
Putting it all together –
Unifying frameworks.

Filip Malmberg

Unifying frameworks

Many of the algorithms presented in the course are closely related.

There have been attempts to investigate the theoretical relationship
between the various methods.

In this lecture, we will look at two “unifying frameworks”:

In part 1, we look at a theoretical framework that unifies many of the
methods for seeded segmentation that we have covered in this course.
In part 2, we will see that two types of hard constraints (seeds and
boundary constraints) used in interactive segmentation can be seen as
special cases of a more general type of constraints.

Part 1: Power waterheds

Camille Couprie, Leo Grady, Laurent Najman and Hugues Talbot
Power Watersheds: A Unifying Graph-Based Optimization Framework
IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 33, No. 7,
pp. 1384-1399, 2011.

Ali Kemal Sinop and Leo Grady A Seeded Image Segmentation Framework
Unifying Graph Cuts and Random Walker Which Yields A New Algorithm
Proc. of ICCV, 2007

Recap, Random walker

Find a mapping x : V → [0, 1] that minimizes∑
eij∈E

(wij |xi − xj |)2

1/2

, (1)

subject to x(F) = 1 and x(B) = 0. A final segmentation s is given by

si =

{
1 if xi ≥ 1

2
0 if xi < 1

2

. (2)

Recap, Random walker

Figure 1: Seeded segmentation by random walker.

A general formulation of seeded segmentation

In other words, the Random Walker method tries to minimize the l2
norm of the difference in x between adjacent vertices.

We have previously seen that the l2 norm is a special case of a lp
norm.

What happens if we try to extend the Random Walker method to
other lp norms?

A general formulation of seeded segmentation

Find a labeling x : V → [0, 1] that minimizes∑
eij∈E

(wij |xi − xj |)q

1/q

, (3)

subject to x(F) = 1 and x(B) = 0. A final segmentation s is given by

si =

{
1 if xi ≥ 1

2
0 if xi < 1

2

. (4)

A general formulation of seeded segmentation

In the next few slides, we will see that the general formulation includes
many of the algorithms we have convered in this course as special cases!

For p = 1, we get the max flow/min cut problem.

For p = 2, we get the Random walker problem. (By definition)

For p =∞, we get the shortest path problem.

We will also extend the general formulation so that it includes
minimum spanning forests/watersheds.

Case q = 1, Minimal graph cuts

If we substitute q = 1 into (3), we get∑
eij∈E

wij |xi − xj | . (5)

It was shown in [3] that minimizing this equation subject to x(F) = 1 and
x(B) = 0 is equivalent (dual) to the max flow problem. Thus, (6) can be
minimized using, e.g., the Ford-Fulkerson algorithm described in lecture 4.

Case q =∞, Shortest paths

If we let q approach ∞, we obtain the problem of minimzing

max
eij∈E

wij |xi − xj | , (6)

subject to x(F) = 1 and x(B) = 0. It was shown in [3] that this is
equivalent to segmentation by shortest path forests. Thus it can be solved
by Dijkstra’s algorithm.

Extending the framework to watersheds

To incorporate watersheds into the general framework, we separate the
exponent on the weights from the exponent on the variables. We thus seek
to minimize ∑

eij∈E

wp
ij |xi − xj |q . (7)

subject to x(F) = 1 and x(B) = 1. When p = q, this is equivalent to the
previous formulation (we can skip the root). When q is finite and p →∞,
the results of the above optimization problem converges to MSF cuts
(watersheds).

Unary terms

So far, we have only considered binary terms (”interaction” between
pairs of vertices).

We can extend (7) further by including unary terms:∑
eij∈E

wp
ij |xi − xj |q +

∑
vi∈V

wp
Fi |xi |q +

∑
vi∈V

wp
Bi |xi − 1|q . (8)

The unary terms can be incorporated by adding ”phantom” seeds VF

and VB .

Unary terms

Figure 2: Unseeded segmentation with unary terms. (a) Image. (b) Segmentation
by graph cuts. (c) Segmentation by watersheds.

Unary terms
In [1], Power watersheds with unary terms were used to compute
anisotropic diffusion.

Figure 3: Anisotropic diffusion with Power Watershed.

So, which method is better?

Given the similarity between the presented method for seeded
segmentation, how do we decide which one to use?

In [2], an empirical comparison between a number of methods was
presented.

