
Combinatorial optimization
and its applications in
image Processing

Filip Malmberg

Part 1: Optimization in image processing

Optimization in image processing

Many image processing problems can be formulated as optimization
problems - we define a function that assign a ”goodness” value to every
possible solution, and then seek a solution that is as ”good” as possible.

Image segmentation

Image registrations/stereo matching/optical flow

Image restoration/filtering

The ”goodness” criterion is often referred to as an objective function.

Application 1: Image registration

Non-rigid Image registration

Given two images, find a transformation (deformation field) that
aligns one image to the other.

Registration, stereo disparity, optical flow. . .

Example: Medical Image registration

Figure 1: Registering a series of whole body MRI images to match a common
”mean person” facilitates direct comparisons between subjects.

Example: Optical flow

Figure 2: Registering consecutive frames in a video sequence facilitates, e.g.,
tracking and motion analysis.

Example: Optical flow for slowmotion

https://www.youtube.com/watch?v=xLqz09-3vHg

Figure 3: By computing optical flow in a video sequence, it is possible to
interpolate new frames inbetween the captured ones, to simulte slow motion
photography.

https://www.youtube.com/watch?v=xLqz09-3vHg

Image registration as optimization

Image registration can be formulated as an optimization problem.

Typically, we seek a solution that maximizes some notion of similarity
between the images, while also maintaining some degree of
smoothness of the deformation field.

Application 2: Image segmentation

Image segmentation

Image segmentation is the task of partitioning an image into relevant
objects and structures.

Image segmentation is an ill-posed problem...

Figure 4: What do we mean by a segmentation of this image?

Image segmentation
Image segmentation is the task of partitioning an image into relevant
objects and structures.
Image segmentation is an ill-posed problem...
...Unless we specify a segmentation target.

Figure 5: Segmentation relative to semantically defined targets.

Image segmentation

We can divide the image segmentation problem into to two tasks:

Recognition is the task of roughly determining where in the image an
object is located.

Delineation is the task of determining the exact extent of the object.

Semi-automatic segmentation

Humans outperform computers in recognition.

Computers outperform humans in delineation.

Semi-automatic segmentation methods try to take advantage of this
by letting humans perform recognition, while the computer does the
delineation.

The goal of semi-automatic segmentation is to minimize user
interaction time, while maintaining a tight user control to ensure
correct results.

Semi-automatic segmentation

Figure 6: The interactive segmentation process.

Paradigms for user input: Initialization

The user provides an initial segmentation that is “close” to the
desired one.

Figure 7: Segmentation by initialization.

Paradigms for user input: Segmentation from a box

The user is asked to provide a bounding box for the object

Figure 8: Segmentation from a box.

Paradigms for user input: Boundary constraints
The user is asked to provide points on the boundary of the desired
object(s).

Figure 9: Segmentation with boundary constraints.

Paradigms for user input: Regional constraints
The user is asked to provide correct segmentation labels for a subset
of the image elements (”seed-points”)

Figure 10: Segmentation with regional constraints.

Hard and soft constraints

The user input is commonly interpreted in one of two ways

Hard constraints - the conditions specified by the user must be satisfied
exactly.
Soft constraints - the user input guides the segmentation algorithm
towards a specific result, but does not reduce the set of feasible
solutions.

Hard constraints give a higher degree of control.

Soft constraints may require less precise user input.

Application 3: Image restoration/filtering

Image filtering as an optimization problem

Some image filtering operations can be formulated as an optimization
problem with objective functions balancing two criteria:

The filtered image should be similar to the original one.
The filtered image should be smooth. (e.g. have small gradients)

A Gaussian filter, for example, can be viewed as the solution to such
an optimization problem.

Image filtering as an optimization problem, why?

What do we gain from viewing filtering as an optimization problem?

Perhaps not that much, for ordinary filtering operations such as
Gaussian filters.

But it can be useful to keep this view if we want to develop new
filters, e.g., edge preserving anisotropic filters . . .

Example: Edge preserving filter

Figure 11: Image by Couprie et al.

”Typical” optimization problems in image analysis

The optimization problems occuring in the applications studied so far have
a number of things in common:

They are pixel labeling problems. In all cases, we seek to assign some
type of labels (values) to the pixels of the image:

Object classes for segmentation.
Displacement vectors for registration.
Intensities/colours for restoration.

The objective function consists of two terms:

A data term that measures how appropriate a label is for a certain pixel
given some prior knowledge.
A smoothness term that favours spatial coherency.

Throughout the course, we will study optimization problems of this type.

Part 2: Combinatorial optimization

Combinatorial optimization

A combinatorial optimization problem consists of a finite set of
candidate solutions S and an objective function f : S → R.

In our examples, S will be typically be the set of all maps from the
vertices of a graph to some set of labels.

The objective function function f can measure either “goodness” or
“badness” of a solution. Here, we assume that we want to find a
solution x ∈ S that minimizes f .

Ideally, we want to find a globally minimal solution, i.e., a solution
x∗ ∈ argmin

x∈S
f (x).

Combinatorial optimization

It is tempting to view the objective function and the optimization
method as completely independent. This would allow us to design an
objective function (and a solution space) that describes the problem
at hand, and apply general purpose optimization techniques.

For an arbitrary objective function, finding a global optima recuires
checking all solutions.

The set S of solutions is finite. Can’t we just search this set for the
globally optimal solution?

How hard is combinatorial optimization?

In vertex labeling, the number of possible solutions is |L||V |.
Consider binary labeling of a 256× 256 image.

The number of possible solutions is 265536. This is a ridiculously large
number!

Searching the entire solution space for a global optimum is not
feasible!

So, what do we do?

