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Abstract

Chip multiprocessing (CMP) and simultaneous multi-
threading (SMT) are two recently adopted techniques for
improving the throughput of general-purpose processors by
using multithreading. These techniques are likely to benefit
the increasingly important real-time multimedia workloads,
which are inherently multithreaded. These workloads, how-
ever, often run in an energy constrained environment. This
paper compares the energy efficiency of CMP and SMT for
multimedia applications.

Assuming out-of-order processors as the core compo-
nents, we investigate the design space by varying the core
processor complexity and using a range of frequencies. To
measure energy efficiency, we compare the energy con-
sumed by systems that provide the same performance in the
entire design space. We find that across the performance
spectrum, a CMP configuration is the most energy efficient
for our systems and applications. Further, CMP processors
are amenable to further energy reductions through the use
of recently proposed adaptive techniques.

Finally, since SMT can provide benefits for single-thread
performance, we propose a hybrid CMP/SMT architecture
consisting of a CMP with SMT processor cores. This ar-
chitecture shows significantly better energy-efficiency than
pure SMT, and is a good compromise solution that achieves
both the high single-thread performance of SMT and the
energy efficiency of multithreaded CMP.

�This work is supported in part by the National Science Founda-
tion under Grant No. CCR-0096126, EIA-0103645, CCR-0209198, and
CCR-0205638, a gift from Motorola Inc., and the University of Illinois.
Sarita V. Adve is also supported by an Alfred P. Sloan Research Fellow-
ship. Part of the work was done as a summer internship project at Intel
MRL.

1 Introduction

General-purpose processors have begun to support mul-
tithreading for improved throughput, using either chip
multiprocessors (CMP) [8] or simultaneous multithread-
ing (SMT) [18]. Multithreading support is potentially a
good match for multimedia applications which are inher-
ently multithreaded, and are becoming an increasingly im-
portant workload for general-purpose processors. These ap-
plications, however, often run in an energy-constrained en-
vironment, and energy efficiency is an important criterion
for evaluating architectures suitable for them. This paper
evaluates the energy efficiency of general-purpose CMP and
SMT architectures for multimedia applications.

A fair comparison of the energy efficiency of CMP and
SMT must consider the design space of the possible alter-
native configurations for these architectures and the perfor-
mance of the configurations that are compared. This work
focuses on out-of-order superscalar processors, based on
contemporary general-purpose designs. To ensure a fair
comparison, we consider a range of possible core processor
complexities, ranging from 2-wide to 8-wide fetch band-
width. To consider a full performance continuum, we evalu-
ate the considered processor core architectures over a range
of frequencies (from 100 MHz to 1 GHz). The configura-
tions of a core architecture at different frequencies may be
interpreted as a single processor supporting dynamic fre-
quency and voltage scaling (DVS) or as different fixed-
frequency processor designs. We compare the energy ef-
ficiency of CMP and SMT by considering configurations
that provide the same performance for a given workload,
and perform such comparisons for all performance points in
the investigated design space. We consider two-thread and
four-thread workloads derived from combinations of eight
(sequential) multimedia benchmarks consisting of low and
high bit rate video and speech codecs.
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We find that across the entire performance spectrum
studied, CMP generally provides the most energy efficient
configuration for our systems and applications. The differ-
ence between the least-energy CMP and the least-energy
SMT configurations is generally higher in the higher perfor-
mance regions, and is generally higher for workloads with
high total IPC. In general, the least-energy CMP configu-
ration has a moderately lower complexity processor core
than the least-energy SMT configuration at any given per-
formance point. This is because the SMT must exploit its
performance from one processor core while the CMP has
multiple such processor cores available. Thus, the CMP has
higher total resources than the SMT; however, it uses these
resources in a more energy efficient way than the SMT.

We show that the factors responsible for the above re-
sults include (1) the relatively steep slope of the power vs.
complexity curve in modern out-of-order processors, which
makes the higher complexity SMT processor core signifi-
cantly more expensive than the CMP processor core, and
(2) the use of aggressive clock gating, which reduces the
energy cost of the larger number of under-utilized resources
in the CMP. We also identify situations where SMT may do
better than CMP; however, we did not see these situations
in our workloads.

Although CMP configurations give the best energy effi-
ciency, different configurations are optimal at different per-
formance points (as is the case with SMT). This motivates
the use of recently proposed adaptive architecture and fre-
quency/voltage scaling techniques. Further, we find that ap-
plying these techniques independently on the different CMP
processor cores to create a heterogeneous CMP provides
even further energy savings for CMP.

