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Deformable  image  registration  is  a fundamental  problem  in  medical  image  analysis,  with  applications
such  as longitudinal  studies,  population  modeling,  and  atlas-based  image  segmentation.  Registration
is  often  phrased  as  an  optimization  problem,  i.e., finding  a  deformation  field  that  is optimal  according
to  a given  objective  function.  Discrete,  combinatorial,  optimization  techniques  have  successfully  been
employed  to solve  the  resulting  optimization  problem.  Specifically,  optimization  based  on  ˛-expansion
with  minimal  graph  cuts  has been  proposed  as a powerful  tool  for image  registration.  The high  compu-
tational  cost  of the graph-cut  based  optimization  approach,  however,  limits  the  utility  of  this  approach
for  registration  of  large  volume  images.  Here,  we  propose  to accelerate  graph-cut  based  deformable  reg-
istration  by  dividing  the  image  into  overlapping  sub-regions  and restricting  the  ˛-expansion  moves  to  a
single  sub-region  at  a time.  We  demonstrate  empirically  that  this  approach  can  achieve  a  large reduction
in  computation  time  – from  days  to minutes  – with  only  a small  penalty  in  terms  of  solution  quality.  The

reduction  in  computation  time  provided  by  the  proposed  method  makes  graph-cut  based  deformable  reg-
istration  viable  for large  volume  images.  Graph-cut  based  image  registration  has  previously  been  shown
to produce  excellent  results,  but  the  high  computational  cost  has hindered  the  adoption  of the  method
for  registration  of  large  medical  volume  images.  Our proposed  method  lifts  this  restriction,  requiring  only
a small  fraction  of the  computational  cost  to produce  results  of  comparable  quality.

©  2020  Published  by  Elsevier  Ltd.
. Introduction

Deformable image registration is a fundamental task in medical
mage analysis. Registration can be defined as the task of finding

 spatial transformation that aligns two or more images with each
ther. We  consider registration of two images – one referred to as
he source image and the other referred to as the target image. In
his case, the deformable registration problem consists of finding a
eformation field that indicates, for each voxel in the target image,
he location of the corresponding voxel in the source image. Appli-
ations of registration include fusion of multi-modal data, change

etection and quantification, longitudinal studies, population mod-
ling and studies of normal anatomical variability, and atlas-based
mage segmentation (Sotiras et al., 2013; Maintz and Viergever,

∗ Corresponding author at: Department of Surgical Sciences, Uppsala University,
weden.

E-mail address: filip.malmberg@it.uu.se (F. Malmberg).

ttps://doi.org/10.1016/j.compmedimag.2020.101745
895-6111/© 2020 Published by Elsevier Ltd.
1998). Another application highly dependent on efficient image
registration is the Imiomics analysis concept (Strand et al., 2017)
which aims to analyze large datasets of whole-body MRI.

This work aims to present an efficient image registration method
to enable high-quality registration of large volume images (e.g.,
whole-body MRI) at a lower computational cost. This opens up for
analysis of very large datasets such as the UK Biobank.1

Image registration methods can broadly be divided into two
categories; parametric and non-parametric (Sotiras et al., 2013).
In parametric methods, the space of feasible transformations is
reduced by introducing a parametrization (model) of the transfor-
mation. For example, the transformation may  be required to be rigid
or affine. Non-linear deformations may  be parametrized using, e.g.,

B-splines, where a sparse grid of control points is used to specify
a smooth deformation field. Here, we consider non-parametric, or
dense registration methods, where each point in the source image

1 https://www.ukbiobank.ac.uk/.
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ay  be displaced arbitrarily, e.g., a separate displacement vector is
tored for each voxel in the image.

Dense registration is often phrased as an optimization problem,
.e., finding a deformation field that is optimal according to a given
bjective function which typically consists of two terms: a data
erm measuring the degree to which the deformed source image
esembles the target image, and a regularization term enforcing the
moothness of the deformation field itself.

By discretizing the set of allowed displacement vectors for
 voxel, we may  formulate dense deformable registration as a
iscrete labeling problem that can be solved using a variety of pow-
rful inference methods. Here, we focus on the class of optimization
ethods referred to as move-making algorithms. These algorithms

tart from an initial solution and iteratively seek to find better solu-
ions. At each step, the algorithms search for a better solution in a
imited subset of the combinatorial search space, referred to as the

ove-space, and selects the one that leads to the largest reduction
f the objective function. The algorithms terminate when no such
mproving solution can be found. Provided that the move-space
ncludes the current solution, these algorithms will converge in a
nite number of steps. The resulting solution is then guaranteed
o be locally optimal with respect to the move-space, in the sense
hat no better solution exists within the move-space of the current
olution.