For restricted classes of optimization problems, it is sometimes
possible to design efficient algorithms that are guaranteed to find
global optima. In upcoming lectures, we will cover some of these.

Local search methods can be used to find locally optimal solutions.
This is the topic of the remainder of this lecture.

Local optimality

Define a neighborhood system N that specifies, for any candidate
solution x , a set of nearby candidates N (x).

A local minimum is a candidate x∗ such that
f (x∗) ≤ minx∈N (x∗) f (x).

Local search

A general method for finding local minima.

Start at an arbitrary solution.
While the current solution is not a local minimum, replace it with an
adjacent solution for which f is lower.

This algorithm is guaranteed to find a locally optimal solution in a
finite number of iterations. (Proving this statement is one of the
exercises!)

Local search spaces as graphs

We have a set S and an adjacency relation N.

It’s a (huge) graph!

We never store this graph explicitly, but it can be useful to consider.

For example, it seems reasonable to define the adjacency relation so
that the graph of the search space is connected.

Local search

”This algorithm is guaranteed to find a locally optimal solution in a
finite number of iterations. Why?”

The number of solutions is finite.
If the algorithm terminates, the result is a local minimum. (Why?)
Each connected component in the graph of the search space contains
at least one local minimum. (Why?)
A solution is never visited more than once. (Why?)

Best-improvement search

In best-improvement search, we consider all states in the local
neighborhood of the current state. We accept the one that best
improves the objective function.

In first-improvement search, we consider the states in the local
neighborhood of the current state one at a time. We accept the first
one that improves upon the current state.

Which one gives the best results? Which leads to a faster algorithm?
Not possible to say in the general case. . .

Local search with restarts

Run the algorithm several times.

”Patience” factor.

With infinite patience, we will find a locally optimal solution with
probability 1.

With infinite restarts, we will find a globally optimal solution with
probability 1.

Simulated annealing

Accept ”worse” states with some probability.

The probability can decrease over time.

Local search, an example

Let’s take a look simple binary thresholding

Let I (v) be the intensity of the pixel corresponding to v .

Given a threshold t, we compute a vertex labeling according to:

L(v) =

{
foreground if I (v) ≥ t
background otherwise

. (1)

Next, we will reformulate this as an optimization problem.

Local search, an example

We define the objective function f as

f =
∑
v∈V

Φ(v) , (2)

where

Φ(v) =

{
abs(max(t − I (v), 0)) if L(v) = foreground
abs(max(I (v)− t, 0)) otherwise

. (3)

Local search, example

Intensityt

Figure 12: Objective function for binary thresholding. The red curve is the cost of
assigning the label “background” to a vertex with a certain intensity, and the
green curve is the cost of assigning the “foreground” label.

Optimization by local search

We say that two vertex labelings are adjacent if we can turn one into
the other by changing the label of one vertex.

We start from an arbitrary labeling, and use first-improvement search
to find a locally optimal solution.

Optimization by local search, algorithm

done=false
while done do

done=true
foreach pixel p in the image do

Can we improve the current solution by changing the label of p?
If so, change the label and set done=false.

end

end

Local search, an example

Figure 13: Thresholding as an optimization problem.

Local search, an example
Start from an arbitrary labeling.
In this case, the label of each pixel does not depend on the label of
any other pixels, so a local optimum is reached after only one
iteration of the while-loop.
(This optimum is in fact also global)

Figure 14: Thresholding as an optimization problem.

Local search, an example
Let us add to the objective function a smoothness term |∂L|, that
penalizes long boundaries:

f =
∑
v∈V

Φ(v) + α|∂L| , (4)

where α is a real number that controls the degree of ”smoothing”.

Figure 15: Thresholding with smoothness term.

Unary and binary terms

The data term φ in the example is a sum over the pixels in the image.
In this term, each pixel is considered individually. We say that φ is a
unary term.

In contrast, the smoothness term is defined over all pairs of adjacent
pixels (edges, in the graph context). We say that this term is binary.

Local search, an example

After adding the (binary) smoothness term, we have introduced a
dependency between the labels of adjacent pixels. We can no longer
decide on the best label for each pixel independently!

This makes the optimization problem harder to solve.

The local search algorithm requires many passes over the image before
convergence.
The local solution is no longer guaranteed to be a global optimum.

A note on efficient implementation

In our example, the objective is a sum over all pixels in the image
(and all edges in the cut corresponding to the current segmentation).

Evaluating the entire objective function at each iteration is expensive.

Instead, we can calculate how much the objective function changes
when we change the label of a vertex.

This is good to keep in mind when designing the objective function.

When is local search useful?

Similar solutions should have similar costs (”continuous” objective
function).

f

S

f

S
Figure 16: (Left) An objective function that is hard to optimize using local search
(Right) An objective function that is possible to optimize using local search.

Very large-scale neighborhood search

To avoid getting trapped in poor local minima, it is desirable to use
as large neighborhoods as possible.

...but large neighborhoods lead to slow computations.

For some problems, we can find efficient algorithms for computing
globally optimal solution within a subset of S. If we use this subset as
our local neighborhood, we can do best-improvement search!

We will look at one such technique in an upcoming lecture.

Global optimization

For a general combinatorial optimization problem, finding the optimal
solution requires checking all solutions.

For specific classes of problems, we can do better!

Quite remarkably, there are many algorithms for solving optimization
problems of interest in image analysis that guarantee globally optimal
results

In this course we will cover some of the most important such methods.

Summary

Many image analysis problems can be formulated as (combinatorial)
optimization problems.

Local search methods can be used to find locally optimal solutions to
any combinatorial optimization problem.

Depending on the problem and the local search strategy used, these
locally optimal solutions may or may not be good enough.

For many interesting combinatorial optimization problems we can find
globally optimal solutions efficiently. More on this later!