The study is based on the ”Grabcut” database from Microsoft
(available online). This dataset consists of 50 ”natural” images
provided with seeds and ground truth segmentations.

So, which method is better?

Figure 4: Example segmentations using the provided (top images) and
skeletonized (bottom images) set of seeds on the Grabcut database images: (a)
Seeds, (b) Graph cuts, (c) Random walker, (d) Shortest path, (e) Maximum
spanning forest (standard watershed), and (f) Power watershed (q = 2).

Empirical comparison 1

Figure 5: Results of comparison with symmetrically eroded seeds.

Empirical comparison 2

Figure 6: Results of comparison with asymmetrically eroded seeds.

Computation time

Figure 7: Computation time for the different algorithms in 2D and 3D.

Qualitative comparison

Min cut/max flow

+ Global optimization of weighted ”area” (sum of edge weights in the
cut).

+ Possible to approximate continuous ”cut metrics” with arbitrary
precision.

- Shrinking bias.

- Metrication artifacts on standard grids.

- NP-hard for more than two labels.

- Slower computation.

Qualitative comparison

Shortest paths

+ No shrinking bias.

+ Allows any number of labels.

+ Fast computation. Computation time indepent of the number of
labels.

- Metrication artifacts on standard grids.

- Sensitive to noise and missing boundaries.

Qualitative comparison

MSF cuts

+ Global optimization of the max-norm of the cut.

+ Provably robust to variations in seed-point placement.

+ No shrinking bias.

+ Allows any number of labels.

+ Fast computation. Computation time indepent of the number of
labels.

- Very sensitive to noise and leaks. (no penalty for ”long” boundaries)

Qualitative comparison

Random walker

+ No shrinking bias.

+ Allows any number of labels.

+ No metrication artifacts.

+ Tolerant to noise and missing boundaries.

- Computation time depent of the number of labels.

- Slower computation.

Conclusions, Part 1

Many of the methods for seeded segmentation that we have seen in
this course (RW, GC, MSF, SPF) can be formulated as minimizing the
lp norm of the gradients of a potential field with boundary conditions.

The theoretical framework does not directly provide algorithms for
optimizing the different cases, but it provides theoretical insight into
the similarities and differences between the methods.

The general optimization problem of seeded segmentation can be
extended to include unary terms. This allows, e.g., the use of
watersheds for general optimization in computer vision.

We have looked at an empirical study that compares various methods
for seeded segmentation.

Part 2: Generalized hard constraints for graph
segmentation

Filip Malmberg, Robin Strand, Ingela Nyström
Generalized Hard Constraints for Graph Segmentation
In Proceedings of SCIA 2011.

Segmentation as constrained optimization

As we have seen in the course, image segmentation can often be
phrased as an optimization problem.

In graph-based interactive segmentation, we seek to find a cut (or
labeling) that best matches the image content, while satisfying a set
of constraints given by the user.

These constraints are typically given in one of two forms:

Regional constraints where the cuts is required to separate all elements
in a specified subset of the graph vertices. (e.g. seeded segmentation)
Boundary constraints where the cut is required to include a specified
subset of the graph edges. (e.g. live-wire)

Generalized hard constraints

We will now look at a generalized type of hard constraints for
supervised segmentation.

Informally, a generalized constraint is a pair of vertices that must be
separated by any feasible cut.

Both regional and boundary constraints can be seen as special cases
of these generalized constraints.

We will also look at a method for computing cuts that satisfy
generalized constraints.

Segmentation with generalized hard constraints

Figure 8: Interactive segmentation of the liver in a slice from a CT volume image,
using three different interaction paradigms. (a) Segmentation using boundary
constraints. (b) Segmentation using regional constraints. (c) Segmentation using
generalized constraints.

Preliminaries

Let S ⊆. We denote by G − S the graph (V , E \ S).

We recall the definition of graph cuts.

Let S ⊆ E . If, for all ev ,w ∈ S , it holds that v 6∼ w
G−S

, then S is a

(graph) cut on G .

Let S be a cut on G , and let e ∈ S . The segment Se of S
corresponding to e is defined as

Se = {ev ,w | ev ,w ∈ S , v ∼ w
G−S

} . (9)

Graph cut segments

Figure 9: Graph cut segments.

Generalized constraints

A constraint on G is an unordered pair of distinct vertices in V .