Our results clearly underscore the advantage of CMP for
the systems and multithreaded workloads studied. Never-
theless, wider SMT processors can be more efficient for
single thread performance for a large class of workloads.
With this in mind, we propose a new hybrid CMP/SMT ar-
chitecture where a CMP is built out of SMT cores. We find
such a two processor CMP with two-thread SMT cores has
significantly higher energy efficiency than a pure SMT pro-
cessor. Such a hybrid architecture may therefore provide a
good compromise solution to get both the high single-thread
performance of SMT and the high multithreaded energy ef-
ficiency of CMP. Furthermore, for current SMT processors
supporting two threads, this hybrid architecture provides a
good migratory path to a CMP.

Although there is significant prior work comparing the
performance of CMP and SMT [6, 8] and comparing the
energy efficiency of SMT with a superscalar [16], there is
very little prior work on energy related comparisons of SMT
and CMP. The only such work, to our knowledge, is by
Kaxiras et al. and also in the context of multimedia applica-
tions [14]. However, that work considers a VLIW processor

Variable Processor Parameters
Fetch/decode/retire rate Width2 f2, 3, 4, 5, 6, 8g
Instruction window (reorder Width* 16

buffer) size

# of Integer functional units Width
# of Floating point units 1 if Width� 4, else 2

Integer register file size 32*N + reorder buffer size

Float register file size 32*N + reorder buffer size

Common Processor Parameters
Processor speed 100 MHz to 1 GHz (voltage scaled)

Address generators 2

Integer FU latencies 1/4/12 add/multiply/divide (pipelined)

FP FU latencies 4 default, 12 div. (all but div. pipelined)

Memory queue size 32 entries

Branch prediction 2KB bimodal agree, 32 entry RAS

Common Memory Hierarchy Parameters
L1 data cache 16KB, 4-way associative,

(one per processor core) 64B line, 2 ports

L2 cache (one per system) 4MB, 8-way associative,

64B line, 1 port

Main Memory 16B/cycle, 4-way interleaved

Common Contentionless Memory Latencies
L1 (data) hit time 2 cycles

L2 hit time 12 cycles

Main memory 100 cycles

Table 1. Processor and memory parameters.

core (which produces very low IPC for the compiled codes
studied) and compares average power at a given frequency
for CMP vs. SMT. Further, it examines only two alterna-
tive core architectures and only one workload. In contrast,
we study out-of-order superscalar processors (which give
higher IPCs) and compare energy at the same performance,
for a wider range of workloads and core processor archi-
tectures. That work concludes that SMT consumes more
power than CMP (at a given frequency). This does not con-
tradict our work since we also find that all CMP configu-
rations have higher power than all SMT configurations at a
fixed (highest) frequency (e.g., Figure 5 in Section 3.1.2).
Our main results find CMP to be superior based on a com-
parison of energy at equal performance, where CMP often
runs at a lower frequency than SMT.

2 Experimental Methodology

2.1 Systems Modeled

We model SMT processors with support for two or four
threads; CMP systems with two or four single-thread pro-
cessors (also referred to as two-thread and four-thread CMP
respectively); and a combined CMP/SMT system consist-
ing of two two-thread SMT processors. In all cases, the
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processor core is an out-of-order superscalar, similar to
the MIPS R10000. To adequately represent the design
space, we model several configurations for the processor
core, ranging from a fetch/retire width of two to eight. For
each fetch/retire width, we appropriately scale the other re-
sources (e.g., instruction window size and the number of
functional units). Table 1 summarizes the various proces-
sor core parameters –Width refers to the fetch/retire width
andN is the number of threads supported by the processor
core. For CMP, our main results assume that all processor
cores have the same configuration. We denote a CMP or
SMT system with processors with a fetch/retire width ofN

by CMP-NandSMT-Nrespectively.
For SMT, we assume that all concurrent threads share

most resources in the processor, including the instruction
window, functional units, and register files; however, each
thread is given a separate branch prediction table. Fur-
ther, 32 additional integer and floating point registers are
assumed for each additional thread, to capture the architec-
tural state. We use the ICOUNT policy [18] to prioritize
instruction fetch from different threads.