An important characteristic of a move-making algorithm is the
ize of its move-space. A large move space reduces the risk of getting
tuck in poor local minima and can lead to faster convergence of
he algorithm. A prominent example of a move-making algorithm
s the iterated conditional modes (ICM) method, which iteratively
ttempts to improve the current solution by changing the label of a
ingle element at a time while keeping the others fixed. The move-
pace for ICM is thus small, and the algorithm is prone to get stuck
n poor local minima. Another move-making algorithm is the ˛-
xpansion method by Boykov et al. (2001). This algorithm selects a
abel  ̨ and considers moves that allow all elements to either keep
heir current label or change label to ˛. Under certain conditions,
he best such move can be determined in low-order polynomial
ime by solving a max  flow/min cut problem on a suitably con-
tructed graph. Compared to ICM, the ˛-expansion algorithm has

 much larger move-space since it allows the labels of multiple
lements to be changed simultaneously. In practice, this leads to
uch stronger local optima (Szeliski et al., 2006). The drawback of

he ˛-expansion method is its high computational complexity. Iter-
tively solving max  flow/min cut problems on large graphs is very
omputationally expensive, and the computational cost grows non-
inearly with respect to the image size. The high computational cost
imits the practical utility of this approach for registration of large
olume images (Szmul et al., 2016). Here, we propose an approach
or reducing the computation time of graph-cut based registration,
hile still producing high-quality solutions.

We may  view the ICM and ˛-expansion algorithms as two
xtremes in terms of their move-spaces; ICM only allows updates to

 single variable at a time, while ˛-expansion allows simultaneous
pdates to all variables. While the ability to simultaneously update
he labels of many voxels yields superior results, we  hypothesize
ere that interactions between voxels that are very far away from
ach other are unlikely to affect the result significantly. Based on
his hypothesis, we introduce a novel move-making strategy that
xplores the middle-ground between ICM and ˛-expansion: we
ivide the image into small overlapping sub-regions, and define
he move-space as the set of solutions that can be obtained by
n ˛-expansion within a single sub-region at a time. The opti-

al  move within a sub-region can still be determined by solving a
inimal graph cut problem, with special care taken to correctly

andle the borders of each subregion. Selecting the size of the
ub-regions involves a trade-off between computation time on one
d Medical Imaging and Graphics 84 (2020) 101745

hand and solution quality on the other. We demonstrate empiri-
cally that this trade-off is benign, in the sense that a large reduction
in computation time can be achieved with only a small penalty
in terms of solution quality. The reduction in computation time
makes graph cut based deformable registration viable for large
volume images. Additionally, we  perform an empirical compari-
son between the proposed method to the state-of-the-art method
proposed by Glocker et al. (2011). All experiments are performed
on registration of whole-body fat-water magnetic resonance (MR)
images.

2. Related work

As shown by Boykov et al. (2001), minimal graph cuts are a
powerful tool for solving discrete optimization problems arising
in image analysis and computer vision. The use of minimal graph
cuts for deformable image registration was, to our knowledge, first
proposed by Tang and Chung (2007). The use of graph cuts in this
context has been shown to produce excellent results, but the high
computational cost associated with this method has limited its
use in medical imaging. In recent years, the topic has since then
been revisited by several authors. Heinrich et al. (2013), formulate
a similar optimization problem, but then prune the graph to a tree
on which the optimal labeling (to an approximation of the origi-
nal problem) can be found by efficient belief propagation. Szmul
et al. (2016, 2017) proposed to accelerate graph-cut based image
registration by partitioning the image into supervoxels to yield a
sparse graph-based image representation. This reduces computa-
tion time, but the result is restricted by the assumption that the
displacement field is constant within each supervoxel. In contrast,
our proposed method is free to assign distinct displacement vectors
to all individual voxels. Glocker et al. (2008, 2011) consider opti-
mization problems similar to that presented here but use a linear
programming solver to find optimal solutions.

3. Preliminaries

3.1. Notation

We  define a scalar volume image I as a pair (V, I) consisting
of a set V of voxels (represented by points in R

3) and a mapping
I : V → R  where the value I(v) of I at v ∈ V represents the image
intensity at the voxel v. The voxels in V are assumed to be arranged
on a regular grid so that each voxel can be identified by a coordinate
in Z

3. We  let N  denote the set of all adjacent voxels, i.e., (v, w)  ∈ N
if v and w are adjacent. Throughout, we  will use the standard 6-
neighborhood to define adjacency.

