword search. In: SSTD, pp. 431–450 (2015)

3. Alsina, C., Nelsen, R.B.: Charming Proofs: A Journey into Elegant
Mathematics. Mathematical Association of America, Washington
(2010)

4. Athitsos, V., Potamias, M., Papapetrou, P., Kollios, G.: Nearest
neighbor retrieval using distance-based hashing. In: ICDE, pp.
327–336. IEEE Computer Society (2008)

5. Battle, R., Kolas, D.: Enabling the geospatial semantic web with
parliament and geosparql. Semant. Web 3(4), 355–370 (2012)

6. BBC-Lab-Post: Linked data (2013). http://www.bbc.co.uk/blogs/
internet/entries/63841314-c3c6-33d2-a7b8-f58ca040a65b

7. Bergamaschi, S., Domnori, E., Guerra, F., Lado, R.T., Velegrakis,
Y.: Keyword search over relational databases: ametadata approach.
In: SIGMOD Conference, pp. 565–576. ACM (2011)

8. Bergamaschi, S., Guerra, F., Interlandi, M., Lado, R.T., Velegrakis,
Y.: Combining user and database perspective for solving keyword
queries over relational databases. Inf. Syst. 55, 1–19 (2016)

9. Bikakis, N., Giannopoulos, G., Liagouris, J., Skoutas, D., Dala-
magas, T., Sellis, T.: Rdivf: diversifying keyword search on RDF
graphs. In: TPDL, pp. 413–416 (2013)

10. Carbonell, J.G., Goldstein, J.: The use of MMR, diversity-based
reranking for reordering documents and producing summaries. In:
SIGIR, pp. 335–336. ACM (1998)

11. Cheng, J., Huang, S., Wu, H., Fu, A.W.: TF-label: a topological-
folding labeling scheme for reachability querying in a large graph.
In: SIGMOD, pp. 193–204 (2013)

12. Cheng, S., Chrobak, M., Hristidis, V.: Slowing the firehose: Multi-
dimensional diversity on social post streams. In: EDBT, pp. 17–28.
OpenProceedings.org (2016)

13. Data.gov: U.s. government’s open data. http://www.data.gov/
14. DBpedia: http://wiki.dbpedia.org
15. Demidova, E., Fankhauser, P., Zhou, X., Nejdl, W.: Divq: diversi-

fication for keyword search over structured databases. In: SIGIR,
pp. 331–338 (2010)

16. Dimitriou, A., Theodoratos, D.: Efficient keyword search on large
tree structured datasets. In: KEYS, pp. 63–74. ACM (2012)

17. Dimitriou, A., Theodoratos, D., Sellis, T.K.: Top-k-size keyword
search on tree structured data. Inf. Syst. 47, 178–193 (2015)

18. Elbassuoni, S., Blanco, R.: Keyword search over RDF graphs. In:
CIKM, pp. 237–242 (2011)

19. Fakas, G.J.: Automated generation of object summaries from
relational databases: a novel keyword searching paradigm. In:
DBRank, ICDE, pp. 564–567 (2008)

20. Fakas, G.J.: A novel keyword search paradigm in relational
databases: object summaries. DKE 70(2), 208–229 (2011)

21. Fakas, G.J., Cai, Y., Cai, Z., Mamoulis, N.: Thematic ranking of
object summaries for keyword search. Data Knowl. Eng. 113, 1–17
(2018)

22. Fakas, G.J., Cai, Z., Mamoulis, N.: Size-l object summaries for
relational keyword search. PVLDB 5(3), 229–240 (2011)

23. Fakas, G.J., Cai, Z., Mamoulis, N.: Versatile size-l object sum-
maries for relational keyword search. IEEE Trans. Knowl. Data
Eng. 26(4), 1026–1038 (2014)

24. Fakas, G.J., Cai, Z., Mamoulis, N.: Diverse and proportional size-l
object summaries for keyword search. In: SIGMOD, pp. 363–375
(2015)

25. Fakas, G.J., Cai, Z., Mamoulis, N.: Diverse and proportional size-l
object summaries using pairwise relevance. VLDBJ 25(6), 791–
816 (2016)

26. Fakas, G.J., Cawley, B., Cai, Z.: Automated generation of personal
data reports from relational databases. JIKM10(2), 193–208 (2011)

27. Fu, H., Anyanwu, K.: Effectively interpreting keyword queries on
RDF databases with a rear view. In: ISWC, pp. 193–208 (2011)

28. Guttman, A.: R-trees: a dynamic index structure for spatial search-
ing. In: SIGMOD, pp. 47–57 (1984)

29. Haritsa, J.R.: The KNDN problem: a quest for unity in diversity.
IEEE Data Eng. Bull. 32(4), 15–22 (2009)

30. Hasan, M., Kashyap, A., Hristidis, V., Tsotras, V.J.: User effort
minimization through adaptive diversification. In: KDD, pp. 203–
212. ACM (2014)

31. Hassin, R., Rubinstein, S., Tamir, A.: Approximation algorithms
for maximum dispersion. Oper. Res. Lett. 21(3), 133–137 (1997)

32. He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: ranked keyword
searches on graphs. In: SIGMOD, pp. 305–316 (2007)

33. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases.
ACM Trans. Database Syst. 24(2), 265–318 (1999)

34. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: a
spatially and temporally enhanced knowledge base fromwikipedia.
Artif. Intell. 194, 28–61 (2013)

35. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient IR-style
keyword search over relational databases. In: VLDB, pp. 850–861
(2003)

36. Hristidis, V., Papakonstantinou, Y.: Discover: keyword search in
relational databases. In: VLDB, pp. 670–681 (2002)

37. Jain, A., Sarda, P., Haritsa, J.R.: Providing diversity in k-nearest
neighbor query results. In: Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp. 404–413. Springer, Berlin (2004)

38. Kargar, M., An, A., Yu, X.: Efficient duplication free and minimal
keyword search in graphs. TKDE 26(7), 1657–1669 (2014)

39. Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: a
semantic geospatial DBMS. In: ISWC, pp. 295–311 (2012)

40. Le, W., Li, F., Kementsietsidis, A., Duan, S.: Scalable keyword
search on large RDF data. TKDE 26(11), 2774–2788 (2014)

41. Levandowsky, M., Winter, D.: Distance between sets. Nature
234(5323), 34–35 (1971)

42. Liu, Z., Sun, P., Chen, Y.: Structured search result differentiation.
PVLDB 2(1), 313–324 (2009)

43. Parliament: A high-performance triple store, sparql endpoint, and
reasoner. http://parliament.semwebcentral.org

44. Ravi, S.S., Rosenkrantz, D.J., Tayi, G.K.: Facility Dispersion Prob-
lems: Heuristics and Special Cases, pp. 431–450. Springer, Berlin
(1991)

45. Shi, J., Wu, D., Mamoulis, N.: Top-k relevant semantic place
retrieval on spatial RDF data. In: SIGMOD, pp. 1977–1990 (2016)

46. Sinha, S.B., Lu, X., Theodoratos, D.: Personalized keyword search
on large RDF graphs based on pattern graph similarity. In: IDEAS,
pp. 12–21. ACM (2018)

47. Stefanidis, K., Drosou,M., Pitoura, E.: Perk: personalized keyword
search in relational databases through preferences. In: EDBT, pp.
585–596 (2010)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.bbc.co.uk/blogs/internet/entries/63841314-c3c6-33d2-a7b8-f58ca040a65b
http://www.bbc.co.uk/blogs/internet/entries/63841314-c3c6-33d2-a7b8-f58ca040a65b
http://www.data.gov/
http://wiki.dbpedia.org
http://parliament.semwebcentral.org

Diversified spatial keyword search on RDF data

48. Stefanidis, K., Fundulaki, I., Stefanidis, K., Fundulaki, I.: Keyword
search on RDF graphs: it is more than just searching for keywords.
In: Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C.,
Zimmermann, A. (eds.) ESWC (Satellite Events). Lecture Notes in
Computer Science, vol. 9341, pp. 144–148. Springer, Cham (2015)

49. Tang, J., Sanderson, M.: Evaluation and user preference study on
spatial diversity. In: Gurrin, C., et al. (eds.) ECIR. Lecture Notes in
Computer Science, vol. 5993, pp. 179–190. Springer, Berlin (2010)

50. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration
of query candidates for efficient keyword search on graph-shaped
(RDF) data. In: ICDE, pp. 405–416 (2009)

51. Van Kreveld, M., Reinbacher, I., Arampatzis, A., Van Zwol, R.:
Multi-dimensional scattered rankingmethods for geographic infor-
mation retrieval. GeoInformatica 9(1), 61–84 (2005)

52. Vieira,M.R.,Razente,H.L.,Barioni,M.C.N.,Hadjieleftheriou,M.,
Srivastava, D., Traina, C., Tsotras, V.J.: On query result diversifi-
cation. In: ICDE, pp. 1163–1174 (2011)

53. Virtuoso: http://virtuoso.openlinksw.com
54. Yago: http://www.mpi-inf.mpg.de/departments/databases-and-

information-systems/research/yago-naga/yago/
55. Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z.: A distributed

graph engine for web scale RDF data. PVLDB 6(4), 265–276
(2013)

56. Zhang, M., Hurley, N.: Avoiding monotony: improving the diver-
sity of recommendation lists. In: RecSys (2008)

57. Zou, L., Mo, J., Chen, L., Özsu, M.T., Zhao, D.: gstore: answering
SPARQL queries via subgraph matching. PVLDB 4(8), 482–493
(2011)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://virtuoso.openlinksw.com
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/

	Diversified spatial keyword search on RDF data
	Abstract
	1 Introduction
	2 Related work
	3 Background
	4 kDSP problem definition
	4.1 Relevance function
	4.2 Diversity function
	4.3 Problem definition

	5 Incremental addition and update (IAdU) algorithm
	6 Add best pairs (ABP) algorithm
	7 Theoretical analysis
	7.1 Preliminary results
	7.2 Approximation bounds

	8 Experiments
	8.1 Setup
	8.2 Efficiency evaluation
	8.3 Effectiveness
	8.3.1 Re-ranking

	8.4 User evaluation
	8.5 Discussion

	9 Conclusions
	Acknowledgements
	References

