
Max-norm optimization
and strict optimizers

Filip Malmberg

Introduction

Many of the optimization problems we have seen so far have objective
functions that can be described as consisting of two parts:

A set of local error measurements (e.g. unary or pairwise terms)

A way to aggregate the local error measurements into a single scalar
value (e.g., sum, maximum, . . .)

The aggregation function determines how the error is “distributed” across
the domain (e.g., the image).

Recall: P-norms

The sum and the maximum are special cases of p-norms.

Let p ≥ 1 be a real number. The p-norm of a vector x is defined as

‖x‖p =

(
n∑

i=1

|xi |p
)1/p

(1)

For p = 1, this is the sum of the elements of the vector. For p →∞,
it approaches the maximum of the elements.

Recall: P-norms

For low p, the Lp norm emphasizes the decrease in average error, but
allows arbitrarily high local error.

On the opposite end of the spectrum, L∞-norm ensures the tightest
possible control on the worst-case error. below the maximal error,
however, it does not distinguish between solutions with just one or all
elements with high error.

Strict minimizers

The concept of strict minimizers was proposed by Levi et al. [2].

In this framework, two solutions are compared by ordering all
elements non-increasingly by their local error value and then
performing their lexicographical comparison.

A solution is optimal (a strict optimizer) if it compares as better than
or equal to all other solutions.

Strict minimizers and Lp norms

The definition of strict minimizers in the previous slide does not use an
explicit objective functions, but it can be shown that is tightly connected
to the limit of Lp norms as p goes to infinity.

A strict minimizer minimizes the L∞-norm (max-norm) of the error.
(But the opposite does not generally hold)

Strict minimizers are the limits of Lp norm minimizers, as p →∞.

Letting p go to ∞ – a toy example

Example: Fix the values of the pixels marked in red to 0 and 1,
respectively. Assign all other values so that the gradients (local errors) are
minimized, for some given aggolmeration function.

Figure 1: Left: L2.norm, Right: L∞-norm/Strict minimizer.

Uniqueness of strict minimizers

Consider a combinatorial optimization problem where all local errors
have a finite number of possible configurations/values.

If all local errors have distinct (unique) values, then the strict
minimizer is unique. Otherwise, it is not. (Why?)

Rest of this lecture

We will now have a look at two papers that concern finding strict
minimizers for different optimization problems in image analysis.

“The Mutex Watershed and its Objective: Efficient, Parameter-Free
Graph Partitioning”, Wolf et al 2021. [7]

“Two Polynomial Time Graph Labeling Algorithms Optimizing
Max-Norm-Based Objective Functions”, Malmberg and Ciesielski,
2020 [3]

A common theme for these papers is that they show that certain
optimization problems that are NP-hard under commonly used norms
become solvable with the strict optimization approach.

Paper 1: The mutex watershed

Consider, again, graph partitioning by MSF-cuts.

We can think of the edge weights as attractive forces. “How high is
the preference for two adjacent pixels to be grouped together”.

In Kruskal’s algorithm, we keep grouping pixels in order of decreasing
edge weights (attractive force).

Regions are only prevented from merging by the seedpoints.

An “oracle” is required to decide good seed points (algorithm of
human)

Extending Kruskal’s algorithm with repulsive forces

The main idea of Wolf et al. is to avoid having to define seedpoints
by adding repulsice forces to the process.

This leads to an algorithm where the number of clusters does not
need to known beforehand!

The algorithm

The algorithm operates on a graph G = (V ,E) where each edge has a
signed, real valued weight. Positive edge weights are attractive, negative
edge weights are attractive.

Sort all edges in descending order by absolute value.

For every edge:

If the edge is attractive, and there is no mutex between the regions
spanned by the edge, then merge those regions.
If the edge is repulsive, and the edge spans two distinct regions, then
add a mutex between these regions

Implementation

Just like Kruskal’s algorithm, an efficient implementation of the
mutex watershed can be achieved using a disjoint-set data structure.

A hash table (or other efficient set datastructure) can be used to
store information about mutex constraints for each region.

Theoretically, the worst cas run-time is O(|E |2), but empirically the
runtime is very close to the O(|E | log |E |) runtime of Kruskal’s
algorithm.