3.2. Deformation model

We  denote the source image by S = (VS, S) and the target image
by T = (VT , T). The two  images are related by a transformation
W : R

3 → R
3. This transformation is assumed to map the target

image to the source image, i.e., it is a backward transform (Sotiras
et al., 2013). The main motivation for using a backward transform is
that it simplifies the interpolation problem that needs to be solved
to calculate the deformed source image. With a backward trans-
form, this calculation is straightforward; for every voxel in the
target image we simply interpolate the value at the correspond-
ing location in the source image. The transformation at every voxel

position x is given as the addition of an identity transform with a
displacement field u, i.e.,

W(x)  = x + u(x). (1)
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We  store u for each voxel in the target image and use tri-linear
nterpolation to determine the value of the deformation field at
on-grid locations. Note that by Eq. (1), it is trivial to transform
etween u and W .

. Deformable registration by discrete optimization

In this section, we formulate the deformable registration prob-
em as a discrete optimization problem.

.1. Matching criterion

Matching criteria used for deformable image registration typ-
cally consist of two terms: a data term measuring the degree to

hich the deformed source image resembles the target image and
 regularization term enforcing the smoothness of the deforma-
ion field itself. Many different data and regularization terms have
een proposed in the literature, see, e.g., Sotiras et al. (2013) for an
verview. In this section, we present the specific matching criterion
sed here for all experiments. We  emphasize that our proposed effi-
ient optimization scheme could also be used with other matching
riteria, so long as they satisfy the criteria given in Section 5.

The images that are to be registered are assumed to be quan-
itative and of the same modality. Thus, the data term D is simply
aken to be the sum of squared differences (SSD) between the target
mage and the deformed source image:

(u) =
∑

v ∈ VT

|T(v) − S(v + u(v))|2 . (2)

or multi-channel images, the data term is taken to be the average
SD across all image channels.

For the regularization term R we consider a diffusion regularizer
Glocker et al., 2008), penalizing large first order derivatives in the
eformation field:

(u) =
∑

(v,w) ∈ N
‖u(v) − u(w)‖2. (3)

The total matching criterion f is thus defined as

 (u) = (1 − ˛)D + ˛R, (4)

here  ̨ is a user-defined parameter controlling the balance
etween the data and regularization terms. We  seek a transfor-
ation W ′ that minimizes f (W).

.2. Optimization via minimal graph cuts

By discretizing the space of possible deformation vectors, the
roblem of finding a deformation field minimizing the matching
riterion f becomes a discrete labeling problem. In this section,
e review how such labeling problems can be solved via mini-
al  graph cuts, employing variations on the ˛-expansion method

roposed by Boykov et al. (2001). The optimization procedure out-
ined below is computationally expensive, but forms the basis for
he more efficient method proposed in Section 5.

Let u be a deformation field, and let ı ∈ R
3 be a vector. We say

hat a deformation field u′ is ı-adjacent to u if u′ can be obtained
rom u by adding the vector ı to the deformation vector at some of
he voxels v ∈ VT . Formally, u′ is ı-adjacent to u if it can be written
s

′(v) = u(v) + L(v)ı, (5)
here L is a binary labeling function that assigns to each voxel in VT

ither 0 or 1, i.e., L : VT → {0, 1}. Given a set � of 3D vectors, we say
hat u′ is �-adjacent to u if it is ı-adjacent to u for some ı ∈ �.  We
ay that a deformation field u is locally optimal with respect to � if
 Medical Imaging and Graphics 84 (2020) 101745 3

there is no �-adjacent deformation field u′ such that f (u′) < f (u).
In practice, we may relax this condition somewhat, and consider u
to be locally optimal if there is no �–adjacent deformation field u′

such that f (u′) + ϒ < f (u) for some small, user defined tolerance
value ϒ.  A strategy for finding a deformation field that is locally
optimal with respect to � can be defined as follows:

1. Start with an initial deformation field u.
2. While there exists a deformation field u′ that is �-adjacent to u

such that f (u′) < f (u) + ϒ,  set u ←− u′.