We assume a two-level data cache hierarchy and a per-
fect instruction cache. For CMP, each processor has its own
L1 cache, and these caches are connected to a common L2
cache through a bus. The memory hierarchy parameters are
also summarized in Table 1. In particular, each processor
core has a 16K L1 data cache for both CMP and SMT. This
size supports all the four-thread workloads studied (Sec-
tion 2.2), and further increase in size does not apprecia-
bly improve performance. Note that a CMP configuration
with N processors hasN times the L1 data cache size as
an SMT, which may appear to give an unfair advantage to
SMT. In real systems, it is likely that the total cache for an
N processor CMP will be somewhat larger than that for an
N -thread SMT, but probably notN times larger. Since our
results showed that the energy efficiency of an SMT was
much lower than that of a CMP, we chose to report results
with system parameters that would give the best showing
to SMT. Overall, we found that neither the energy nor the
performance results are very sensitive to the L1 cache size,
since these applications exhibit very high hit rates and the
L1 cache is not the dominant consumer of energy.1 For the
same reason, we found that two ports for the L1 cache were
sufficient, even for SMT.

Finally, we consider processor frequencies in the range
of 100 MHz to 1 GHz. For energy computation, we derive
voltages corresponding to these frequencies using the for-

mula f = k
(V�Vth)

2

V
wheref is the frequency,V is the

supply voltage,Vth is the threshold voltage, andk is a tech-

1One could argue that a real general-purpose system will have much
more cache than 16KB per processor to adequately handle other workload
domains. Our results will hold for those systems, assuming support to
deactivate the unused portion of the cache [1].

App. Type Input Size Base

(Frames) IPC

GSMdec Speech 1000 3.4

GSMenc codec 1000 3.7

G728dec Speech 1000 2.1

G728enc codec 1000 1.8

H263dec Video 450 3.3

H263enc codec 50 1.6

MPGdec Video 200 2.6

MPGenc codec 50 1.4

Table 2. Benchmarks.

nology parameter. We deduced values fork andVth by fit-
ting published frequency-voltage pairs for the Intel XScale
processor (which supports dynamic voltage and frequency
scaling) in the above equation [12] as done in [9].

2.2 Workloads

We consider eight (sequential) multimedia benchmarks
covering high and low bit rate video and speech codecs.
These benchmarks are summarized in Table 2 and described
in more detail in previous work [9]. They form the core
components of many high-level multimedia applications;
e.g., video teleconferencing. A real system would run sev-
eral of these benchmarks together as part of one or more
such high-level applications. For example, a video telecon-
ferencing application betweenN participants atN different
sites would involve one video and speech encoder andN -1
video and speech decoders at each site. A participant may
receive high or low bit rate streams depending on the com-
putation power and bandwidth available at the other partic-
ipating sites; therefore, a site may need to support different
types of decoders and encoders within the same application.
In general, we can envisage realistic workloads consisting
of a number of different copies of different combinations of
the applications in Table 2.

For the small-scale systems studied here (two or four
thread CMP and SMT), we can assume that the total num-
ber of threads available for running in a realistic system
will be larger than the number of simultaneous threads sup-
ported in the system. A real-time operating system (RTOS)
must therefore choose which combination of threads to co-
schedule at each time. The co-scheduling algorithm can
have an impact on the overall performance, but real-time co-
scheduling algorithms for SMT are still an active area of re-
search [13]. To eliminate dependence on the co-scheduling
algorithm, we report results separately for different combi-
nations ofN threads for anN -thread system. Thus, for a
two-thread system, we separately report results for different
pairs of the eight benchmarks of Table 4. The actual perfor-
mance of a full real-time application would depend on the
frequency with which the RTOS co-schedules each of the
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specific combinations for its chosen co-scheduling policy.

Furthermore, a real RTOS co-scheduling policy may co-
schedule different parts ofN concurrent benchmarks at dif-
ferent times. For example, consider two benchmarks with
very different execution times per frame. The shorter frame
may be co-scheduled along with any part of a longer frame
and it is possible the execution characteristics are differ-
ent depending on when the two frames are co-scheduled.
Again, to report results independent of the co-scheduling
policy and to average out such differences, we run several
frames of the co-scheduled benchmarks without any syn-
chronization across frame boundaries, to get the average
behavior for that benchmark combination. The maximum
number of frames we consider for each benchmark is re-
ported in Table 2. For each combination of benchmarks, we
run until the shortest one completes. The number of frames
that the longer benchmarks complete within this time could
vary depending on the architecture configuration. We partly
alleviate the impact of this variation by reporting energy
normalized to the total number of instructions executed.
The alternative method of fixing the number of frames of
the longer benchmarks would mean that for some runs, we
would only be running a single thread for part of the time
(and this time would vary depending on the processor core
architecture). This would most likely be unfair to the en-
ergy efficiency of an SMT system since we assume that the
RTOS always has another thread that is ready to run.2