Publicly available implementation:
https://github.com/hci-unihd/mutex-watershed

https://github.com/hci-unihd/mutex-watershed

Experiments

Figure 2: Mutex watershed segmentation of image from an ISBI neuron
segmentation challenge

Experiments

The mutex watershed algorithm performed very well in the highly
competitive ISBI EM challenge on neuron segmentation.

Some noteworthy details:

Use of “long-range” connections. “The strength of such edges can
often be estimated with greater certainty than is achievable for the
local edges”.
Using a CNN to estimate edge weights

Optimality of Mutex watersheds

The mutex watershed is closely related to a graph partitioning
problem called the multicut-problem, which is known to be NP-hard

It is shown by Wolf et al. [7] that if all edge weights are unique, then
the mutex watershed solves a variant of the multicut problem in
which all edge weight are raised to some sufficiently large power p. (A
“dominant power”)

In our terminology: The mutex watershed solves the strict
minimization version of the otherwise NP-hard multicut problem!
(When the edge weights are unique)

Optimality of regular watersheds/MSF cuts

We have established earlier that MSF-cuts are optimal according to
the max-norm.

A corollary of the result by Wolf et al. is that regular MSF-cuts do in
fact also cuts that are strict optimizers, when the edge weights are
distinct! (MSF-cuts/regular watersheds are a special case of the
Mutex Watershed, see [6] for an explanation of how mutex
constraints can be translated to seed-point constraints)

What if the edge weights are not distinct?

Requiring that the edge weights are distinct seems restrictive! What if
this condition is violated?

Even if the edge weights are not unique, it is straightforward to define
new unique edge weights:

Establish any increasing order of the edge weights (e.g., using a sorting
algorithm)
Replace the weight of each edge with the value corresponding to its
position in this ordering (1,2,3,. . .).

This is in fact what happens during the sorting step of the mutex
watershed algorithm!

Even if the edge weights are unique, the algorithm will return a result
that is strictly optimal according to some ordering of the edge
weights!

Semi-strict minimizers

We say that a solution is a semi-strict optimizer if there exists some
increasing/decreasing ordering of the local errors such that the
solution is a strict optimizer w.r.t. this ordering.

If the local errors are distinct, the (unique) semi-strict optimizer is
also the strict optimizer.

The mutex watershed returns a semi-strict optimizer even if the
edge-weights are not unique.

Paper 2: Two Polynomial Time Graph Labeling Algorithms
Optimizing Max-Norm-Based Objective Functions

Here, we consider the same “canonical” pixel labeling problem that we
studied in the minimal graph cut lecture. We seek a label assignment
configuration x that minimizes a given objective function E , written as
follows:

E (x) =
∑
i∈V

φi (xi) +
∑
i ,j∈E

φij(xi , xj) , (2)

where:

V is the set of pixels in the image.

E is the set of all adjacent pairs of pixels in the image.

xi denotes the label of vertex i , belonging to a finite set of integers
{0, 1 . . . ,K − 1}.

Recall: Optimization by minimal graph cuts

In the general case, global optimization of this labeling problem is
NP-hard, but in special cases globally optimal solutions can be found
efficiently.

For the binary labeling problem, with K = 2, a globally optimal
solution can be computed by solving a max-flow/min-cut problem on
a suitably constructed graph. This requires all pairwise terms to be
submodular (≈ convex).

A pairwise term φij is said to be submodular if

φij(0, 0) + φij(1, 1) ≤ φij(0, 1) + φij(1, 0) . (3)

Multi-label problems

At first glance, the restriction to binary labeling may appear very
limiting.

The multi-label problem can, however, be reduced to a sequence of
binary valued labeling problems using, e.g., the expansion move
algorithm (Boykov et al. 2001, Kolmogorov et al. 2004)

Thus, the ability to find optimal solutions for problems with two
labels has high relevance also for the multi-label case.

These approaches have been very succesful, and have made graph
cuts a standard tool for solving general optimization problem in image
processing.

Generalized objective functions

Looking again at the labeling problem described above, we can view the
objective function E as consisting of two parts:

A local error measure, in our case defined by the unary and pairwise
terms.