This procedure is an instance of a move-making optimization
algorithm, where the move-space is given by all �-adjacent solu-
tions. Thus, the algorithm is guaranteed to terminate and return a
locally optimal deformation field. The crucial issue in the above pro-
cedure is to determine, at every iteration of step 2, whether there
exists a �-adjacent deformation field to the current solution for
which the matching criterion is improved. For any given deforma-
tion field, the set of �-adjacent deformation fields are extremely
large – it has |�|2|V | elements – and so an exhaustive search of this
set is not feasible. Instead, the �-adjacent solution with the lowest
matching criterion value is found by solving a minimal graph cut
problem on a suitably constructed graph (Kolmogorov and Zabin,
2004).

For the specific matching criterion considered here we observe,
for a fixed u and ı ∈ �,  that the value of the matching criterion for
a ı–adjacent deformation field u′ can be expressed as a function of
the labeling function L:

f (u′) =
∑

v ∈ VT

�v(L(v)) +
∑

(v,w) ∈ N
�v,w(L(v), L(w)). (6)

In the above equation, the unary terms �v represent the data and
constraint term of the matching criterion, while the binary terms
�v,w represent the smoothness term. Formally, the unary terms are
given by

�v(0) = (1 − ˛)|T(v) − S(v + u(v))|2, (7)

�v(1) = (1 − ˛)|T(v) − S(v + u(v) + ı)|2. (8)

Similarly, the binary terms are given by

�v,w(0,  0) = ˛‖u(v) − u(w)‖2, (9)

�v,w(1,  1) = ˛‖(u(v) + ı) − (u(w) + ı)‖2, (10)

�v,w(1,  0) = ˛‖(u(v) + ı) − u(w)‖2, and (11)

�v,w(0,  1) = ˛‖u(v) − (u(w) + ı)‖2. (12)

We are interested in finding a labeling L for which the match-
ing criterion f (u′) is minimal. As established by Kolmogorov and
Zabin (2004) a globally optimal solution to binary labeling prob-
lems of the form given in Eq. (6) can be found by solving a maximum
flow/minimum cut problem, provided that all binary terms are sub-
modular. In Appendix A, we  give a proof that the binary terms given
by Eqs. (9)–(12) are submodular for any u and ı.

This result enables an efficient approach for determining if a
given deformation field u is locally optimal with respect to �:  For
every ı ∈ �,  we  solve a max-flow problem to find, among all defor-
mation fields that are ı-adjacent to u, one for which f is minimal.
This results in |�|  deformation fields. If the value of the match-
ing criterion for any of these fields is smaller than f (u), we  accept
the deformation field as the new current solution. If not, then u is
locally optimal with respect to �.
To implement this approach in practice, we need to select a set of
vectors �.  The number of vectors in � and their capture range has a
significant effect on the registration process. Generally, a larger set
of vectors allows the algorithm to “explore” a larger region around
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he current solution, potentially leading to stronger optima. On the
ther hand, we wish to keep the set of vectors small for efficient
ptimization. Here, we have opted for a small set of displacement
ectors �,  representing small local displacements of the current
eformation field along the main axis directions. Formally, we take

 to be the set of vectors ı of the form

 = ±�ei, (13)

here � ∈ R  is a user specified step length and ei is one of the stan-
ard basis vectors (1,  0, 0), (0,  a, 0) and (0,  0, 1). Typically, we set �
o a fraction of the voxel spacing, to allow for sub-voxel precision
n the registration.

To find a good solution with such a small set �,  the algorithm
ust be initialized with a deformation field that is close to the

esired one. To alleviate this requirement and increase the “cap-
ure range” of the registration, we follow the common practice of
ombining the move-making optimization with a multi-resolution
trategy. Starting with the original image, we obtain a lower reso-
ution image by applying a Gaussian filter at the current resolution
nd then discarding every second voxel of the filtered image along
ach dimension. This procedure is repeated k − 1 times to obtain

 resolution levels, where k is specified by the user. Registration
hen starts at the coarsest resolution, and applies the optimization

ethod described above to obtain a locally optimal transforma-
ion at the current resolution. The resulting deformation field is
p-sampled using tri-linear interpolation to obtain a starting guess
or the next finer resolution. The process is repeated until a locally
ptimal solution has been calculated at the finest resolution.

. Proposed efficient optimization method

The cost of solving a single max  flow/min cut problem grows
on-linearly with the number of nodes in the graph. Thus, iter-
tively finding optimal adjacent solutions for the entire volume
s computationally expensive. To reduce computational cost, we
ropose to divide the volume into smaller sub-regions and restrict
he move-space so that only voxels within the same sub-region
re allowed to simultaneously update their displacement vectors
ithin a single move. This is motivated by the hypothesis that inter-

ctions between voxels that are very far away from each other are
nlikely to affect the result significantly.