Studying all combinations of two and four out of our
eight benchmarks would have resulted in an inordinately
large number of workloads (e.g., 36 possibilities for 2-
thread systems). We therefore selected a subset of these,
summarized in Table 3, using the following methodology.
We determined that our results were sensitive to the total
IPC. A higher symbiosis means the SMT is well utilized.
for the combination. For the two-thread case, we there-
fore divided all the possible benchmark pairs into four cate-
gories, based on the sum of the IPCs of the two benchmarks
when run individually on the most aggressive processor (de-
scribed in Section 2.1). From each category, we then se-
lected at least two workloads to represent the range of sym-
biosis3 values in that category. For the four-thread case,
we considered all possible pairs of the two-thread work-
loads and used the same criteria as for the two thread work-
loads. For the four thread CMP/SMT architecture, we used
the four-thread workloads – the constituent two-thread pairs
were paired again for each SMT processor.

2For the CMP system, we could just as well have chosen to run a fixed
amount of work and then deactivated the CMP processors that finished
their work ahead of the others.

3Symbiosis is defined aseffectiveness with which multiple jobs achieve
speedup when run on multithreaded machines[17].

2-thread workload Total IPC
MPGencMPGenc 2.6
MPGencG728dec 3.5
MPGencMPGdec 3.9
G728encG728dec 3.9
H263encMPGdec 4.1
MPGencGSMdec 4.7
H263encH263dec 4.8
H263decG728enc 5.0
H263encGSMenc 5.2
H263decG728dec 5.4
GSMencG728dec 5.8
MPGdecGSMdec 5.9
H263decGSMenc 6.9
GSMencGSMenc 7.3

(a)

4-thread workload Total IPC
MPGencMPGencMPGencMPGenc 5.3
MPGencMPGencG728decG728enc 6.6
H263decH263encGSMencH263enc 10.0
H263decH263encG728decH263dec 10.2
MPGdecMPGencGSMencGSMenc 11.2
G728decH263decGSMdecMPGdec 11.3
GSMencH263decGSMencH263dec 13.8
GSMencGSMencGSMencGSMenc 14.6

(b)

Table 3. (a) Two-thread and (b) four-thread workloads.
Each set is ordered by the sum of the IPCs of the con-
stituent threads when run individually on the most ag-
gressive processor configuration.

2.3 Simulation Environment and Methodology

We model the performance of the systems in Section 2.1
using a version of the RSIM simulator [10] modified to sup-
port both SMT and CMP. Previous work showed that for the
benchmarks studied here, performance scales with proces-
sor frequency, since the amount of time spent on memory
stalls is negligible [9]. We therefore run simulations at one
base frequency to obtain the number of execution cycles,
and appropriately scale this number to obtain execution time
at different frequencies.

To model energy, we use the Wattch tool [4] integrated
with RSIM. We use clock gating as implemented in Wattch
so that only 10% of the maximum power is charged for
a resource that is not used in a given cycle. We also
model the energy consumption of the bus between the L1
and L2 caches in the CMP, using models from the Orion
project [19].4 We conservatively assume a 5mm bus length
with two processors and a 10mm bus length with 4 proces-
sors. We do not report energy for the L2 cache here since
it can be placed either on-chip or off-chip, and the optimal
size of the L2 cache can vary depending on the number of
threads and the workloads.

Henceforth, when we refer to a set ofcore architec-

4We thank Li-Shiuan Peh and Hang-Sheng Wang for quickly generat-
ing and providing us the bus models.
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tures, we refer to the set of processors with variations in
fetch/retire width. When we refer to a set ofconfigurations,
we refer to combinations of the core architecture and fre-
quency (in the context of a two-thread CMP or SMT).