A global error measure, aggregating the local errors into a final score.
In the case of E , the global error measure is obtained by summing all
the local error measures.

E (x) =
∑
i∈V

φi (xi) +
∑
i ,j∈E

φij(xi , xj) (4)

Lp-norm objective functions

If we assume all terms to be non-negative, minimizing E can be seen as
minimizing the l1-norm of the vector containing all unary and pairwise
terms. A natural generalization is to consider minimization of arbitrary
lp-norms, p ≥ 1, i.e., minimizing:

Ep(x) =

∑
i∈V

φpi (xi) +
∑
i ,j∈E

φpij(xi , xj)

1/p

(5)

Minimizing Lp-norm objective functions via grah cuts

It is straightfoward to show that similar submodularity requirements
hold also for the generalized objective functions Ep for any finite p.

(φpst(0, 0) + φpst(1, 1))1/p ≤ (φpst(0, 1) + φpst(1, 0))1/p. (6)

We say that a pairwise term that satisfies this condition is
p-submodular.

Binary Lp norm labeling problems of the form (5) can be globally
optimized using graph cuts, if all pairwise terms are p-submodular.

To use the graph cut approach, we must first verify that all pairwise
terms satisfy the appropriate submodularity conditions. Otherwise, we
have to resort to approximate methods.

The case when p →∞

In the limit case when p →∞, the objective function converges to:

E∞(`) := max
{

max
s∈V

φs(`(s)),max
s,t∈̂

φst(`(s), `(t))
}
. (7)

Similarly, the p-submodularity condition converges to:

max{φst(0, 0), φst(1, 1)} ≤ max{φst(1, 0), φst(0, 1)}, (8)

We say that a pairwise term that satisfies this inequality is ∞-submodular.

A helpful theorem

For optimization of Lp-norm labeling problems with graph cuts, the
following theorem can be helpful for proving p-submodularity:

If a binary term is n-submodular (for some n ≥ 1) and
∞-submodular, then it is also p-submodular for any real p ≥ n. [5]

Main result

We have shown that in the limit as p goes to infinity, the requirement
for submodularity of the pairwise terms disappears!

Thus, even when the local costs are such that the problem of
minimizing Ep is NP-hard for some or all finite p, a labeling
minimizing E∞ can be found in low order polynomial time! (In
practice: linearithmic)

Direct optimization of max-norm problems

In two recent papers [3, 4], we present two different algorithms for
optimizing binary labeling problems with the max-norm E∞ objective
function:

A linearithmic time algorithm for optimizing E∞ under the condition
that all pairwise terms are ∞-submodular.
An algorithm for optimizing any function E∞, submodular or not. The
theoretical runtime for this algorithm is quadratic, but empirically it is
also linearithmic.

A pairwise term is said to be ∞-submodular if:

max{φij(0, 0), φij(1, 1)} ≤ max{φij(1, 0), φij(0, 1)}. (9)

Outline of our proposed algorithms

To describe the optimization methods, we introduce the notion of
unary and binary solution atoms.

A unary atom represents one possible label configuration for a single
vertex.

A binary atom represent a possible label configuration for a pair of
adjacent vertices.

Thus, for a binary labeling problem, there are two unary atoms
associated with every pixel and four binary atoms for every pair of
adjacent pixels.

Each atom has a weight given by the corresponding unary or binary
term of the objective function.

Outline of our proposed algorithm

The algorithm works as follows:

Start with a set S consisting of all possible atoms.

For each atom A, in order of decreasing weight:

If S \ {A} is consistent, remove A from S .

A set of atoms is said to be consistent if it is possible to construct at least
one valid labeling from the atoms in the set.
At the termination of this algorithm, the atoms remaining in S define a
unique labeling. This labeling is globally optimal according to the
objective function E∞.

Checking consistency

The key issue is to determine, at each step of the algorithm, whether the
remaining set of atoms is consistent.

When the all pairwise terms are ∞-submodular, we show that this
check can be performed efficiently via “local” conditions. This leads
to the pseudo-linear algorithm.

In the general case, we show that the problem of determining the
consistency can be phrased as a boolean 2-satisfiability problem,
solvable in linear time. This leads to the quadratic algorithm.