Let S ⊆ E and let C be a set of constraints. We say that S satisfies
C if

∀cv ,w ∈ C , v 6∼ w
G−S

(10)

and

∀e ∈ S , ∃cv ,w ∈ C such that v ∼ w
G−(S\{e})

. (11)

Generalized constraints

In other words, a cut satisfies a set of constraints iff

It is not an under-segmentation (The cut separates all constraint
pairs)

It is not an over-segmentation (There is no strict subset of the cut
that satisfies the above property)

Some nice properties

If S ⊆ E satisfies some set of constraints C , then S is a cut.

Any set of regional or boundary constraints can be written as an
equivalent set of generalized constraints.

For any set of generalized constraints, there exists at least one
feasible cut.

Any feasible cut can be computed using a “region merging”
procedure.

Regional and Boundary constraints

Figure 10: Graph cuts with respect to regional and boundary constraints.

Regional constraints

A regional constraint is a vertex in V .

Informally, a cut S satisfies a set of regional constraints Cr ⊆ V if
each connected component of G − S contains exactly one element in
Cr .

For any set of regional constraints Cr , there exists a set of generalized
constraints C , namely C = {cv ,w | v , w ∈ Cr}, such that S ⊆ E
satisfies C iff it satisfies Cr .

Boundary constraints

A boundary constraint is an edge in E .

A cut S satisfies a set of boundary constraints Cb ⊆ E if

Cb ⊆ S .
Each segment of S contains at least one element of Cb.

Note that edges and generalized constraints are both defined as
unordered pairs of vertices. If a set of generalized constraints is a
subset of E , then the definition of feasible cuts with respect to
generalized constraints coincides with the above definition.

Merging operations and mergeable edges

If S ⊆ E is a cut on G , then each segment of S form a boundary
between exactly two connected components of G − S . Therefore, the
removal of a segment from a cut is called a merging operation.

We use the following notation:

S � e = S \ Se . (12)

An edge e ∈ S is said to be mergeable with respect to a set of
constraints C if S � e is not an undersegmentation with respect to C .

A general algorithm

We now outline a general algorithm for computing a cut that satisfies a set
C of generalized constraints.

Start from a cut S that is not an undersegmentation w.r.t C . (E will
do!)

While there exists a mergeable edge e in S , set S ← S � e.

At the termination of this algorithm, S satisfies C .

The general algorithm is “complete”

If S is a cut that satisfies a set of constraints C , the there exists a
sequence of mergeable edges 〈e1, e2, . . . , ek〉 such that

S = E � e1 � e2 � . . .� ek . (13)

In other words, any feasible cut can be computed using the general
algorithm.

A greedy algorithm

We are interested in finding a cut that best matches the image content.
Here, we assume that the edge weights represent similarity between
adjacent vertices, and reformulate the general algorithm as follows:

Start from a cut S that is not an undersegmentation w.r.t C . (E will
do!)

While there exists a mergeable edge in S , select a mergeable edge e
for which the weight is maximum and set S ← S � e.

The greedy algorithm is optimal

Define the weight of a cut S as

W (S) = max
e∈S

W (e) . (14)

If S is a cut computed according to the greedy algorithm, then the
weight of S is smaller than or equal to the weight of any other
feasible cut.

(Note the similarity with MSF:s)

Conclusions, Part 2

The generalized hard constraints described in this lecture unify two
common paradigms for user interaction in interactive segmentation.

This allows us to develop general purpose segmentation algorithms,
that are not restricted to a particular paradigm for user input.

We have presented one such method, that computes cuts that are
globally optimal with respect to the max-norm (e.g. closely related to
MSF cuts). The development of other such algorithms is a field open
for research!

References
[1] Camille Couprie, Leo Grady, Laurent Najman, and Hugues Talbot.

Anisotropic diffusion using power watersheds.

In Proceedings of ICIP, 2010.

[2] Camille Couprie, Leo Grady, Laurent Najman, and Hugues Talbot.

Power watersheds: A unifying graph-based optimization framework.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(7), 2011.

doi:10.1109/TPAMI.2010.200.

[3] Ali Kemal Sinop and Leo Grady.

A seeded image segmentation framework unifying graph cuts and random walker
which yields a new algorithm.

In Proc. of ICCV 2007. IEEE, 2007.

