
Journal of Mathematical Imaging and Vision (2020) 62:737–750
https://doi.org/10.1007/s10851-020-00963-8

Two Polynomial Time Graph Labeling Algorithms Optimizing
Max-Norm-Based Objective Functions

Filip Malmberg1 · Krzysztof Chris Ciesielski2,3

Received: 27 June 2019 / Accepted: 7 May 2020 / Published online: 16 June 2020
© The Author(s) 2020

Abstract
Many problems in applied computer science can be expressed in a graph setting and solved by finding an appropriate vertex
labeling of the associated graph. It is also common to identify the term “appropriate labeling” with a labeling that optimizes
some application-motivated objective function. The goal of this work is to present two algorithms that, for the objective
functions in a general format motivated by image processing tasks, find such optimal labelings. Specifically, we consider a
problem of finding an optimal binary labeling for the objective function defined as the max-norm over a set of local costs of a
form that naturally appears in image processing. It is well known that for a limited subclass of such problems, globally optimal
solutions can be found viawatershed cuts, that is, by the cuts associated with the optimal spanning forests of a graph. Here, we
propose two new algorithms for optimizing a broader class of such problems. The first algorithm, that works for all considered
objective functions, returns a globally optimal labeling in quadratic time with respect to the size of the graph (i.e., the number
of its vertices and edges) or, for an image associated graph, the size of the image. The second algorithm is more efficient, with
quasi-linear time complexity, and returns a globally optimal labeling provided that the objective function satisfies certain given
conditions. These conditions are analogous to the submodularity conditions encountered in max-flow/min-cut optimization,
where the objective function is defined as sum of all local costs. We will also consider a refinement of the max-norm measure,
defined in terms of the lexicographical order, and examine the algorithms that could find minimal labelings with respect to
this refined measure.

Keywords Energy minimization · Pixel labeling · Minimum cut · NP-hard

Mathematics Subject Classification 68Q25 · 68W40 · 68R10

1 Introduction

Many fundamental problems in image processing and com-
puter vision, such as image filtering, segmentation, regis-
tration, and stereo vision, can naturally be formulated as
optimization problems. Often, these optimization problems

B Filip Malmberg
filip.malmberg@it.uu.se

Krzysztof Chris Ciesielski
KCies@math.wvu.edu

1 Department of Information Technology, Centre for Image
Analysis, Uppsala University, Uppsala, Sweden

2 Department of Mathematics, West Virginia University,
Morgantown, WV 26506-6310, USA

3 Department of Radiology, MIPG, University of Pennsylvania,
Philadelphia, PA 19104, USA

can be described as labeling problems in which we wish to
assign to each image element (pixel or vertex of an associated
graph) v ∈ V an element �(v) from some finite K -element
set of labels, usually {0, . . . , K − 1}. The interpretation of
these labels depends on the optimization problem at hand.
In image segmentation, the labels might indicate object cat-
egories. In registration and stereo disparity problems, the
labels represent correspondences between images, and in
image reconstruction and filtering the labels represent inten-
sities in the filtered image.

In what follows an undirected graph G is identified with a
pair 〈V , E〉, where V is its set of vertices and E is the set of
its edges. Each edge connecting vertices s and t is identified
with a pair {s, t}. We make the assumption that the vertices
in V are linearly ordered, and let Ê := {〈s, t〉 ∈ V 2 : {s, t} ∈
E & s < t}.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10851-020-00963-8&domain=pdf
http://orcid.org/0000-0002-4980-2755

738 Journal of Mathematical Imaging and Vision (2020) 62:737–750

Our new algorithms have no restriction on the format of
the graph to which they can be applied. However, in what
follows we will often treat G as associated with a digital
image. In this case, V is the set of all pixels of the image,
while E is the set of pairs {s, t} of vertices/pixels that are
adjacent according to some given adjacency relation.

In this paper, we seek the vertex label assignments
� : V → {0, 1, . . . , K − 1} of the undirected1 graphs G =
(V , E) that minimize a given objective (energy) function E∞
of the form

E∞(�) := max
{
max
s∈V φs(�(s)), max

〈s,t〉∈Ê
φst (�(s), �(t))

}
. (1)

The functions φs(·) are referred to as unary terms. The
value of φs(j) depends explicitly only on the label j ∈
{0, 1, . . . , K − 1},

but typically is also based on some prior information.
These terms are used to indicate a preference for a ver-
tex/pixel s to be assigned a particular label j .

The functions φst (·, ·) are referred to as pairwise or binary
terms. The value of φst (·, ·) depends simultaneously on the
labels assigned to the vertices/pixels s and t , and thus intro-
duces a dependency between the labels of different pixels.
Typically, this dependency between pixels is used to express
an expectation that the desired solution should have some
degree of smoothness or regularity.

The unary and pairwise terms taken together form the
local costs error measures we mentioned in the abstract (and
forming the functional Φ defined in Sect. 3). The same local
costs are used in the L1-norm energy E1, that we discuss
briefly in the next section.

Finding a labeling that globally minimizes an objective
function of the form E∞ is generally a challenging compu-
tational task—in Sect. 7, we show that this problem is in fact
NP-hard in the general case, for K > 2. As we will see, how-
ever, there exist restricted classes of local cost functionals for
which efficient algorithms can be formulated.

In the conference version of this paper [16], we introduced
an algorithm for finding a binary labeling (i.e., with K =
2) and showed that the labeling it returns is always E∞-
optimal as long as all pairwise local cost terms φst are ∞-
submodular, that is, that they satisfy the condition

max{φst (0, 0), φst (1, 1)} ≤ max{φst (1, 0), φst (0, 1)}. (2)

1 Actually, the energy formula (1) is expressed in terms of the directed
graph Ĝ = 〈V , Ê〉. But, for any {s, t} ∈ E , we consider the value of
φst (�(s), �(t)) as depending only on � � {s, t} = {〈s, �(s)〉, 〈t, �(t)〉}—
the restriction of � to the indirect edge {s, t}. (See Sect. 3, where we
explicitly express E∞(�) in terms of the numbers Φ(� � {s, t}) =
φst (�(s), �(t)) and Φ(� � {s}) = φs(�(s)).) So, the directedness of the
graph is not really used in (1).

This algorithm, presented in Sect. 6, is very efficient, with
quasi-linear time complexity.2 An important question left
open in our previous work [16] was whether it is possible
to optimize objective function E∞ in polynomial time with-
out any additional assumptions on the local cost functional,
like that of ∞-submodularity needed for the algorithm from
[16]. Here, we answer this question affirmatively by present-
ing in Sect. 5 an algorithm that produces, inO((|V | + |E |)2)
time, a binary labeling that is globally E∞-optimal for any
local cost functional.

2 Background and RelatedWork

2.1 Lp NormObjective Functions andMinimal Graph
Cuts

While the main focus of this paper is to find efficient algo-
rithms for the direct optimization of objective functions of
the form E∞, we will start by discussing the more gen-
eral problems of optimizing L p norm objective functions
for p ∈ [1,∞].

In their seminal work, Kolmogorov and Zabih [13] con-
sidered binary labeling problems for the L1-norm-based
objective function of the form

E1(�) :=
∑

s∈V
φs(�(s)) +

∑

〈s,t〉∈Ê
φst (�(s), �(t)) (3)

and showed that a globally optimal binary labeling can be
found by solving a max-flow/min-cut problem on a suitably
constructed graph under the condition that all pairwise terms
φst are submodular, that is, that they satisfy the inequality

φst (0, 0) + φst (1, 1) ≤ φst (0, 1) + φst (1, 0). (4)

Looking at the objective functions E1 and E∞, we can
view them both as consisting of two parts:

– The local error measures, in our case expressed by the
unary and pairwise terms.

– A global error measure, aggregating the local errors into
a final score.

In the case of E1, the global error measure is obtained by
summing all local error measures; in the case of E∞, the
global error measure is taken to be the maximum of all local
error measures. If we assume for a moment that all local
error measurements are nonnegative, then E1 can be seen

2 Formally, the asymptotic time complexity is bounded by the time
required to sort O(|V | + |E|) values. Here, |X | denotes the cardinality
of the set X .