Let V ′ ⊂ VT be a subset of the voxels in the target image. Given a
eformation field u and a vector ı, we say that a deformation field
′ is (V ′, ı)-adjacent to u if u′ can be obtained from u by adding

he vector ı to the deformation vector at some of the voxels v ∈ V ′.
ormally, u′ is (V ′, ı)-adjacent to u if it can be written on the form
iven in Eq. (5), with the additional condition that L(v) = 0 for all
oxels v /∈ V ′.

Given a set � of 3D vectors and set  ̌ of subsets of VT , we say that
′ is (ˇ, �)-adjacent to u if it is (V ′, ı)-adjacent to u for some ı ∈ �
nd V ′ ∈ ˇ. We  say that a deformation field u is locally optimal with
espect to (ˇ, �)  if there is no (ˇ, �)-adjacent deformation field u′

uch that f (u′) < f (u) + ϒ.
The move-making strategy for finding a deformation field that

s locally optimal with respect to (ˇ, �)  can be defined as follows:

. Start with an initial deformation field u.

. While there exists a deformation field u′ that is (ˇ, �)-adjacent
to u such that f (u′) + ϒ < f (u), set u ←− u′.

As before, we use minimal graph cuts to efficiently search the

et of (ˇ, �)-adjacent deformation fields for a solution with better
atching criterion value. Let N′ be the set of adjacent voxel pairs in

 for which at least one of the voxels in the pair is in V ′. For a fixed u,
oxel subset V ′ ∈  ̌ and vector ı, the value of the matching criterion
d Medical Imaging and Graphics 84 (2020) 101745

for a (V ′, ı)-adjacent deformation field u′ can again be expressed as
a function of the labeling function L:

E(L) =
∑

v ∈ VT \V ′
�v(0) +

∑

(v,w) ∈ N\N′
�v,w(0,  0)

+
∑

v ∈ V ′
�v(L(v)) +

∑

(v,w) ∈ N′
�v,w(L(v), L(w)).

(14)

The first two  terms in the above equation are constant with
respect to L and thus do not affect the optimization of L. Let N′′
be the set of adjacent voxel pairs in N  for which both voxels in the
pair are in V ′. We  can then rewrite the remaining terms in Eq. (14)
as
∑

v ∈ V ′
�v(L(v)) +

∑

(v,w) ∈ N′′
�v,w(L(v), L(w))

+
∑

(v,w) ∈ N′\N′′
�v,w(L(v), 0)

(15)

In the last term of the above equation, we make the assumption
that w is the voxel in the pair (v, w) that is not in V ′. This last term is
a sum over binary terms, but since one of the labels, L(w), is fixed to
0 we can treat each �v,w(L(v), 0) as a unary term for the remaining
label L(v). Thus a labeling L that globally minimizes Eq. (15) can be
found by computing a minimal graph cut. Pseudo-code for the full
proposed optimization algorithm is listed in Algorithm 1.

Algorithm 1. Optimization algorithm

Input: An initial deformation field u. A set of vectors �,  a set of voxel subsets
ˇ,  and a tolerance value ϒ.

Output: A locally optimal deformation field u
u(v) = 0 for all v  ∈ V
done = false while done = false do

done = true
for all V ′ ∈  ̌ do

for all ı ∈ �do
Solve a min-cut/max-flow problem to find, among all deformation fields

that  are (V ′, ı)-adjacent to u, a deformation field u′ for which f (u′) is
minimal.

if  f (u′) + ϒ < f (u) then
Set u = u′ Set done = false

end if
end for

end for
end while

To select the set of voxel subsets  ̌ in practice, we  consider a
grid of rectangular blocks covering the target image. Each block in
B, has a size of n × n × n voxels. Taking  ̌ = B can potentially lead
to artifacts at the boundaries between the blocks. To avoid this, we
also consider a second set of blocks, Bshift, with blocks of the same
size as in B but translated by n/2 along each dimension, and take

 ̌ = B ∪ Bshift. The size n of the blocks offers a trade-off between
computational cost and solution quality. If n is too small, the opti-
mization algorithm will tend to get stuck in poor local optima.
Selecting a too large n, on the other hand, may  result in very long
computation times but not much gain in solution quality. In Section
6, we explore this trade-off empirically.

