
Graph Based Image Processing and
Combinatorial Optimization

–Mandatory Tasks

December 3, 2021

1 General instructions

This document contains the mandatory tasks for the course “Graph Based
Image Processing and Combinatorial Optimization”. To pass the course, you
should solve all the tasks and hand in your solutions to Filip Malmberg.

You can do these tasks on your own, or form groups of up to 3 persons
working together. Some of the tasks are theoretical questions, while others
involve some programming.

1.1 Example code

For some of the programming related tasks, I have prepared some example
code written in C++. These code examples have been tested with Visual
C++ on Windows, but you are of course free to use any compiler/IDE/OS.
You are also free to use any other language/programming environment that
you feel more comfortable in, but even in that case I hope the code examples
can still be a useful starting point.

For reading and writing images, the C++ examples use CImg, a small
and free library for working with image data in C++. Documentation for
this library can be found at http://cimg.eu/. This library is included with
the source code for the exercises.

2 Task 1: Local search and Iterated condi-

tional modes (ICM)

This task requires Lecture 1.

1

http://cimg.eu/

2.1 Part1

In the first lecture we talked about the Iterated Conditional Modes (ICM)
algorithm, which is a variant of optimization based on local search for pixel
(vertex) labeling problems. Starting from an arbitrary labeling, ICM itera-
tively tries to improve the current solution by changing the label of one pixel
at a time.

Your first task is to implement the ICM algorithm for solving the pixel
labeling problems with the objective function given on page 40 of the lecture
notes combinatorial optimization from the first lecture:

f =
∑
v∈V

Φ(v) + α|∂L| . (1)

Use your implementation to segment an image of your choice (for example
the image from the thresholding example in the first lecture). Select suitable
values for α and the threshold t.

2.2 Part 2

A general algorithm for local search can be formulated as follows:

� Start at an arbitrary solution.

� While the current solution is not a local minimum, replace it with an
adjacent solution for which f is lower.

Give a proof that this algorithm is guaranteed to find a locally optimal
solution in a finite number of iterations. Hint: See slide 30 in “Notes 2” from
the first lecture.

3 Task 2: Semi-supervised learning on graphs

with minimum cost paths and minimum

spanning trees

This task requires Lecture 1-2.

3.1 Part 1: Dijkstra’s algorithm

Implement Dijkstras algorithm to compute, for all pixels in an image, the
cost of the shortest path between the pixel and a user specified set of seeds.

The DijkstraTask directory contains the following source files:

2

� main.cpp: Contains the function main(...)

� Dijkstra.cpp: Contains the function Dijkstra(...). You will write
most of your code in this file.

� Dijkstra.h: Header file for Dijkstra.cpp

� QueueElement.h: We will use the priority queue implementation avail-
able in the C++ standard library. This header defines a class of queue
elements to populate the priority queue. A queue element represents
a path throught the graph, and contains information about the coor-
dinate of the pixel representing the endpoint of the path, and the cost
of the path.

The main function loads two images, specified by the command line argu-
ments, into memory. The first image is the image used to define the graph in
which we compute the shortest paths. The second image (which must have
the same dimensions as the first one) is used to define the seedpoints. Every
pixel in the second image whose intensity is greater than zero is taken to be
a seed. Then, the main function calls the Dijkstra() function to compute
length of the shortest paths from the seeds to all other pixels. The resulting
distance values are then normalized to the range 0− 255 and written to the
file result.bmp.

Your task is to complete the implementation of Dijkstras algorithm in the
file Dijkstra.cpp. Assume that every pixel is adjacent to its four horizontal
and vertical neighbors. We will not store the graph edges and their weight
explicitly. Instead, we will calculate them implicitly during the execution of
Dijkstras algorithm. First, let the weight of each edge be 1. Once you have
completed the implementation, try to change the weight of each edge to be
the absolute difference in intensity between the pixels spanned by the edge.

3.2 Part 2: Path cost functions

As shown in the paper by Falcão et al., Dijkstra’s algorithm can be used
to compute optimum path forests for a number of different path cost func-
tions. There are, however, path cost functions for which the algorithm does
not return the correct result. One such example is the following path cost
function:

∑
vi∈π
|I(vi)− I(v0)| , (2)

where π is a path traversing vertices v0, v1, . . ., and I(vi) is an intensity
value associated with the vertex vi. In other words, the path cost function

3

http://www.cplusplus.com/reference/queue/priority_queue/

sums, for all vertices along the path, the difference in intensity between that
vertex and the first vertex of the path. Your task is to prove that Dijkstra’s
algorithm is not guaranteed to work with this path cost function by finding
a counterexample, i.e. a graph with vertex intensities and a set of seeds for
which the algorithm returns the wrong result. A hint is that at least two
seedpoints are required. The graph also does not have to be that large – there
exists valid counterexamples that have only four vertices and three edges.