123

Journal of Mathematical Imaging and Vision (2020) 62:737–750 739

as measuring the L1-norm of a vector3 containing all local
costs/errors. Similarly, E∞ can be interpreted as the L∞- (or
max-) norm of the same vector. The L1 and L∞ norms are
both the special cases of L p norms, with p ∈ [1,∞], which
for finite p are defined as

Ep(�) :=
⎛

⎜
⎝

∑

s∈V
φ
p
s (�(s)) +

∑

〈s,t〉∈Ê
φ
p
st (�(s), �(t))

⎞

⎟
⎠

1/p

, (5)

where φ
p
s (·) = (φs(·))p and φ

p
st (·, ·) = (φst (·, ·))p. The

value p ∈ [1,∞] can be seen as a parameter controlling the
balance between minimizing the overall cost versus mini-
mizing the magnitude of the individual terms. For p = 1,
the optimal labeling may contain arbitrarily large individ-
ual terms as long as the sum of the terms is small. As p
increases, a larger penalty is assigned to solutions containing
large individual terms. In the limit as p approaches infinity,
Ep approaches E∞ and the penalty assigned to a solution
is determined by the largest individual term only. The limit
behavior of L p norm optimizers as p approaches ∞ has also
been studied in, e.g., [8,18,20]. Abbas and Swoboda [1] con-
sidered optimization of mixed optimization problems, where
the objective function contains both L1 and L∞ terms.

Labeling problems with objective functions of the form
Ep, for p ∈ [1,∞), can be solved using minimal graph cuts,
provided that all pairwise termsφ

p
st are p-submodular [17]. A

binary termφ is said to be p-submodular if the corresponding
term φ p is submodular, which is equivalent to the condition

(φ
p
st (0, 0) + φ

p
st (1, 1))

1/p ≤ (φ
p
st (0, 1) + φ

p
st (1, 0))

1/p. (6)

In the limit, as p goes to infinity, this inequality becomes

max{φst (0, 0), φst (1, 1)} ≤ max{φst (1, 0), φst (0, 1)},

that is, the ∞-submodularity condition (2). As observed by
Malmberg and Strand [17], 1-submodularity does not neces-
sarily imply p-submodularity.4 The following theorem was
shown by Malmberg and Strand [17]:

Theorem 1 If a binary term φ is 1-submodular and ∞-
submodular, then it is also p-submodular for any real p ≥ 1.

We note here that Theorem 1 implies also the following
seemingly stronger result.

Corollary 1 Let φ be a binary term. Then for every ρ ∈
[1,∞) the following conditions are equivalent.

3 Formally, this vector is identified with the function φ� defined in the
next section.
4 As an example, consider the two-label pairwise term φst given by
φst (0, 0) = 3, φst (1, 1) = 0, and φst (0, 1) = φst (1, 0) = 2. It is easily
verified that φst is 1-submodular but not 2-submodular.

(i) φ is ρ-submodular and ∞-submodular.
(ii) φ is p-submodular for every p ∈ [ρ,∞).

Proof To see that (ii) implies (i) notice that the p-submodula-
rity inequality (6) can be written as

‖〈φst (0, 0), φst (1, 1)〉‖p ≤ ‖〈φst (0, 1), φst (1, 0)〉‖p.

Since the L p norm converges to the L∞ norm, as p goes
to infinity, the limit of both sides of the above inequality
becomes

‖〈φst (0, 0), φst (1, 1)〉‖∞ ≤ ‖〈φst (0, 1), φst (1, 0)〉‖∞,

that is, the ∞-submodularity condition (2).
To see that (i) implies (ii) assume thatφst satisfies (i). Then

φ
ρ
st is both 1-submodular (raise both sides of the inequality

(2) with p = ρ to the power ρ) and ∞-submodular (as the
map xρ is increasing on (0,∞)). In particular,φst satisfies the
assumptions of Theorem 1. Therefore, for every p ∈ [ρ,∞)

it is p
ρ
-submodular, that is, satisfies

(φ
ρ

p
ρ

st (0, 0) + φ
ρ

p
ρ

st (1, 1))ρ/p ≤ (φ
ρ

p
ρ

st (0, 1) + φ
ρ

p
ρ

st (1, 0))ρ/p.

But this clearly implies p-submodularity of φst .
�

2.2 Optimization of E∞ by Classical Algorithms

In Sect. 4, we will show that if the binary terms φ satisfy (i)
of Corollary 1, then an optimal labeling for the associated
energy E∞ can be found by solving an appropriate max-
flow/min-cut problem.

Moreover, it turns out that in some problem instances a
labeling that is globally optimal with respect to E∞ can be
found using very efficient, greedy algorithms. Specifically, if

(D) all pairwise terms are such that φst (1, 0) = φst (0, 1)
and φst (0, 0) = φst (1, 1) = 0, while all unary terms
have values in {0,∞},

then an optimal labeling for the associated energy E∞ can be
found by computing the partitioning induced by an optimum
spanning forest on a suitably constructed graph using, e.g.,
Prim’s algorithm [7,19]5. See more on this in Sect. 4. This
property of optimum spanning forests has been observed by
several authors [2,6,8]. This result has a high practical value
since the computation time for constructing an optimal span-
ning forest is substantially lower than the computation time

5 We note that this algorithm is also sometimes referred to as the Jarnìk-
Prim-Dikstra algorithm, as it was independently discovered by these
three authors [11,12,19]

123

740 Journal of Mathematical Imaging and Vision (2020) 62:737–750

for solving a max-flow/min-cut problem, asymptotically as
well as in practice [8].

Wolf et al. [21–23] recently proposed various extension of
this greedy approach and also reported state-of-the-art results
on various image segmentation benchmarks. We note also
that the notion of partitioning an image-induced graph by
computing an optimum spanning forest is tightly connected
to the classic watershed image segmentation method [9,10].

Based on the above, an interesting question is therefore
whether it is possible to use similar greedy techniques to
optimize the objective function E∞ beyond the special case
when the local costs satisfy property (D). The results pre-
sented in this paper answer this question affirmatively and
show that the class of E∞ optimization problems that are
solvable by the efficient greedy algorithms is larger thanwhat
was previously known.

3 Algorithms for Direct Optimization of E∞:
Preliminaries

In Sects. 5 and 6, we will introduce two novel algorithms,
each finding a binary labeling minimizing E∞.

The exposition of these algorithms relies on the notion of
unary and binary solution atoms, which we introduce in this
section. Informally, a unary atom represents one possible
label configuration for a single vertex, and a binary atom
represents a possible label configuration for a pair of adjacent
vertices. Thus, for a binary labeling problem, there are two
atoms associated with every vertex and four atoms for every
edge.The total number of atoms for a binary labelingproblem
is thus O(|V | + |E |).

Formally, we let V = {{v} : v ∈ V }, put D = V ∪ E , and
letA be the family of all binarymaps from D ∈ D into {0, 1}.
An atom, in this notation, is an element of A. If we identify,
as it is common, maps with their graphs then each unary
atom associated with a vertex s ∈ V has form {〈s, i〉}, with
i ∈ {0, 1}. Similarly, each binary atom associated with an
edge {s, t} ∈ E has the form {〈s, i〉, 〈t, j〉}, with i, j ∈ {0, 1}.

Notice, that the maps φs and φst used for the unary and
binary terms in (1) can be combined to form a single function
Φ : A → [0,∞) defined, for every A ∈ A, as

Φ(A) :=
{

φs(i) for A = {〈s, i〉},
φs,t (i, j) for A = {〈s, i〉, 〈t, j〉}.

For a given labeling �, we define φ� : D → [0,∞), for
every D ∈ D, as φ�(D) := Φ(� � D), that is,

φ�(D) :=
{

φs(�(s)) for D = {s} ∈ V,

φs,t (�(s), �(t)) for D = {s, t} ∈ E,

where � � D is the restriction of � to D. With this notation,
we may write the objective function E∞ as

E∞(�) = ‖φ�‖∞ = max
D∈D

φ�(D). (7)

Similarly, Ep(�) = ‖φ�‖p for any p ∈ [1,∞).

3.1 Consistency

Conceptually, both the proposed algorithms work as follows:
Starting from the set of all possible unary and binary atoms,
the algorithm iteratively removes one atom at a time until the
remaining atoms define a unique labeling. A key issue in this
process is to ensure that, at all steps of the algorithm, at least
one labeling can be constructed from the set of remaining
atoms.

Let � be a binary labeling. We define A(�), the atoms for
�, as the family

A(�) := {� � D : D ∈ D}.

Notice that � can be easily recovered fromA(�) as its union:
� = ⋃A(�).

Definition 1 Let A′ ⊂ A be a set of atoms. We say that A′
is consistent if there exists at least one labeling � such that
A(�) ⊆ A′.

Wewill nowderive one of ourmain results, namely that the
problem of determining whether a given set of atoms is con-
sistent can be formulated as a 2-satisfiability problem. The
2-satisfiability problem is a well-studied problem in com-
puter science, and several efficient algorithms exists for its
solution. This result quite directly leads to Algorithm 1, pre-
sented in Sect. 5, for finding a labeling minimizing E∞.

For a setA′ ⊆ A of atoms denote by Ā′ the complement of
A′ relative toA, that is, Ā′ := A\A′. ThenA′ is consistent if,
and only if, there exists a labeling � such thatA(�)∩Ā′ = ∅.
We will show that the existence of such labeling � can be
determined by solving a 2-satisfiability problem.