5.1. Computational optimizations

The move-making optimization procedure described above
divides the voxels of the target volume into a set of overlapping
rectangular blocks ˇ. The algorithm then repeatedly iterates over
all blocks, and tries to improve the current solution by modifying
the displacement vectors within a single block at a time by solving
a graph cut problem. Reducing the size of the graph cut problems

to be solved during optimization greatly reduces the computation
time. The division into subregions also facilitates some additional
computational optimizations, described in this section, that further
accelerate the algorithm.
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Fig. 1. Illustration of red-black ordering of the blocks B. In this illustration, each
of  the 3 × 3 × 3 blocks contains n × n × n = 8 × 8 × 8 voxels. The dotted blue lines
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how the second set of blocks Bshift , translated relative to B by half the block size in
ach  dimension. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

To solve each graph cut problem, we use the fast graph cut
lgorithm proposed by Boykov and Kolmogorov (2004). As can be
bserved in Eqs. (14) and (15), the optimization of a single block V ′

oes not depend on the current deformation vectors at all target
mage voxels. In fact, the optimization of a given block V ′ ∈  ̌ only
epends on the deformation vector at a voxel v if

. v is in V ′, or

. v is adjacent to a voxel in V ′.

e denote by �(V ′) the set of voxels in VT satisfying one of the above
riteria. If, for two blocks V ′ and V ′′, it holds that �(V ′) ∩ �(V ′′) /= ∅,
hen we say that V ′ and V ′′ are dependent.

The first computational optimization is to parallelize the itera-
ion over the voxel subsets in ˇ. Recall that we define  ̌ as the union
f two grids of rectangular blocks B and Bshift, translated relative to
ach other by half the block size in each dimension. We  arrange the
oop over  ̌ in Algorithm 1 so that we first iterate over all blocks in
, and then over all blocks in Bshift. We observe that when iterating
ver a single set of blocks B′ ∈ {B, Bshift}, two blocks V ′ and V ′′ in
′ are dependent precisely if they are adjacent, i.e., there is a pair
f adjacent voxels in N  for which one voxel is in V ′ and the other
s in V ′′. This allows us to use a red-black ordering to parallelize the
teration over a single set of blocks; the set of blocks B′ is further
ivided into two groups, identified as red and black blocks, such
hat black blocks are only adjacent to – and thus dependent on –
ed blocks, and vice versa. See Fig. 1. All black blocks can then be
pdated independently, as can all red blocks. Our implementation
ses OpenMP2 to distribute the work among multiple CPU cores.

The second computational optimization is based on the obser-
ation that after a few iterations over the blocks, most blocks
ave already converged to their locally optimal state, and remain
nchanged for subsequent iterations. Thus, a large amount of
edundant work is spent on trying to improve the deformation field
ithin blocks that have already reached a locally optimal state.
pecifically, if a block V ′ was not changed at one iteration, it is
uaranteed to remain unchanged also at the next iteration unless

 dependent block V ′′ ∈  ̌ was changed since the last update of V ′.

2 http://openmp.org.
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Keeping track of these conditions allows to implement early ter-
mination, i.e., not performing the graph cut optimization step for
blocks that will not be changed anyway.

6. Experiments and results

Several previous studies have established the usefulness of
graph-cut based optimization for deformable image registration
(Tang and Chung, 2007; So et al., 2011). Thus, the focus of this sec-
tion is not to study the performance of graph-cut based registration
per se. Instead, we  focus on evaluating how the proposed division
into subregions affects the optimality of the result. Additionally, we
perform an empirical comparison between our proposed method
and the method of Glocker et al. (2011). We  evaluate the perfor-
mance of the proposed optimization method on a set of 21 whole
body MR  images of female subjects from the POEM cohort (www.
medsci.uu.se/poem).

All subjects were imaged on a 1.5T clinical MRI  system
(Philips Achieva, Philips Healthcare, Best, Netherlands) in the
supine position using the body coil and a whole body water-fat
imaging protocol that used a spoiled 3D multi-gradient echo
sequence. Scan parameters were: TR/TE1/�TE = 5.9/1.36/1.87 ms,
3 unipolar echoes, flip angle 3. Imaged field of view (FOV)
530 mm × 377 mm × 2000 mm,  reconstructed voxel size
2.07 mm × 2.07 mm × 8.0 mm in sagittal × coronal × axial direc-
tions. The imaging protocol and the water-fat image reconstruction
have been described previously (Berglund et al., 2010; Kullberg
et al., 2009).

Fat- and water fraction volume images were calculated from the
MR image data as described by Berglund et al. (2010). Background
noise outside the body was suppressed by multiplication with a
body mask, obtained using the approach described by Strand et al.
(2017). We  treat each pair of fat- and water fraction images as a
single two-channel volume image, and use these as input to the
registration algorithm.