3 Results
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Figure 1. Example EPI vs. execution time graph.
When considering energy as a metric of comparison, one

must also consider the performance obtained. One com-
mon metric used is the energy-delay product (i.e., energy
divided by performance) [7]. However, this metric is unsat-
isfactory if the user desires a fixed amount of performance
or is constrained by a fixed amount of energy (e.g., battery
life). Specifically for real-time applications such as stud-
ied here, there is often a fixed desirable performance target
(derived from the application deadlines and the rest of the
load on the system). We therefore focus most of this sec-
tion on understanding optimal energy configurations, given
a fixed performance target (Section 3.1). The data and anal-
ysis for determining the optimal performance configuration
for a fixed energy target is similar (see below), and we do
not present that here for lack of space. We do show the re-
sults for energy-delay product and other more conventional
metrics in Section 3.2.

3.1 Energy Optimality for a Performance Target

3.1.1 Representing the Data

For an SMT or CMP with a given core architecture, vary-
ing the processor frequency provides a continuum of perfor-
mance points. Any of these points could be designed either
as a fixed-frequency design, or could be invoked in a system
with DVS support. We collect data for SMT and CMP sys-
tems using all combinations of core architectures and fre-

quencies given in Section 2.1. For each workload, we then
compare points with equal performance among all system
configurations, to determine which system gives the least
energy for that performance. The optimal system could be
different for different performance points.

Figure 1 illustrates the above. It plots energy per
instruction (or EPI) versus execution time for the MP-
GencMPGdec workload. Each curve in the figure repre-
sents one core architecture for an SMT or CMP system.
This figure shows SMT-2, SMT-5, CMP-4, and CMP-8.
Each point on a core architecture curve represents a dif-
ferent frequency. The points along a vertical line on this
graph represent points of equal performance. The lowest
point on the line represents the configuration that gives the
least energy for that performance. For example, for a target
execution time of 2,500ms, CMP-4 gives the least-energy.
This architecture also turns out to be the least-energy one
for a large performance range for this application.5

In general, the least-energy architecture may be differ-
ent in different performance ranges for two reasons. First,
not all architectures may be able to provide all performance
points in the extreme right and left sides of the execution
time axis. For example, in Figure 1, CMP-8 is least-energy
for a few points in the left most execution time, because
CMP-4 is not able to provide that high a performance even
at the maximum frequency. Second, in the middle perfor-
mance ranges, the least-energy configuration could change
if the curves of two core architectures cross. This crossing
can occur when at least one of the core architectures is op-
erating at a relatively low voltage, where frequency is not
linearly proportional to voltage.

To distill the information from the EPI-execution time
graphs into a more readable form, we divide the execution
time axis into intervals. We start a new interval at a per-
formance point where the least-energy SMT or CMP core
architecture changes or when the least-energy overall ar-
chitecture changes. We report EPIs for one performance
point in each such interval – we choose the point where the
difference between the least-energy SMT and least-energy
CMP architecture is the maximum. Figure 2 shows this data
for two-thread workloads running on two-thread SMT and
CMP configurations. For lack of space, we show graphs for
only 8 workloads. At each of the above performance points,
the figure shows the EPI for the least-energy CMP and SMT
architecture, and gives the fetch/retire width of the architec-
ture below the corresponding bar. Figure 3 shows analo-
gous data for four-thread workloads (for four-thread CMP
and SMT). In addition, at each performance point, the figure
also shows the EPI for the combined CMP-SMT system.

5The representation and analysis for understanding the highest-
performance configurations with a fixed energy constraint is analogous. A
horizontal line on the EPI-execution time graph identifies the equal-energy
points, and the leftmost point identifies the highest-performance configu-
ration.
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Tables 4(a) and (b) supplement the above graphs by tabu-
lating the magnitude of the EPI difference between the best
SMT and CMP configurations (as a percentage of the SMT
configuration). These tables divide the execution time axis
on the EPI-execution time graphs into three regions (A, B,
and C), based on the performance degradation relative to the
highest performance configuration (which is always CMP-
8 for all workloads). The performance degradation is from
1X to 2.5X for region A, 2.5X to 6X for region B, and>
6X for region C. For each region, the tables give the range
of the percentage improvement (in EPI) of the best CMP
configuration over the best SMT configuration at the differ-
ent performance points in this region. (We need to give a
range because the improvement at different points is differ-
ent.) Note that for a given region in this table, the optimal
CMP and SMT architectures may be different at different
points in the region.