For this, let’s treat any vertex v ∈ V of our graph as a
variable of propositional calculus, that is, a variable that can
take two possible values: TRUE, which will be identified
with number 1, and FALSE, which will be identified with 0.
Upon such identification, any labeling � : V → {0, 1} can be
treated as a truth functional.

Now, with any unary atom A = {〈s, i〉}, with i ∈ {0, 1},
we associate a propositional calculus formula in a very simple
format known as literal (i.e., a variable or its negation):

ψA(s) :=
{

¬s if i = 1,

s if i = 0.

123

Journal of Mathematical Imaging and Vision (2020) 62:737–750 741

Less formally, but more concisely,ψA(s) := “s �= i .” Notice
that � : V → {0, 1} disagrees with A if, and only if, ψA is
satisfied by � treated as a truth functional.

Similarly, for every binary atom A = {〈s, i〉, 〈t, j〉} we
define

ψA(s, t) := ψ{〈s,i〉}(s) ∨ ψ{〈t, j〉}(t)

or, equivalently, as “(s �= i)∨(t �= j).” Once again, � : V →
{0, 1} disagrees with A if, and only if, ψA is satisfied by �

treated as a truth functional.
Finally, for a set A′ = {A1, A2, . . . , Am} of atoms define

ψA′ :=
m∧

i=1

ψAi = ψA1 ∧ · · · ∧ ψAm .

Also, � : V → {0, 1} disagrees with every A ∈ A′ if, and
only if,ψA′ is satisfied by �. Notice also that the formulaψA′
is in the so-called 2-conjunctive normal form, that is, it is a
conjunction of formulas ψAi , each of which is a disjunction
of at most two literals.

The above discussion leads to the following result.

Theorem 2 A setA′ ⊆ A of atoms is consistent if, and only if,
the 2-satisfiability problem for a formula ψĀ′ has a positive
solution.

Proof This follows from the equivalence of the following
conditions, each consecutive pair ofwhichwas argued above.

– A′ ⊆ A is consistent.
– A(�) ∩ Ā′ = ∅ for some � : V → {0, 1}.
– There is an � : V → {0, 1} which disagrees with every

A ∈ Ā′.
– There is an � : V → {0, 1} such that ψĀ′ is satisfied by

�.
– The 2-satisfiability problem for a formula ψĀ′ has a pos-
itive solution.
�

Recall that the solution to the 2-satisfiability problem for
a formula in the 2-conjunctive normal form that is a conjunc-
tion of n 2-disjunctions can be found in O(n) time, using,
e.g., the algorithm by Aspvall et al. [3]. Thus, for any set
A′ ⊆ A of atoms, the question

Is A′ consistent?

can be answered in a linear time with respect to the number
n := |Ā′| of elements in Ā′ = A \ A′ by deciding the
satisfiability of ψĀ′ .

4 Strict Optimality

In this section, we will introduce a refinement of the L∞
norm measure. This will help us in the discussion of the two
proposed algorithms, which will be introduced in the next
two sections.

A potential drawback of the L∞-norm is that it does not
distinguish between solutions with high or low errors below
the maximum error. To resolve this problem, Levi and Zorin
introduced, in a 2014 paper [15], the concept of strict min-
imizers.6 In this framework, two solutions are compared by
ordering all elements (in our case, binary and unary terms)
non-increasingly by their local error value and then perform-
ing their lexicographical comparison.

Formally, using the notation from Sect. 3, let �1 and �2
be two labelings. Furthermore, let 〈A1, A2, . . . , Ak〉 and
〈B1, B2, . . . , Bk〉 be the sequences of all atoms in A(�1)

and A(�2), respectively, each ordered by the decreasing
costs of atoms, that is, with Φ(A1) ≥ · · · ≥ Φ(Ak) and
Φ(B1) ≥ · · · ≥ Φ(Bk). We say that �1 precedes �2 lexico-
graphically and denote this as �1 ≺ �2, provided there exists
an i ∈ {1, 2, . . . , k} such that Φ(Ai) �= Φ(Bi) and for the
smallest such i we have Φ(Ai) < Φ(Bi). Also, we write
�1 � �2 provided either �1 ≺ �2 or Φ(Ai) = Φ(Bi) for all
i ∈ {1, 2, . . . , k}.

Definition 2 A labeling � is said to be strictly minimal pro-
vided � � �′ for any other labeling �′.

From this definition, it is clear that any strictminimizer is also
an L∞-optimal solution. Thus, the set of all strict minimizers
is a subset of all L∞-normoptimal solutions. In fact, the limit,
as p → ∞, of L p-norm minimizers discussed above, is not
only an L∞-minimizer but also a strict minimizer [15]. (For
the local cost functions satisfying the property (D), it was
proved earlier, in a 2012 paper [6] of Ciesielski et al.)7

The above discussion indicates that it would be desirable
to have an efficient algorithm that not only finds L∞-
minimizers, but also strict minimizers. Unfortunately, in the
general setting that we examine here, the problem of finding
strict minimizers is NP-hard. We will show this at the end
of this section. Nevertheless, there are two special situations
in which efficient algorithms for finding strict minimizers do
exist. The first case is described in the next subsection. The

6 See also the 2010 paper by Ciesielski and Udupa [5] where strict
optimization was earlier considered in a similar setting.
7 Specifically, [6, theorem 5.3] states that for q > 0 large enough we
have Pq (S, T) = P̂max(S, T), where parameters S and T indicate that
the unary local cost maps ensure that for any optimal label � we have
S ⊂ �−1(1) and T ⊂ �−1(0) (i.e., ψs(i) = ∞ if, and only if, either
i = 0 and s ∈ S or else i = 1 and s ∈ T), Pq (S, T) is the set of
all labelings minimizing Eq , while P̂max(S, T) is the set of all strictly
optimal labelings.

123

742 Journal of Mathematical Imaging and Vision (2020) 62:737–750

second one, discussed in Sect. 5.1 and solved by the algo-
rithm presented there, is when all local terms have distinct
weights.

4.1 When all�st are p-Submodular for Large
Enough p

For a finite set Z ⊂ [0,∞) and k ≥ 1 let δkZ := logb k, where

b := min
{ s
r

: 0 < r < s & r , s ∈ Z
}

.

Wewill use the following result, that identifies the strict opti-
mality with the optimality with respect to Ep for p large
enough. For the local costs maps satisfying (D), this was first
proved in [6, theorem 5.3].

Proposition 1 Let |V | = k and assume that all local cost
maps φs and φs,t have values in a finite set Z ⊂ [0,∞). If
p ≥ δkZ , then a binary labeling � is strictly minimal if, and
only if, it is minimal with respect to Ep.

Proof To see this, notice first that for every p ≥ δkZ

if �1 ≺ �2, then Ep(�1) < Ep(�2). (8)

Indeed, using the notation as in the definition of ≺, let i be
the smallest such that Φ(Ai) < Φ(Bi). If Φ(Ai) = 0, then
E p
p (�1) = ∑i−1

j=1 Φ p(A j) <
∑k

j=1 Φ p(Bj) = E p
p (�2) jus-

tifying (8). So, assume that Φ(Ai) > 0. Then, for b defined
as above, we have b ≤ Φ(Bi)

Φ(Ai)
and

logb k = δkZ ≤ p ≤ p logb
Φ(Bi)

Φ(Ai)
= logb

Φ p(Bi)

Φ p(Ai)

so that kΦ p(Ai) < Φ p(Bi). Therefore,

E p
p (�1) ≤

i−1∑

j=1

Φ p(A j) + kΦ p(Ai) <

k∑

j=1

Φ p(Bj) = E p
p (�2),

completing the argument for (8).
To prove the proposition, choose p ≥ δkZ and label-

ings �1 and �2. If �1 is strictly minimal, then either �1 ≺
�2, in which case (8) implies that Ep(�1) < Ep(�2),
or 〈Φ(A1), . . . , Φ(Ak)〉 = 〈Φ(B1), . . . , Φ(Bk)〉, in which
case clearly Ep(�1) = Ep(�2). Thus, strict minimality of �1
indeed implied its minimality with respect to Ep.

Conversely, if �1 is minimal with respect to Ep, then we
must have �1 � �2, since otherwise we would have �2 ≺ �1
and, by (8), Ep(�2) < Ep(�1), a contradiction.
�

A number p for which the proposition holds is referred
to by Wolf et al. [21] as a dominant power. Its existence is
proved in that paper; however, no estimate similar to that

of δZ is provided there. The estimate δZ can be found, in
a similar settings, in [6, theorem 5.3]; however, this result
does not explicitly relate this numberwith the lexicographical
order.

The proposition immediately implies the next theorem.