One subject was  selected as the reference subject, to which the
other twenty subjects were registered. The registration parameters
used were a step length of � = 0.5 (specified in image coordinates),
k = 6 resolution levels in the multiresolution pyramid, regulariza-
tion parameter  ̨ = 0.1, and the tolerance level ϒ was set to 10−5.
All pairs were registered in both forward and reverse directions. The
quality of the results was  assessed using the value of the matching
criterion f (u) of the final deformation field and the inverse con-
sistency vector magnitude error (VME) (Christensen and Johnson,
2001), computed as

VME = 1
|V |

∑

x ∈ V

|x − TB→A ◦ TA→B(x)|, (16)

where TB→A(TA→B(x)) is the composite of the deformation fields in
forward and reverse directions.

6.1. Evaluation of the effect of sub-region size

Registrations were performed on the 20 subject pairs with vary-
ing size on the sub-regions and compared to registration without
sub-regions, i.e., direct ˛-expansion on the full image as pro-
posed by Tang and Chung (2007). Block-shaped sub-regions of
size � ∈ {13, 83, 163, 323} were used. During the experiment, the
computation time for registration with direct ˛-expansion was
shown to exceed 5 days per subject and for practical reasons, these
computations were thus terminated. The results of the remaining

experiments are shown in Fig. 3. As the figure shows, the compu-
tation time increases dramatically as we  increase in the sub-region
size. In terms of VME  and matching criterion, f (u), the effect is less
noticeable. Both measures are drastically improved as we  move

http://openmp.org
http://openmp.org
http://openmp.org
http://www.medsci.uu.se/poem
http://www.medsci.uu.se/poem
http://www.medsci.uu.se/poem
http://www.medsci.uu.se/poem
http://www.medsci.uu.se/poem
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ig. 2. Coronal slices from the fat percent images from one of the subjects registered 

howing the registered fat images (white) and the reference images (red) for sub-re
n  this figure legend, the reader is referred to the web  version of this article.)

rom a sub-region size of 13 (equivalent to ICM) to a size of 83,
ut increasing the sub-region size further only affects the VME  and
atching criterion marginally.
Fig. 2shows a sample from the registered subjects from the

xperiment. Presented are the original unregistered fat percent
mage and checkerboards showing the registered fat images
white) and the reference images (red) for the various sub-region
izes. The checkerboards show the similarity between the regis-
ered subject and the reference subject. Visually, these results agree
ith the VME  and matching criterion results. The registration result
ith sub-region size 13 (b) exhibits visual errors throughout the

mage, most notably in arms and lower legs. For the other sub-
egion sizes (c–e) there were small errors around the calves but
one of the other large errors from (b) are visible. In comparison,
here are no evident differences between (c–e), indicating that the
hoice of sub-region size, within a reasonable range, have little or
o effect on the visual end result.

To facilitate a comparison between our proposed method and
irect ˛-expansion, we repeated the experiment but performed
he registration to the second-last level in the resolution pyra-

id, i.e., we register the volumes downsampled by a factor two
long each dimension. In this experiment, registrations were per-
ormed using sub-regions of size � ∈ {13, 83, 163, 323, 643}, as well
s using direct ˛-expansion. The results of this second experi-
ent are shown in Fig. 4. The results are in agreement with the

revious experiment; computation time increases dramatically
ith increased sub-region size, but the matching criterion and
ME  are not substantially decreased for sub-region sizes beyond
3.

For this experiment, all registrations were performed on an Intel

eon W-2133 with 6 cores and hyperthreading enabled (12 hard-
are threads).
experiment. Presented are the unregistered fat percent image (a) and checkerboards
izes 13 (b), 83 (c), 163 (d), and 323 (e). (For interpretation of the references to color

6.2. Comparison with the method of Glocker et al. (2011)

In a second experiment, we compare the performance of our
proposed method to the method proposed by Glocker et al.
(2011), using a freely available reference implementation (DROP
registration, http://www.mrf-registration.net/). As this particular
implementation only supports single-channel images, all registra-
tions in this experiment were performed on the water fraction
images only.

Both methods were configured to optimize, as closely as possi-
ble, the same matching criterion. For our method, we  used the same
parameters as for the experiment in Section 6.1, with sub-regions
of size 163. An important difference between the two implemen-
tations is that our proposed method iterates the optimization
procedure until convergence (as determined by the tolerance level
ϒ), while the DROP registration software performs a user-defined
number of iterations at each resolution level. By recommendation
from the authors of the DROP registration software, the number of
iterations was  set to 10 for this experiment.