Workload IPC A B C
MPGencMPGenc 2.6 6-19 3-4 1-5
MPGencG728dec 3.5 14-19 6-15 5-9
MPGencMPGdec 3.9 12-25 7-13 5-8
G728encG728dec 3.9 17-24 10-16 10-11
H263encMPGdec 4.1 12-19 11-15 9-12
MPGencGSMdec 4.7 8-18 9-10 1-6
H263encH263dec 4.8 25-32 16-26 13-18
H263decG728enc 5.0 20-23 11-21 0-14
H263encGSMenc 5.2 15-20 12-15 9-13
H263decG728dec 5.4 22-27 12-23 6-18
GSMencG728dec 5.8 29-31 12-27 1-14
MPGdecGSMdec 5.9 15-17 12-15 2-12
H263decGSMenc 6.9 22-23 16-23 3-17
GSMencGSMenc 7.3 22-28 17-25 5-18

Average of min and max 17-23 11-18 5-13
(a)

Workload IPC A B C
MPGencMPGencMPGencMPGenc 5.3 26-31 15-29 14-18
MPGencMPGencG728decG728enc 6.6 26-31 13-30 12-16
H263decH263encGSMencH263enc 10.0 35-41 17-37 14-20
H263decH263encG728decH263dec 10.2 46-53 26-47 18-25
MPGdecMPGencGSMencGSMenc 11.2 36-42 25-41 20-25
G728decH263decGSMdecMPGdec 11.3 47-50 35-49 14-23
GSMencH263decGSMencH263dec 13.8 57-59 41-59 18-30
GSMencGSMencGSMencGSMenc 14.6 59-60 50-60 20-36

Average of min and max 42-46 28-44 16-24
(b)

Table 4. Range of % EPI savings of the best-energy
CMP over the best-energy SMT for different perfor-
mance regions with (a) two-thread workloads and (b)
four-thread workloads. The workloads are ordered by
the total IPC of the workload.

3.1.2 The Energy Efficiency of CMP vs. SMT

Overall results across all configurations.
Figures 2 and 3 and Tables 4(a) and (b) show that for all

performance regions of all workloads, a CMP architecture
gives the least EPI. For both two- and four-thread work-

loads, the difference between the best CMP and the best
SMT EPIs is larger at the higher performance points. For
the two-thread case, the difference becomes relatively low
at the lower performance points. For the four-thread case,
however, the absolute difference is much larger and stays
large even at the lowest performance region.

More quantitatively, from the tables, we see that in the
highest performance region (A), averaged across all work-
loads, the maximum difference between the EPI of the best
CMP and the best SMT is 23% for two-thread and 46% for
four-thread workloads. The average (across workloads) of
the minimum difference in this region is 17% for two-thread
and 42% for four-thread workloads. For the lowest perfor-
mance region, these averages are a modest 13% and 5% for
the two-thread case and a significant 24% and 16% for the
four-thread case.
Implications for core architecture and frequency.
Best CMP core architecture

Figures 2 and 3 show that for all the workloads, the best
CMP configuration uses a less or equally complex core (i.e.,
lower or same fetch/retire width) than the best SMT config-
uration at any given performance point. The total resources
available to the CMP, however, are larger because the CMP
has multiple such processor cores. This is the key reason
why CMP consistently shows better EPI than SMT (dis-
cussed in more detail later).

For CMP, overall, the CMP-4 architecture is the best
in the regions where it has performance points.For all
such performance points, for the two thread case, the EPI
of CMP-4 is better than or within 10% of the best CMP
EPI for all but two workloads. For these latter two work-
loads, GSMencGSMenc and GSMencG728dec, the EPI
of CMP-4 is 18% and 21% worse than the best CMP archi-
tecture, CMP-8 (However, the EPI is still less than the best
SMT EPI). Similarly, for four-thread workloads, the CMP-
4 configuration is again best overall and the EPI of CMP-4
is within 5% of the best CMP EPI for all but one workload
(for regions where it has performance points). For the latter
workload, four GSMenc threads, CMP-4 is 18% worse than
the best CMP configuration, CMP-8.

More aggressive CMP architectures can provide much
higher performance than CMP-4 at high frequencies. For
example, for 4 of the two-thread workloads, CMP-8 can
outperform CMP-4 at the highest frequency by 26% to 48%.
For four-thread workloads, the performance difference is
even more prominent. Similarly, at the lowest frequencies,
less aggressive architectures can provide lower energy, al-
beit at lower performance (CMP-4 cannot get down to these
performance points because of the bound on the minimum
frequency).
Best SMT core architecture