Theorem 3 Let δZ be as inProposition 1andassume that p ∈
[δZ ,∞) is such that all terms φst are submodular. Then any
labeling � minimizing Ep is a strict minimizer. In particular,
if there is a ρ ∈ [1,∞) such that φ is ρ-submodular and
∞-submodular, then there is a p ∈ [ρ,∞) such that any Ep-
optimizing label � returned by max-flow/min-cut algorithm
is a strict optimizer.

We observe that in practice, the dominant power pmay be
large. This may give rise to numerical issues when solving
the max-flow/min-cut problem, as each local cost is raised
to the power p. The novel algorithms proposed in Sects. 5
and 6 do not suffer from his potential issue.

4.2 NP-Hardness of Finding Strict Optimizers

We will now show that, in the general case, the problem of
finding strict optimizers is indeed NP-hard. This is justified
by an example from Kolmogorov and Zabih [13, Appendix
A] that shows that L1-optimality for non-submodular ener-
gies is NP-hard.

Recall, that the set U of vertices of a graph G = 〈V , E〉
is independent when it contains no two vertices connected
by an edge. It is known that the problem of finding maximal
independent set of vertices of an arbitrary graph is NP-hard
[7, chapter 34].

In the example, associate the following local costs:

– for every vertex v of label i , give the cost 1 − i ;
– for every edge with both vertices of label 1, let the cost
be N := |V | + 1;

– with any other edge, associate the cost 0.

Notice that the max-cost of any labeling � is < N if,
and only if, the set U := �−1(1) is independent. Among all
labelings � associated with an independent U , the max cost
is 1. Moreover, the labeling � is a strict minimizer when the
number of cost 1 atoms forU , which is |V |−|U |, is minimal,
that is, when the size of U is maximal.

In other words, if for a graph G we use the local costs
assignments as above, then � is a strict minimizer if, and only
if,U := �−1(1) is a maximal independent set of vertices. So,
our problem is indeed NP-hard, similarly as the problem of
finding maximal independent set of vertices.

123

Journal of Mathematical Imaging and Vision (2020) 62:737–750 743

5 A Quadratic Time Algorithm for Direct
Optimization of E∞

With these preliminaries in place, we are now ready to intro-
duce a general method for finding a binary labeling that
globally optimizes E∞. Pseudocode for this method is given
in Algorithm 1.

Algorithm 1: Labeling Algorithm, general case
Data: A graph G = 〈V , E〉 and associated Φ : A → [0,∞)

generating energy E∞
Result: A labeling � : V → {0, 1} minimizing E∞
Additional Structure: A max-priority queue H, a set L
of atoms approximating �.

1 H ← A and L ← ∅
2 while H �= ∅ do
3 remove the first atom A from H
4 if H ∪ L is not consistent then insert A to L

5 return � ← ⋃
L

If n is the number of elements, atoms, in A, then Algo-
rithm 1 terminates after O(n2) operations. This is the case,
since the execution of line 1 has complexity O(n ln n) (as
it requires ordering of H) while the loop 2–4 is executed n
times and each its execution requires O(n) operations, as we
indicated after Theorem 2.

Theorem 4 An � returned by Algorithm 1 is a labeling min-
imizing energy E∞.

Proof The main loop 2–4 is executed precisely n-times,
where n := |A|.

For every k ∈ {0, 1, . . . , n} let Hk and Lk be the states of
H and L, respectively, directly after the kth execution of the
loop 2–4. First notice that, for every k ∈ {0, 1, . . . , n},

(Ck) Hk ∪ Lk is consistent.

Clearly H0 ∪L0 = A, is consistent. Also, for every k < n,
if Hk ∪ Lk is consistent, then so is Hk+1 ∪ Lk+1. Indeed, if
during the (k+1)st execution of line 3 an atom A is removed
from Hk , then Hk+1 = Hk \ {A}. If Hk+1 ∪ Lk is consistent,
then Lk+1 = Lk and (Ck+1) holds. Otherwise, line 4 ensures
that Lk+1 = Lk ∪{A} andHk+1∪Lk+1 = Hk ∪Lk is consistent
by (Ck).

The above shows that Hn ∪ Ln = Ln is consistent, that is,
there exists a labeling �′ : V → {0, 1} so that A(�′) ⊆ Ln .
To finish the proof that � = ⋃

Ln is a labeling, we need to
show that A(�′) = Ln .

So see this, first notice that Hk+1 ∪ Lk+1 ⊆ Hk ∪ Lk for
every k < n. So, A(�′) ⊆ Ln ⊆ Hk ∪ Lk . To see that Ln ⊆
A(�′), assume by way of contradiction that there is an A ∈
Ln \ A(�′). Then, A is removed from H during some, say

kth, execution of line 2. So, A /∈ Hk+1. Also, if A /∈ A(�′),
then Hk+1 ∪ Lk is consistent, as it containsA(�′). Therefore,
Lk+1 = Lk and A /∈ Hk+1 ∪ Lk+1 ⊃ Ln , a contradiction. This
means that A(�′) = Ln .

Finally, by way of contradiction, assume that � = ⋃
Ln

does not minimize E∞, that is, that there is a labeling �′ with
c := E∞(�′) < E∞(�). Then, there is an A ∈ A(�) of cost
> c. Let k ≤ n be such that A is removed from H during the
kth execution of line 2. Then A /∈ Hk+1. Also, by the ordering
of H, we haveA(�′) ⊂ Hk+1. So, Hk+1 ∪ Lk is consistent and
Lk+1 = Lk . In particular, A /∈ Hk+1 ∪ Lk+1 ⊃ Ln = A(�),
contradicting the fact that A ∈ A(�).
�

5.1 Atoms with UniqueWeights

We say that the atoms (in A) have unique weights provided
the mapΦ : A → [0,∞) is injective, that is, whenΦ(A1) �=
Φ(A2) for every distinct A1, A2 ∈ A. Our main result here
is the following

Theorem 5 If the atoms in A have unique weights, then the
labeling � returned by Algorithm 1 is the unique strict opti-
mizer.

First we prove the uniqueness part of the theorem, in form
of the following lemma.

Lemma 1 If the atoms in A have unique weights, then the
strictly optimal labeling is unique.

Proof Let �1 and �2 be strictly optimal labelings. We will
show that �1 = �2.

To see this, consider the sequences of the atoms in A(�1)

and A(�2), respectively, each ordered by decreasing cost.
Then, since both labelings are strictly optimal, the decreasing
sequences of the costs of the atoms inA(�1) andA(�2)must
be identical. However, since every atom has a unique weight,
this means that the sets of atoms inA(�1) and inA(�2) must
themselves be identical. In particular A(�1) = A(�2) and
therefore �1 = ⋃A(�1) = ⋃A(�2) = �2, as needed.
�
Proof of Theorem 5 We will use the same notation as in the
proof of Theorem 4. Let � and �′ be distinct labelings
such that � is strictly optimal and, by way of contradiction,
assume that Algorithm 1 returns labeling �′ rather than �.
Fix the sequences 〈A1, A2, . . . , Am〉 and 〈B1, B2, . . . , Bm〉
of all atoms in A(�) and A(�′), respectively, each ordered
by the decreasing costs of atoms. By Lemma 1 , we have
� ≺ �′. Therefore, there exists an i ∈ {1, 2, . . . ,m} such that
Φ(Ai) < Φ(Bi) and Φ(A j) = Φ(Bj) for all j < i .

Let k ≤ n be such that Bi is removed from H dur-
ing the kth execution of line 2. Then, {B1, B2, . . . , Bm} =
A(�′) ⊂ Ln ⊂ Hk ∪ Lk . In fact, by the ordering principle
of H we have {A1, . . . , Ai−1} = {B1, . . . , Bi−1} ⊂ Hk and
{Ai , . . . , An} ⊂ Lk . In particular,Hk+1∪Lk is consistent since

123

744 Journal of Mathematical Imaging and Vision (2020) 62:737–750

it contains {A1, A2, . . . , Am} = A(�). Thus, Lk+1 = Lk and
Bi /∈ Hk+1∪Lk+1 ⊃ Ln = A(�′), a contradiction that finishes
the proof of Theorem 5.
�

The requirement in Theorem 5 (and the forthcoming The-
orem 7) that all atoms inA have unique weights may appear
restrictive, and for real-world problems, this condition may
or may not hold. We will therefore now discuss how these
theorems may be interpreted when all atoms weights are not
unique. First we observe that when all atom weights are not
unique, it is straightforward to define a new local cost func-
tion Φ̂ with unique weights and such that, for any atoms
A, A′ ∈ A, Φ(A) < Φ(A′) implies Φ̂(A) < Φ̂(A′). Such
weights may, e.g., be defined by the following simple proce-
dure:

– Fix, by some method (e.g., a sorting algorithm), an
increasing order of the atoms in A by weight, i.e., find a
map O : A → Z such that O(A1) �= O(A2) for every
distinct A1, A2,∈ A and O(A1) < O(A2) ⇒ Φ(A1) ≤
Φ(A j) for all A1, A2 ∈ A.