The results of the comparison, in terms of computation time,
inverse consistency (VME), and SSD are shown in Fig. 5. As the
figure shows, the computation time for our proposed method is
lower by almost a factor 2. The VME  is slightly higher for our pro-
posed method, while the SSD is somewhat lower. Fig. 6 shows a
sample from the registered subjects from the experiment, using
both methods. In a visual comparison, no clear difference is visible
between the two methods. We  conclude that in this experiment
setup, both methods produced comparable registration results,
while the computation time was substantially lower for our pro-
posed method.
For this experiment, all registrations were performed on an Intel
Core i7-7700K 4.2GHz, 32GB RAM, with 4 cores and hyperthreading
enabled (8 hardware threads).

http://www.mrf-registration.net/
http://www.mrf-registration.net/
http://www.mrf-registration.net/
http://www.mrf-registration.net/
http://www.mrf-registration.net/
http://www.mrf-registration.net/
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Fig. 3. Total computation time, VME, and resulting matching criterion f (u) presented for registrations using sub-region size parameters 13, 83, 163, and 323. Note that the
Y-axis in the time plot is shown in logarithmic scale.

Fig. 4. Total computation time, VME, and resulting matching criterion f (u) for registrations using sub-region size parameters 13, 83, 163, 323, 643, and registrations with
direct  ˛-expansion, with image resolution halved along each dimension. Note that the Y-axis in the time plot is shown in logarithmic scale.
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Fig. 5. Total computation time, VME, and resulting SSD (D(u)) for reg

. Conclusion

Graph-cut based optimization with ˛-expansion has previously
een shown to be a powerful tool for deformable image registration.
he high computational cost of this approach, however, has limited
he utility of this approach for registration of large volume images.
he high computational cost was illustrated in our experiments,
here the registration time of a single pair of images by direct

pplication of ˛-expansion exceeded five days. We  have presented
n approach for fast discrete optimization for deformable registra-

ion of volume images. By dividing the image into subregions and
estricting the ˛-expansion moves to a single sub-region at a time,
e achieve a large reduction in computation time – from days to
inutes – with only a small penalty in terms of solution optimality.
ons using our proposed method and the DROP registration software.

The division into subregions also facilitates additional computa-
tional optimizations – parallelization and early termination – that
both reduce the computation time substantially.

We have demonstrated the utility of the proposed method in
a case study on registration of whole-body fat-water MRI  images,
and conclude that the reduction in computation time facilitated by
the proposed method makes graph-cut based optimization a viable
option for registration of large volume images.
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ppendix A. Proof of submodularity

A globally optimal solution to the binary labeling problem given
n Eq. (6) can be found by solving a maximum flow/minimum

ut problem, provided that all binary terms are submodular
Kolmogorov and Zabin, 2004). In this appendix, we  prove that the
inary terms in given by Eqs. (9)–(12) are submodular for any u and
.

 in the experiment. Presented are the unregistered water percent image (a), and
red) using DROP registration (b) and our proposed method (c), respectively. (For

 web  version of this article.)

A binary term �v,w(L(v), L(w)) is submodular if it satisfies the
inequality

�v,w(0,  0) + �v,w(1,  1) ≤ �v,w(0,  1) + �v,w(1,  0).  (A.1)

Here, we  have

�v,w(0,  0) = ˛‖u(v) − u(w)‖2, (A.2)

�v,w(1,  1) = ˛‖(u(v) + ı) − (u(w) + ı)‖2, (A.3)

�v,w(1,  0) = ˛‖(u(v) + ı) − u(w)‖2, (A.4)

�v,w(0,  1) = ˛‖u(v) − (u(w) + ı)‖2. (A.5)

Noting that �v,w(0,  0) = �v,w(1,  1), the left hand side of Eq. (A.1)
can be rewritten as

�v,w(0,  0) + �v,w(1,  1) = 2˛‖(u(v) − u(w)‖2. (A.6)

The right hand side of Eq. (A.1) can be rewritten as

�v,w(0,  1) + �v,w(1,  0) = 2˛‖u(v) − u(w)‖2 + 2˛‖ı‖2. (A.7)
Since 2˛‖ı‖2 ≥ 0, we  have

�v,w(0,  0) + �v,w(1,  1) ≤ �v,w(0,  1) + �v, w(1,  0) (A.8)

This completes the proof.
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