For SMT, overall, the SMT-5 architecture is the best
in the regions where it has performance points.Across
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all such performance points and for all but one two-thread
workloads, the EPI of SMT-5 is better than or at most 9%
worse than the best SMT EPI. For GSMencGSMenc, it is
up to 22% worse than SMT-8. For four-thread workloads,
SMT-6 is the overall best (where it has performance points)
and the EPI of SMT-6 is better than or at most 9% worse
than the best SMT EPI. However, as with the CMP case,
SMT-5 and SMT-6 do not exhibit the very highest and the
very lowest performance points. At the highest frequency,
SMT-8 outperforms SMT-5 by 20% to 36% for three two-
thread workloads. For four-thread workloads, SMT-8 out-
performs SMT-6 by 27% for one workload.
A case for adaptive architectures

The above data shows that it is possible to pick one core
architecture for CMP and one core architecture for SMT to
get close to the overall optimal EPI, if the regions of max-
imum or minimum performance are not the desired perfor-
mance targets. A few of the workloads will see sub-optimal
performance even in the middle performance range as de-
scribed above. If the extreme regions are important per-
formance targets or if the above workloads are important,
then our data indicates that the best design would involve an
adaptive processor that can change the active resources and
fetch/retire width depending on the workload. Much recent
research has been done on such processors [11, 2, 5, 15].
In particular, Hughes et al. describe a fairly straightforward
algorithm to invoke the appropriate adaptation for multime-
dia applications, at the granularity of a full frame [11]. This
algorithm could be easily modified for CMP and possibly
modified for SMT processors as well.

The above discussion has focused on the appropriate
choice of the core architecture. A similar analysis must also
be done for the appropriate choice of the frequency. We find
that the lowest EPIs are obtained across a range of frequen-
cies for CMP and SMT, thereby supporting the use of DVS
for these systems.

Finally, we note that CMP provides unique methods of
adaptation that are not readily available to SMT architec-
tures. Specifically, CMP can apply DVS and architectural
adaptations independently to each core, depending on the
type and amount of work to be done in each co-scheduled
thread. We find that, 10 out of 14 two-thread workloads
can save 9%-15% energy savings over the currently optimal
CMP configuration, if independent DVS is available to each
core.
Analysis.

We next analyze the underlying reasons for why CMP
sees superior EPI to SMT.
Presence of an optimal core architecture.

The key to understanding our results is to see the rela-
tionship between the energy and complexity of the core ar-
chitectures. Figures 4(a) and (b) plot the EPI for each core
architecture for MPGencMPGdec running on two-thread

systems and MPGencMPGdecGSMencGSMenc running
on four-thread systems respectively. This graph uses the
performance point with SMT-2 at the highest frequency,
since this is the highest performance point achieved by all
architectures. We see that both CMP and SMT achieve a
minimum EPI with moderately complex core architectures,
with CMP using a slightly less complex core than SMT.

To understand why we see a minimum in the above
curves, we use a relationship between EPI, power, and IPC
derived as follows [11]:

EPI =
Power � Execution time

Instruction count

= CeffV
2f

Execution time

Instruction count
;

whereCeff is the effective capacitance (i.e., product of
capacitance and switching activity) [3]. For the purposes of
this analysis, consider the voltage range wheref / V (i.e.,
whereV � Vth). It follows that

EPI / Ceff�
Instruction count2

IPC3
�Execution time2:

We note that for a specified voltage and frequency, for each
architecture,Ceff is proportional to the (average) power
for that architecture at that voltage and frequency. Previ-
ous work has shown that for the benchmarks studied, IPC
is independent of frequency [9]. Thus, it follows that for
a given performance for a given number of instructions,
EPI / P

IPC3 .
Since IPC has a cubic effect on the EPI, having a higher

IPC can quickly offset a moderate increase in average
power. (Figure 5 shows how average power varies with pro-
cessor core complexity for MPGencMPGenc, for 1-thread
SMT (superscalar), 2-thread SMT and a 2-thread CMP.)
When we increase the complexity of a core, initially we
see a rapid decrease in EPI due to high IPC gains of more
complex processors. However, after some point, we do not
gain enough IPC (due to the limited parallelism exposed in
the workload) to offset the increase in power. Therefore,
we see an optimum architecture along the complexity axis.
Note also that the above equation (and the earlier EPI vs.
execution-time graphs) indicates that the optimum architec-
ture is the same at all frequencies (for a given workload) in
the range whereV � Vth.
An example to show why CMP does better than SMT.