– For all A ∈ A, define Φ̂(A) := O(A).

By design, all atoms associated with the local costs φ̂ have
uniqueweights and thus runningAlgorithm1 (orAlgorithm2
in case of Theorem 7) with these weights will return a strict
optimizer with respect to the local costs Φ̂.

We observe that if the original atomweights are all unique,
then the ordering O is also unique and running either of our
new algorithms with the new local costs Φ̂ induced by O
would yield an identical result as with the original weights.
Furthermore, we observe that the procedure above is essen-
tially what happens during the execution of the algorithms:
By ordering the max-priority queue H, we are establishing a
specific (implementation dependent) ordering of the atoms
that is increasing byweight just like the ordering O defined in
the procedure above. Thus, even when all atoms do not have
unique weights, the algorithms will return labelings that are
strictly optimal with respect to some increasing order of the
atoms by weight. When all atom weights are not unique,
however, this ordering will not be unique but will depend on
the specific implementation of the max-priority queue H.

6 A Quasi-Linear Time Algorithm for Direct
Optimization of E∞ When All Binary Terms
are∞-Submodular

We now present a more efficient algorithm, previously
reported in the conference version of this manuscript [16],
for the case when all binary terms are∞-submodular. Super-
ficially, this algorithm is slightly more complicated than
Algorithm 1. We emphasize, however, that both algorithms

have a very similar structure—starting from the set of all pos-
sible atoms, both algorithms iteratively remove one atom at a
time until the remaining atoms define a unique labeling. The
main difference between the algorithms is the steps taken to
ensure the consistency of the set of remaining atoms.

6.1 Local Consistency, Incompatible Atoms

We introduce a property of local consistency, which will be
used to establish the correctness of our second proposed algo-
rithm. A set of atomsA′ is said to be locally consistent if, for
every vertex s ∈ V and edge {s, t} ∈ E there are i, j ∈ {0, 1}
such that the atoms {〈s, i〉} and {〈s, i〉, 〈t, j〉} both belong
to A′ (i.e., that A′ still allows that s will have some label).
Clearly, any consistent set of atoms is also locally consis-
tent. However, in general, local consistency does not imply
consistency. 8

Furthermore, we introduce the notion of an incompatible
atom,whichwill be needed for the exposition of the proposed
algorithm. For a given set ofA′ of atoms, we say that an atom
A ∈ A′ is (locally) incompatible (w.r.t. A′) if either

1. A is a unary atom so that A = {〈v, i〉} for some vertex v,
and there exists some edge {v,w} adjacent to v such that
A′ contains neither {〈v, i〉, 〈w, 0〉} nor {〈v, i〉, 〈w, 1〉}; or

2. A is a binary atom so that A = {〈v, i〉, 〈w, j〉} for some
edge {v,w}, and at least one of {〈v, i〉} and {〈w, j〉} is
not in A′.

Note that a locally consistent set of atoms may still contain
incompatible atoms.

6.2 The Second Algorithm

We now introduce the proposed algorithm, with quasi-
linear time complexity, for finding a binary label assignment
� : V → {0, 1} that globallyminimizes the objective function
E∞ given by (1), under the condition that all pairwise terms
in the objective function are ∞-submodular. If, additionally,
all atoms have unique weights then the labeling returned by
the algorithm is also the strict minimizer. Informally, the gen-
eral outline of the proposed algorithm is as follows:

– Start with a set S consisting of all possible atoms and an
initially empty set I of atoms identified as incompatible.
(Recall that the total number of atoms is O(|V | + |E |).)

– For each atom A, in order of decreasing cost Φ(A):

8 For example, if g is a complete graphwith three vertices V = {a, b, c}
and A consists of all unary atoms and the binary atoms {〈a, i〉, 〈b, i〉},
{〈a, i〉, 〈c, i〉}, {〈b, i〉, 〈c, 1 − i〉} for i ∈ {0, 1}, then A is locally con-
sistent, but not (globally) consistent.

123

Journal of Mathematical Imaging and Vision (2020) 62:737–750 745

– If A is still in S, and is not the only remaining atom
for that vertex/edge, remove A from S.

– After the removal of A, S may contain incompati-
ble atoms. Iteratively remove all such incompatible
atoms until S contains no more incompatible atoms.

Before we formalize this algorithm, we introduce a spe-
cific preordering relation� on the atomsA. For A0, A1 ∈ A,
we will write A0 � A1 if either Φ(A0) > Φ(A1), or
else Φ(A0) = Φ(A1) and A1 is a binary atom of the form
{〈s, i〉, 〈t, i〉} (equal labeling) while A0 is not in this form.

With these preliminaries in place, we are now ready to
introduce the proposed algorithm, for which pseudocode is
given in Algorithm 2.

Algorithm 2: Labeling Algorithm, for the ∞-
submodular objective functions
Data: A graph G = 〈V , E〉 and associated Φ : A → [0,∞)

generating ∞-submodular energy E∞
Result: A labeling � : V → {0, 1} minimizing energy E∞
Additional Structure: An array A of buckets of atoms,
indexed by D = V ∪ E; a list H of atoms; a queue K of
vertices/edges such that every vertex in K precedes any edge.

1 foreach vertex/edge D ∈ D do insert all D-atoms to A[D]
2 create a list H of all atoms A such that A0 precedes A1 in A
whenever A0 � A1

3 while H �= ∅ do
4 remove the first atom A from H
5 if D ∈ D is a vertex/edge of A and A[D] has more than one

element then
6 remove A from A[D] and insert D to (previously empty)

K
7 while K �= ∅ do
8 remove a vertex/edge C from K
9 foreach edge/vertex D adjacent to C do

10 remove from A[D] and H all A incompatible with⋃
D′∈D A[D′]

11 if any atom was removed from A[D] and H in line
10 then

12 insert to K any vertex/edge C ′ adjacent to D: to
its top, when C ′ is a vertex and its bottom
when C ′ is an edge

13 return � = ⋃
D∈D A[D]

6.3 Computational Complexity

We now analyze the asymptotic computational complexity
of Algorithm 2. First, let η := |A| = 2|V | + 4|E |. In image
processing applications the graph G is commonly sparse, in
the sense thatO(|V |) = O(|E |). In this case,wehaveO(η) =
O(|V |).

Creating the list H requires us to sort all atoms in A. The
sorting can be performed in O(η log η) time. In some cases,

e.g., if all unary and binary terms are integer valued, the
sorting may be possible to perform in O(η) time using, e.g.,
radix or bucket sort.

We make the reasonable assumption that the following
operations can all be performed in O(1) time:

– Remove an atom from H.
– Remove an atom from A(D).
– Remove or insert elements in K.
– Given an atom, find its corresponding edge or vertex.
– Given a vertex, find all edges incident at that vertex.
– Given an edge, find the vertices spanned by the edge.

The combined number of the executions of the main loop,
lines 3-12, and of the internal loop, lines 7–12, equals to |A|,
that is,O(η). This is so, since any insertion of an atom into K
requires its prior removal from the list H. If the assumptions
above are satisfied, it is easily seen that onlyO(1) operations
are needed between consecutive removals of an atom from
H. Therefore, the amortized cost of the execution of the main
loop is O(η).

Thus, the total computational cost of the algorithm is
bounded by the time required to sort O(η) elements, i.e.,
at most O(η log η).

6.4 Proof of Correctness

Theorem 6 If all binary terms of the cost function Φ : D →
[0,∞)associatedwith graphG = 〈V , E〉are∞-submodular
, then � returned by Algorithm 2 is a labeling of V minimizing
the objective function E∞.

Let n := |V | + 3|E |, the number of removals of an
atom from A. For every D ∈ D and k ∈ {0, . . . ,n} let
Ak[D] be equal to the value of A[D] directly after the k-th
removal of some atom(s) from A, which can happen only
as a result of execution of either line 6 or line 10. (For
k = 0 we mean, directly after the execution of line 2.) Let
Ak = ⋃

D∈D Ak[D].
Let 1 = k1 < · · · < km be the list of all values of

k ∈ {1, . . . ,n} such that Ak is a proper refinement of Ak−1

resulting from the execution of line 6. Note that it is con-
ceivable that the numbers k j and k j+1 are consecutive—this
happens when the execution of loop 8-12 directly after the
execution of line 5 has been used to create Ak j resulted in
removal of no atoms from Ak j .

The proof of Theorem 6 is based on the following Lemma,
for which a proof is given in Appendix Section.

Lemma 2 During the execution of Algorithm 2, the following
properties hold for every k ≤ n.

123

746 Journal of Mathematical Imaging and Vision (2020) 62:737–750

(P0) For every edge D = {v,w}, if Ak[D] is missing either
{〈v, 0〉, 〈w, 0〉} or {〈v, 1〉, 〈w, 1〉}, then it must be also
missing {〈v, 1〉, 〈w, 0〉} or {〈v, 0〉, 〈w, 1〉}.