3.3 Part 3: Minimum spanning trees

Implement Prim’s algorithm to compute a segmentation by minimum span-
ning forests relative to a set of labeled seeds. When completed, your program
should output an image where every pixel is assigned the same label as the
seed to which it is connected on a minimum spanning forest relative to the
seeds.

The MSTTask directory contains the following source files:

� main.cpp: Contains the function main(...)

� MSF.cpp: Contains the function MSF(...). You will write most of your
code in this file.

� MSF.h: Header file for MSF.cpp

� QueueElement.h: We will use the priority queue implementation avail-
able in the C++ standard library. This header defines a class of queue
elements to populate the priority queue. A queue element represents
an edge to be added to the forest, and contains information about the
coordinate of the pixel representing the endpoint of the edge, the weight
of the edge, and the label of the starting point of the edge.

The main function loads three images, specified by the command line
arguments, into memory. All images must have the same dimensions.The
first image is the image used to define the graph in which we compute the
MSF. The second image is used to define the seedpoints. Every pixel in
the second image whose intensity is greater than zero is taken to be a seed.
The label of the each seed is read from the corresponding pixel in the third
image. Then, the main function calls the MSF() function to compute an MSF
segmentation. The resulting labeled image is written to the file result.bmp.

Your task is to complete the implementation of Prim’s algorithm in the
file MSF.cpp. Assume that every pixel is adjacent to its four horizontal and
vertical neighbors. We will not store the graph edges and their weights
explicitly. Instead, we will calculate them implicitly during the execution of

4

http://www.cplusplus.com/reference/queue/priority_queue/

Prim’s algorithm. Let the weight of each edge to be the absolute difference
in intensity between the pixels spanned by the edge. (If you want to, you
can also try other edge weights!)

4 Task 3: Optimization of submodular en-

ergy functions with minimal graph cuts

In this task, you will use minimal graph cuts and move-making (α-expansion)
to solve an optimization problem. For this, I suggest that you use the gco-
v3.0 library (http://vision.csd.uwo.ca/code/), which implements the op-
timization algorithm described in the paper “Fast Approximate Energy Min-
imization via Graph Cuts”, by Boykov, Veksler and Zabih (PAMI 2001). The
library is written in C++, and also comes with a MATLAB wrapper. If you
can find similar libraries/wrappers for other languages, you are free to use
those instead.

The optimization problem you should solve is an image filtering one.
Given a grayscale image with integer valued intensities, find a new image I ′

the (locally) minimizes:

∑
v

(I ′(v)− I(v))2 + λ
∑
v,w∈E

(I ′(v)− I ′(w))2 (3)

where V is the set of pixels in the image, I(v) is the instensity of image I
at pixel v, and E is the set of all pairs of 4-adjacent pixels. The real valued
constant λ controls the degree of smoothing.

Instead of performing α-expansion with the set of all possible intensities
as our label set, we will consider two types of moves: “increase intensity by
1 for a subset of pixels” and “decrease intensity by 1 for a subset of pixels”.
For both types of moves, the problem of finding the best possible move is a
binary labeling problem (“should this pixel increase/decrease or not”) that
can be solved via minimal graph cuts. Your task has two parts:

� Implement an iterative move-making procedure for optimizing the ob-
jective function given above, using the two types of moves. For both
types of moves, the best possible solution in the move set can be found
by solving a minimal graph cut problem.

� Prove that in each step, the binary labeling problem to be solved by
graph cuts is submodular. As a starting point, you may look at the
appendix of the paper “Fast graph-cut based optimization for practical
dense deformable registration of volume images” where a similar proof
is given.

5

http://vision.csd.uwo.ca/code/

	General instructions
	Example code

	Task 1: Local search and Iterated conditional modes (ICM)
	Part1
	Part 2

	Task 2: Semi-supervised learning on graphs with minimum cost paths and minimum spanning trees
	Part 1: Dijkstra's algorithm
	Part 2: Path cost functions
	Part 3: Minimum spanning trees

	Task 3: Optimization of submodular energy functions with minimal graph cuts