The 2-SAT problem

Consider a set of boolean variables (true or false) and a set of
constraints on these variables, such that each constraint involves at
most two variables. The 2-SAT problem consists of answering the
question: Is there an assignment of truth values (i.e.,0 or 1) to the
variables that satisfies all given constraints?

Solvable in linear time using e.g., Aspvall’s algorithm [1].

An efficient version of the general algorithm
Running Aspvall’s algorithm for every atom we want to remove is
inefficient.

Each satisfiability problem, however, is very similar to the previous
one. We have found a (yet unpublished) way to utilize this
redundancy to formulate a practically efficient algorithm!

0 1 2 3 4 5 6 7 8 9 10

Number of pixels 105

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
C

om
pu

ta
tio

n
tim

e
(s

)
General algoritm (new)
DGCI algoritm

Strict minimization

As shown in [3], the output of the labeling algorithm described above
is not only L∞ optimal, but is in fact a strict minimizer if the local
costs have unique weights, i.e., just like the Mutex Watershed is
returns semi-strict minimizers.

Note that the algorithm is structurally very similar to both Kruskal’s
algorithm and the Mutex watershed algorithm!

Multi-label optimization

The algorithm for solving binary labeling problems relies on the fact
that the 2-SAT problem is solvable in polynomial (linear) time.

The n-SAT problem for n > 2 is unfortunately NP-hard, and it follows
that strict optimization of multilabel problems is also NP-hard.

(But just as with graph cuts we can still make use of the 2-label case
to do move-making/local search)

(Does this contradict the fact that the Mutex Watershed can solve
multi-region segmenation? No!)

Examples: Inpainting

Inpainting by minimizing L∞-norm of partial derivatives (finite difference
approximation) across unknown region.

Left: 4 -neighbors. Right: 8-neighbors with weights

Examples: Image matting (soft segmentation)

Image matting by solving the (L∞) Poisson equation across the gray
region.

Left to right: Image, Right: Trimap

Examples: Image matting (soft segmentation)

Poisson matting result. (Recreation of an example from the paper
“Poisson Matting”, Sun et al., SIGGRAPH 2004, but under the L∞ norm
instead of the L2 norm.)

Conclusions

Strict optimization is an alternative framework for defining
optimization problems, but with close connections to Lp norm
optimization in the limit case where p goes to infinity.

Many important optimization problems that are NP-hard under other
p-norms can be solved very efficiently under the max-norm/as strict
optimizers!

Lots of open questions left to be explored!

References
[1] Bengt Aspvall, Michael F Plass, and Robert Endre Tarjan.

A linear-time algorithm for testing the truth of certain quantified boolean
formulas.

Information processing letters, 8(3):121–123, 1979.

[2] Zohar Levi and Denis Zorin.

Strict minimizers for geometric optimization.

ACM Transactions on Graphics (TOG), 33(6):1–14, 2014.

[3] Filip Malmberg and Krzysztof Chris Ciesielski.

Two polynomial time graph labeling algorithms optimizing max-norm-based
objective functions.

Journal of Mathematical Imaging and Vision, 62(5):737–750, 2020.

[4] Filip Malmberg, Krzysztof Chris Ciesielski, and Robin Strand.

Optimization of max-norm objective functions in image processing and computer
vision.

In International Conference on Discrete Geometry for Computer Imagery, pages
206–218. Springer, 2019.

[5] Filip Malmberg and Robin Strand.

When can $$l p$$-norm objective functions be minimized via graph cuts?

In Reneta P. Barneva, Valentin E. Brimkov, and João Manuel R.S. Tavares,
editors, Combinatorial Image Analysis, pages 112–117, Cham, 2018. Springer
International Publishing.

[6] Filip Malmberg, Robin Strand, and Ingela Nyström.

Generalized hard constraints for graph segmentation.

In Scandinavian Conference on Image Analysis, pages 36–47. Springer, 2011.

[7] Steffen Wolf, Alberto Bailoni, Constantin Pape, Nasim Rahaman, Anna Kreshuk,
Ullrich Köthe, and Fred A Hamprecht.

The mutex watershed and its objective: Efficient, parameter-free graph
partitioning.

IEEE transactions on pattern analysis and machine intelligence, 2020.