(P1) Ak[D] contains at least one atom for every D ∈ D.
(P2) Ak is locally consistent.
(P3) Ak has no incompatible atoms directly before any exe-

cution of line 4.

Proof of Theorem 6 Beside Lemma 2, we still need to argue
for two facts. First notice that the algorithm does not stop
until all buckets An[D], D ∈ D, have precisely one element.
Thus, since An is locally consistent, � = ⋃

D∈D A[D] is
indeed a function from V into {0, 1}.

To finish the proof, we need to show that � indeed mini-
mizes energy E∞. For this, first notice that at any time of
the execution of the algorithm, any atom in H is also in⋃

D∈D A[D]. Indeed, these sets are equal immediately after
the initialization andwe remove from

⋃
D∈D A[D]only those

atoms, that have been already removed from H. Now, let
L : V → {0, 1} be a labeling minimizing E∞. We claim that
the following property holds any time during the execution
of the algorithm:

(P) if Φ(A′) > E∞(L) for some A′ ∈ ⋃
D∈D A[D], then

A[L] ⊂ ⋃
D∈D A[D].

Indeed, it certainly holds immediately after the initialization.
This cannot be changed during the execution of line 6 when
the assumption is satisfied, since then A considered there has
just been removed from H ⊃ ⋃

D∈D A[D] and

Φ(A) ≥ max
H∈H Φ(H) ≥ max

H∈⋃
D∈D A[D]

Φ(H)

≥ Φ(A′) > E∞(L) = max
H∈A[L]

Φ(H),

so A /∈ A[L]. Also, (P) is not affected by an execution of line
10, since the inclusion A[L] ⊂ ⋃

D∈D A[D] is not affected
by it: no atom in A[L] is incompatible with A[L] so also
with

⋃
D∈D A[D]. This concludes the proof of (P).

Now, by the property (P), after the termination of the main
loop, we have either A[L] ⊂ ⋃

D∈D A[D], in which case
� = L have minimal E∞ energy, or else

E∞(L) ≥ max
H∈⋃

D∈D A[D]
Φ(H) = max

H∈HA[�] = E∞(�)

once again ensuring optimality of �.
�
Theorem 7 If the atoms in A have unique weights, then the
labeling � returned by Algorithm 2 is the unique strict opti-
mizer.

Proof The uniqueness part of the theorem is already shown
in Lemma 1. The rest of the argument is essentially identical
to that used in the proof of Theorem 5.
�

7 NP-Hardness of Multi-label
E∞-optimization

We will now show that, for a number of labels K > 2, the
problem of finding a labeling that minimizes E∞ is NP-hard
in the general case.

Recall that a K -coloring of a graph is a mapping c : V →
{1, 2, . . . , K } such that c(s) �= c(t) for every edge {s, t} ∈ E .
The K -coloring problem consists of determining whether a
given undirected graph admits a K -coloring. Recall also that
already 3-coloring problem is NP-complete [7, chapter 34].

To see that optimization of E∞ is NP-hard for K > 2
labels, consider 3 labelings, where we associate the costs:

– for every vertex v the cost of any label assignment is 0;
– for any edge with distinct labeling of its vertices the cost
is 0;

– for any edge with the same labeling of its vertices the
cost is 1.

For such assignments, the E∞-energy of a labeling is ≤ 0 if,
and only if, the labeling is a 3-coloring. The same argument
can be repeated also for K > 3. Thus, the problem of E∞-
optimization with K > 2 labels is indeed NP-hard.

8 Conclusions

We have presented two algorithms for finding a binary ver-
tex labeling of a graph that globally minimizes objective
functions of the form E∞. It is well known that for a lim-
ited subclass of such problems, globally optimal solutions
can be found by computing an optimal spanning forest on
a suitably constructed graph. Such optimal spanning forests
can, in turn, be computed using very efficient, greedy algo-
rithms. Despite the fact that this optimum spanning forest
approach is commonly used inmany image processing appli-
cations, the potential and limitations of this method in terms
of more general optimization problems are, to the best of
our knowledge, largely unexplored. The exact class of max-
normoptimization problems that can be solvedusing efficient
greedy algorithms, or even in polynomial time, has remained
unknown. By the introduction of the two proposed algo-
rithms, we show that the class of such problems that can be
solved in (low-order) polynomial time is indeed larger than
what was previously known. In Table 1, we provide a sum-
mary of the various subclasses of the general optimization
problem considered in this paper, and algorithms for solving
them.

An important observation here is the following: Optimiza-
tion binary labeling problems with objective functions of
the form E1 frequently occur in image processing and com-
puter vision applications. The max-flow/min-cut approach

123

Journal of Mathematical Imaging and Vision (2020) 62:737–750 747

Table 1 Summary of results: subclasses of the general max-norm optimization problem considered here, and algorithms for solving them

Optimization of E∞ 2 labels ≥ 3 labels

General case O(n2), Algorithm 1 NP-hard problem, Sect. 7

∞-submodular binary terms O(n log n), Algorithm 2 –

Local costs satisfy property (D) O(n log n), Prim’s algorithm O(n log n), Prim’s algorithm

Strict optimization 2 labels ≥ 3 labels

General case NP-hard problem, Sect. 4.2 NP-hard problem

Unique weights O(n2), Algorithm 1 –

Binary terms satisfy property (i) of Corollary 1 max-flow/min cut algorithm, Sect. 4.1 –

When indicating computational complexity, we let n = |V | + |E|. Novel results proposed in this paper are marked in bold

proposed by Kolmogorov and Zabih [13] still remains one
of the primary methods for solving such problems when all
pairwise terms are submodular. When the local cost func-
tionals include non-submodular terms, however, the same
problem becomes NP-hard. As concluded in our discussion
in Sect. 2.1, similar submodularity requirements hold also for
the generalized objective functions Ep for any finite p. Prac-
titioners looking to solve such optimization problems must
therefore first verify that their local cost functional satisfies
the appropriate submodularity conditions. If this is not the
case, they must resort to approximate optimization methods
that may or may not produce satisfactory results for a given
problem instance.Herewe show, by the introduction ofAlgo-
rithm 1, that in the limit as p goes to infinity, the requirement
for submodularity of the pairwise terms disappears. Indeed
Algorithm 1 returns, in low-order polynomial time, a E∞-
minimal binary labeling for any local cost functional. Thus,
even when the local costs are such that the problem of min-
imizing Ep is NP-hard for some or all finite p, a labeling
minimizing E∞ can be found in low order polynomial time.

The motivation for our work comes from image process-
ing applications, and the local cost functionals we consider
naturally occurs in many image processing problems. The
two proposed algorithms, however, are formulated for gen-
eral graphs and may thus also have applications to other
applied problems in computer science. Structurally, both the
proposed algorithms resemble Kruskal’s algorithm [7,14],
and in this sense the proposed algorithms can be seen as
generalizations of the optimum spanning forest approach to
optimization.

Algorithm 1 has quadratic time complexity and is thus
less efficient than Algorithm 2. It appears likely, however,
that the time complexity of Algorithm 1 could be reduced
further. Specifically, Algorithm 1 operates by solving a series
of n 2-satisfiability problem. In the proposed algorithm each
such problem is solved in isolation, but we observe that
there is a high degree of similarity between each consecu-
tive problem—each 2-satisfiability problem differs from the
previous one only by the introduction of one additional dis-
junction of two literals. Exploring whether this redundancy

can be utilized to formulate a more efficient version of Algo-
rithm 1 is an interesting direction for future work.

Another natural extension of the work presented here is to
consider optimization with more than two labels. In Sect. 7,
we showed that for more than two labels finding a labeling
that is optimal according to E∞ is NP-hard in the general
case. Nevertheless, as can be seen in Table 1, there are special
cases of multilabel max-norm problems that can be solved
using Prim’s algorithm. Determining the class of multilabel
problems that can be solved in low-order polynomial time is
an interesting direction for future work.

At first glance, the restriction to binary labeling may
appear very limiting. We note, however, that many suc-
cessful methods for approximate multi-label optimization
rely on iteratively minimizing binary labeling problems via
move-making strategies [4]. Thus, the ability to find optimal
solutions for problems with two labels potentially has a high
relevance also for the multi-label case.

Acknowledgements Open access funding provided by Uppsala Uni-
versity. The authors would like to thank Robin Strand for valuable
discussions on the ideas presented in this manuscript.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix: Proof of Lemma 2

In this appendix, we provide a proof of Lemma 2. It is enough
to prove that if for some κ ≤ n the properties (P0)-(P3) hold
for every k < κ , then they also hold for κ . Clearly, these

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

748 Journal of Mathematical Imaging and Vision (2020) 62:737–750

properties hold immediately after the execution of line 2,
that is, for κ = 0. So, we can assume that κ > 0. We need
to show that (P0)-(P3) are preserved by each operation of
the algorithm. More specifically, by the execution of lines 6
or 10, since the status of each of these properties can change
only when an atom is removed fromA during their execution.

Proof of (P0) Fix an edge D = {v,w} and assume that (P0)
holds for this D and all k < κ . Now, if Aκ−1[D] has less
than 4 elements, then by the inductive assumption it must be
alreadymissing either {〈v, 1〉, 〈w, 0〉} or {〈v, 0〉, 〈w, 1〉}, and
so the same will be true for Aκ [D], as needed. So, assume
that Aκ−1[D] has still all 4 elements. This means that these
4 elements are present in H and, by (2) and the choice of the
ordering of H, the atoms {〈v, 1〉, 〈w, 0〉} or {〈v, 0〉, 〈w, 1〉}
must precede in H any of the atoms {〈v, 0〉, 〈w, 0〉} or
{〈v, 1〉, 〈w, 1〉}. In particular, if κ = k j for some j , then
Aκ [D] is obtained as a result of execution of line 3 and
the ordering of H ensures that Aκ [D] still satisfies (P0). So,
assume that κ = k j for no j ; that is, that Aκ [D] is obtained
from Aκ−1[D] by the execution of line 10. Since one of the
atoms from Aκ−1[D] was removed as a result of this execu-
tion, for one of vertices of D, say v, the bucket Aκ−1[{v}]
must be missing one of its atoms, say {〈v, i〉}. But this means
that Aκ−1[D]must have been missing both {〈v, i〉, 〈w, 0〉} or
{〈v, i〉, 〈w, 1〉}, so indeed Aκ [D] satisfies (P0).
�
Proof of (P1)-(P3) This will be proved by the simultaneous
induction on κ .

(P1) must be preserved by the execution of line 10, by the
inductive assumption (P2) that Aκ−1 is locally consistent. It
also cannot be destroyed by the execution of line 6, since this
is prevented by the condition of line 5. Thus, Aκ [D] still has
the property (P1).

To see (P3) we can assume that κ = k j for some j > 0.
Clearly (P3) holds for k = k j−1. Thus, we need only to show
that removal of an atom A in line 6 and consecutive execution
of loop 7–12 preserves (P3). Indeed, the potential incompat-
ibility can occur only in relation of the vertices associated
with the atoms removed from

⋃
D∈D A[D]. However, each

time such an atom is removed, all adjacent atoms are inserted
into the queue K and the execution of the loop 7–12 does not
end until all such potential incompatibilities are taken care
off.

The proof of the preservation of (P2) is more involved. Let
j be the largest such that k j ≤ κ . First notice that if κ = k j ,
then (P2) holds. Indeed, by the inductive assumptions (P2)
and (P3), Aκ−1 is locally consistent and has no incompati-
ble atoms. Since Aκ �= Aκ−1, the bucket A[D] must have
contained two or more atoms prior to the removal of A in
line 6. Since Aκ−1 did not contain any incompatible atoms,
Aκ = Aκ−1 \ {A} must remain locally consistent. So, we
can assume that μ := κ − k j is nonzero. We will examine
families Ak j ,Ak j+1, . . . ,Ak j+μ = Aκ .

Let A = A0, . . . , Aμ be the order inwhich the atomswere
removed from K during of this time execution of loop 8-12.
Also, let x0, . . . , xμ be the vertices/edges associated with the
atoms A0, . . . , Aμ, respectively. We will show, by induction
on ν ≤ μ, the following property (Iν), which in particular
imply that Ak j+ν is locally consistent.

To state (Iν) first notice that if an atom for a vertex v is
among x0, . . . , xν−1, thenAk j+ν must contain precisely one
of two atoms {〈v, 0〉} and {〈v, 1〉}. (By (P1), it must contain
at least one of these atoms). It cannot contain both, since
this would mean that no v-atom was removed so far and
hence Ak j+ν could not have been removed from Ak j+ν−1.)
In particular, this means that there is an iv ∈ {0, 1} for which
Ak j+ν already ensures that the final value of �(v) is iv . This
means, that Ak j+ν[{v}] = {{〈v, iv〉}

}
.

We will prove, by induction on ν ≤ μ, that

(Iν) Ak j+ν is locally consistent and if vertices v and w are
among x0, . . . , xν , then iv = iw.

Of course, this will finish the proof of (P2).
Clearly, (I0) holds, as we already shown thatAk j is locally

consistent, and the other condition is satisfied in void. So, fix
ν ∈ {1, . . . , μ} such that (Iξ) holds for all ξ < ν. We will
show that (Iν) holds as well.

For this, assume first that xν is an edge {v,w}. We need to
show only that Ak j+ν remains locally consistent, the other
part of (Iν) being ensured in this case by (Iν−1). Since xν =
{v,w}, there must exist a j < ν such that x j is a vertex and
x j ∈ {v,w}. For simplicity, we assume that x j = v and that
iv = 0; the other cases being similar.

We need to show that Ak j+ν , obtained from Ak j+ν−1

by removing from it the atoms {〈v, 1〉, 〈w, 0〉} and {〈v, 1〉,
〈w, 1〉}, cannot be locally inconsistent.

Note that such removal from locally consistent set
Ak j+ν−1 can potentially influence local consistency ofAk j+ν

only of {v,w} with respect to the vertices v and w. How-
ever, since Ak j+ν−1[{v}] = {{〈v, 0〉}}, this is also equal to
Ak j+ν[{v}]. Also, both Ak j+ν−1 and Ak j+ν must contain
either {〈v, 0〉, 〈w, 0〉} or {〈v, 0〉, 〈w, 1〉}. So, Ak j+ν it can-
not have local inconsistency of {v,w} with v. Therefore, we
must show only that Ak j+ν contains no local inconsistency
between {v,w} and w.

To see this, first notice that there will be no such incon-
sistency when

Ak j−1[{w}] �
{{〈w, 0〉}, {〈w, 1〉}}. (9)

Indeed, then Ak j−1[{w}] = {{〈w, i〉} for some i ∈ {0, 1}
and, by the property (P3), Ak j−1 ⊃ Ak j+μ cannot con-
tain atom {〈v, 0〉, 〈w, 1 − i〉}. Hence Ak j+μ must contain
{〈v, 0〉, 〈w, i〉} and local consistency is preserved.

To finish the argument consider the following three cases.

123

Journal of Mathematical Imaging and Vision (2020) 62:737–750 749

Ak j+ν[{w}] = {{〈w, 0〉}, {〈w, 1〉}: Then Ak j+ν is indeed
locally consistent, since it contains either {〈v, 0〉, 〈w, 0〉} or
{〈v, 0〉, 〈w, 1〉}.

Ak j+ν[{w}] = {{〈w, 1〉}}: Then also Ak j+ν−1[{w}] ={{〈w, 1〉}} and w cannot be among x0, . . . , xν−1, since this
would contradict the second part of (Iν−1). In particular, (9)
holds and so local consistency is preserved.

Ak j+ν[{w}] = {{〈w, 0〉}}:Wecan assume that (9) does not
hold. Then there exists p ∈ {0, . . . , ν −1} such that x j = w.
Therefore, Ak j+p ⊃ Ak j+ν cannot contain {〈v, 0〉, 〈w, 1〉}.
So,Ak j+ν must contain {〈v, 0〉, 〈w, 0〉} and local consistency
is preserved.

Before we proceed further, note that for every ν ≤ μ,

(Jν) for every vertex v there is at most one edge D = {v,w}
such that Ak j+ν[{v}] contains an atom incompatible with
all atoms in Ak j+ν[D].

Indeed, by (P3), this clearly holds for ν = 0. Also, if xν is an
edge, then the ordering conditions we imposed on the queue
K ensure that the atoms of no other edge can be added to
K and subsequently modified, before each vertex (adjacent
to xν) that can have incompatible atoms with that for xν is
added to K and subsequently modified, so that the potential
incompatibilities are removed.

Finally, consider xν being a vertex v. Then we must
have had Ak j+ν−1[{v}] = {{〈v, 0〉}, {〈v, 1〉}}. Moreover,
Ak j+p[D] � Ak j+p−1[D]. Also, by (Jν), such p is unique.
Therefore, Ak j+ν must be locally consistent, since the only
potential local inconsistency in Ak j+ν could be between v

and {v,w}. But our choice of Ak j+ν[{v}] ⊂ Ak j+ν−1[{v}] ={{〈v, 0〉, 〈v, 1〉}} ensures that such inconsistency cannot
occur.

Notice also that the second part of (Iν) holds as well.
Indeed, this is satisfied in void when there is no vertex among
x0, . . . , xν−1. So, assume that such vertex exists. Then,w, the
second vertex of the above chosen edge xp = D = {v,w},
must be among such x0, . . . , xν−1. Indeed, if p = 0 then
we must have ν = 2 and x1 = w. Since iw = 0, we must
have Ak j [D] ⊂ {{〈v, 0〉, 〈w, 0〉}, {〈v, 1〉, 〈w, 0〉}}. Also, as
Ak j+2[{v}] � Ak j+1[{v}], the bucket Ak j+1[D] = Ak j [D]
must contain precisely only one of the atoms {〈v, 0〉, 〈w, 0〉}
or {〈v, 1〉, 〈w, 0〉}. However, Ak j [D] cannot be equal to
the set

{{〈v, 1〉, 〈w, 0〉}}, since, by (P0), this would mean
that Ak j−1[D] = {{〈v, 0〉, 〈w, 1〉}, {〈v, 1〉, 〈w, 1〉}}. But this
contradicts (P3). So, Ak j+1[D] = {{〈v, 0〉, 〈w, 0〉}}, and
indeed iv = 0.

Finally, assume that p > 0. Then w = xq for some
q ∈ {0, . . . , p − 1} and so Ak j+q [{w}] = {{〈w, 0〉}}.
Thus, Ak j+p[D] ⊂ {{〈v, 0〉, 〈w, 0〉}, {〈v, 1〉, 〈w, 0〉}} and
Ak j+ν−1[D] must contain precisely one of these atoms
to ensure that the inclusion Ak j+ν[{v}] � Ak j+ν−1[{v}]
holds. We need to show that the equality Ak j+p[D] =

{{〈v, 1〉, 〈w, 0〉}} is impossible. Indeed, this would imply
thatAk j+q−1[D] ⊂ {{〈v, 1〉, 〈w, 0〉}, {〈v, 0〉, 〈w, 1〉}, {〈v, 1〉
, 〈w, 1〉}}} and using the property (P0), also that Ak j+q−1[D]
⊂ {{〈v, 1〉, 〈w, 0〉}, {〈v, 1〉, 〈w, 1〉}}. However, this means
that Ak j+q−1 already decided the value of λ(v) as 1. Since
the value of λ(w) was previously decided, the reasoning as
for (Jν) shows that v should appear already in x0, . . . , xq ,
while q < ν contradicts this. This finishes the proof of (P1)-
(P3).
�

References

1. Abbas, A., Swoboda, P.: Bottleneck potentials in Markov random
fields. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 3175–3184 (2019)

2. Allène, C., Audibert, J.Y., Couprie, M., Cousty, J., Keriven,
R., et al.: Some links between min-cuts, optimal spanning
forests and watersheds. Math. Morphol. Its Appl. Image Sig-
nal Process. 253–264 http://mtc-21b.sid.inpe.br/col/dpi.inpe.br/
ismm@80/2007/07.16.14.39/doc/book.pdf (2007)

3. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for
testing the truth of certain quantified Boolean formulas. Inf. Pro-
cess. Lett. 8(3), 121–123 (1979)

4. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy min-
imization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell.
23(11), 1222–1239 (2001)

5. Ciesielski, K.C., Udupa, J.K.: Affinity functions in fuzzy con-
nectedness based image segmentation I: equivalence of affinities.
Comput. Vis. Image Underst 114(1), 146–154 (2010)

6. Ciesielski, K.C., Udupa, J.K., Falcão, A.X., Miranda, P.A.: Fuzzy
connectedness image segmentation in graph cut formulation: a
linear-time algorithm and a comparative analysis. J. Math. Imaging
Vis. 44(3), 375–398 (2012)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms. MIT Press, Cambridge (2009)

8. Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watershed: a
unifying graph-based optimization framework. IEEETrans. Pattern
Anal. Mach. Intell. 33(7), 1384–1399 (2011)

9. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts:
minimum spanning forests and the drop of water principle. IEEE
Trans. Pattern Anal. Mach. Intell. 31(8), 1362–1374 (2009)

10. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts:
thinnings, shortest path forests, and topological watersheds. IEEE
Trans. Pattern Anal. Mach. Intell. 32(5), 925–939 (2009)

11. Dijkstra, E.W.: A note on two problems in connexion with graphs.
Numer. Math. 1(1), 269–271 (1959)

12. Jarnìk, V.: O jistém problému minimálím (On a certain problem of
minimization). Práce moravské přírodovědecké společnosti 6(4),
57–63 (1930)

13. Kolmogorov, V., Zabih, R.: What energy functions can be min-
imized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell.
26(2), 147–159 (2004)

14. Kruskal, J.B.: On the shortest spanning subtree of a graph and the
traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50
(1956)

15. Levi, Z., Zorin, D.: Strict minimizers for geometric optimization.
ACM Trans. Gr. (TOG) 33(6), 185 (2014)

16. Malmberg, F., Ciesielski, K.C., Strand, R.: Optimization of max-
norm objective functions in image processing and computer vision.
In: International Conference on Discrete Geometry for Computer
Imagery, pp. 206–218. Springer (2019)

123

http://mtc-21b.sid.inpe.br/col/dpi.inpe.br/ismm@80/2007/07.16.14.39/doc/book.pdf
http://mtc-21b.sid.inpe.br/col/dpi.inpe.br/ismm@80/2007/07.16.14.39/doc/book.pdf

750 Journal of Mathematical Imaging and Vision (2020) 62:737–750

17. Malmberg, F., Strand, R.: When can l p-norm objective functions
be minimized via graph cuts? In: International Workshop on Com-
binatorial Image Analysis. Springer (2018)

18. Najman, L.: Extending the power watershed framework thanks to
γ -convergence. SIAM J. Imaging Sci. 10(4), 2275–2292 (2017)

19. Prim, R.C.: Shortest connection networks and some generaliza-
tions. Bell Syst. Techn. J. 36(6), 1389–1401 (1957)

20. Sinop, A.K., Grady, L.: A seeded image segmentation framework
unifying graph cuts and random walker which yields a new algo-
rithm. In: 2007 IEEE 11th International Conference on Computer
Vision, pp. 1–8. IEEE (2007)

21. Wolf, S., Bailoni, A., Pape, C., Rahaman, N., Kreshuk, A.,
Köthe, U., Hamprecht, F.A.: The mutex watershed and its objec-
tive: efficient, parameter-free image partitioning. arXiv preprint
arXiv:1904.12654 (2019)

22. Wolf, S., Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Kothe,
U., Hamprecht, F.: The mutex watershed: efficient, parameter-free
image partitioning. In: Proceedings of the European Conference
on Computer Vision (ECCV), pp. 546–562 (2018)

23. Wolf, S., Schott, L., Kothe, U., Hamprecht, F.: Learned watershed:
end-to-end learning of seeded segmentation. In: Proceedings of
the IEEE International Conference on Computer Vision, pp. 2011–
2019 (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Filip Malmberg is a researcher
in computerized image analysis at
Uppsala University, Sweden. He
is at the Department of Informa-
tion Technology and at Radiol-
ogy at the Department of Surgical
Sciences, both at Uppsala Univer-
sity. His research interests include
methods and theory in image pro-
cessing, as well as their applica-
tions in medical imaging.

Krzysztof Chris Ciesielski received
his masters and PhD degrees in
pure mathematics from Warsaw
University, Poland, in 1981 and
1985, respectively. He has worked
at West Virginia University from
1989 to the present. In addition,
since 2006 he has held the posi-
tion of adjunct professor in the
department of radiology at the Uni-
versity of Pennsylvania. He is the
author of three books and close
to 150 journal research articles.
His research interests include both
pure mathematics (real analysis,

topology, set theory) and applied mathematics (image processing,
especially image segmentation). He is an editor of Real Analysis
Exchange, the Journal of Applied Analysis, and the Journal of Math-
ematical Imaging and Vision.

123

http://arxiv.org/abs/1904.12654

	Two Polynomial Time Graph Labeling Algorithms Optimizing Max-Norm-Based Objective Functions
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Lp Norm Objective Functions and Minimal Graph Cuts
	2.2 Optimization of Einfty by Classical Algorithms

	3 Algorithms for Direct Optimization of Einfty: Preliminaries
	3.1 Consistency

	4 Strict Optimality
	4.1 When all φst are p-Submodular for Large Enough p
	4.2 NP-Hardness of Finding Strict Optimizers

	5 A Quadratic Time Algorithm for Direct Optimization of Einfty
	5.1 Atoms with Unique Weights

	6 A Quasi-Linear Time Algorithm for Direct Optimization of Einfty When All Binary Terms are infty-Submodular
	6.1 Local Consistency, Incompatible Atoms
	6.2 The Second Algorithm
	6.3 Computational Complexity
	6.4 Proof of Correctness

	7 NP-Hardness of Multi-label Einfty-optimization
	8 Conclusions
	Acknowledgements
	Appendix: Proof of Lemma 2
	References