To understand why CMP does better than SMT, we con-
sider an example scenario. Consider a threadT with IPC
x and average powerP on a superscalar (1-thread) pro-
cessor. Assume that, corresponding to Figure 4, the su-
perscalar processor has optimum EPI at complexityW ,
whereW is the fetch/retire width of the processor. Now
consider a workload with two copies ofT and consider
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Figure 4. EPI for different processor cores at the performance point with SMT-2 at the highest frequency for (a) two-
thread workload MPGenc MPGdec and (b) for four-thread workload MPGenc MPGdec GSMenc GSMenc, for SMT and
CMP. Part (b) also shows data for a CMP/SMT architecture discussed later.

0 2 4 6 8 10

Core Complexity (Fetch/Retire Width)

A
ve

ra
ge

P
ow

e
r

CMP(2Thr)

SMT(2Thr)

SMT(1Thr)

Figure 5. Average power for different processor cores
at the highest frequency for a 1-thread SMT, 2-thread
SMT, and 2-thread CMP.

that we want the same per-thread performance as the one-
thread workload (i.e., IPC of 2x). For CMP, this is achieved
(roughly) with two processors with complexityW . The av-
erage power of this CMP is2P and its EPI/ 2P

8x3 . Getting
a better EPI for SMT requires that the SMT increase its IPC
to 2x without consuming more than2P of average power.
From Figure 5, the average power of a 2-thread SMT with
width W is smaller than2P . However, for the SMT to get
an IPC of2x, it will likely need to increase the complexity
of the core to someW 0 > W . (If the SMT could get2x
IPC with a core complexity ofW , then it is generally un-
likely that the superscalar with widthW had the best EPI for
the one-thread workload since many of its resources must
have been idle). Therefore, SMT has to move up on the
2-thread average power curve (Figure 5) until it can get an
IPC of 2x. For our system, by the time the SMT reaches
this point, its average power surpasses the average power of
CMP. Note that increasing the frequency of the SMT does
not help since that will only make the SMT climb a steeper
curve and hit the CMP EPI faster.

Factors affecting the relative EPI of CMP and SMT.

On the basis of the example above, it follows that
whether SMT or CMP has a lower EPI depends on the rela-
tive values of (1) the amount that SMT must move on its
power curve to reach the optimal CMP IPC, and (2) the
amount the SMT can move up its power curve before it
exceeds the EPI for the CMP. The value for (1) depends
on the symbiosis exploited by the applications and the IPC
of the applications. The higher the symbiosis, the less the
SMT must likely move, but the higher the IPC, the more it
must likely move. Note that increasing number of threads
supported contributes directly to high IPC (explaining why
CMP did much better than SMT for 4-thread workloads).
The value for (2) depends on how close the two-thread SMT
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curve is to the CMP curve and on the steepness of the slope
of the SMT curve. The closer the two curves and the steeper
the SMT curve, the more likely that SMT will exceed the
CMP EPI. Similarly, the more the SMT must move based
on (1), the more likely it will hit the CMP EPI. Below, we
elaborate on features that affect the distance between the
SMT and CMP curves and the slope of the SMT curve, fol-
lowed by an elaboration on the impact of symbiosis.

The distance between the SMT and CMP curves is sig-
nificantly affected by the amount of clock gating. We as-
sumed 10% of the resource power is dissipated even with
clock gating. With perfect clock gating, the CMP curve
will move closer to the SMT curve (in fact, all 3 curves
will move down but the difference between the SMT and
CMP curves will be minimal). This is because CMP will not
be charged power for any underutilized resources and CMP
has more underutilized resources than SMT, since CMP has
more resources. If we did not have clock gating at all, all
three curves will move up. Further, SMT will almost over-
lap with the superscalar curve, and the CMP curve will be
twice as high as those curves. Thus, with more aggres-
sive clock gating, the SMT curve moves closer to the CMP
curve, making it difficult to outperform the CMP EPI. Con-
versely, without clock gating, SMT is likely to become more
energy efficient.

The distance between the CMP and SMT power curves
is also affected by symbiosis among the component appli-
cations of the workload. High symbiosis can move the SMT
power curve up closer to the CMP (because it indicates there
is likely to be higher resource utilization and hence switch-
ing activity per unit time).

The slope of the SMT curve is primarily determined by
how much the power increases with complexity and hence
depends on the power model. In our system, the slope is
relatively steep, again working against the SMT.

From the above discussion, we see that the interaction
between the symbiosis of the component applications in the
multithreaded workload and the relative EPI of CMP and
SMT is complex. High symbiosis helps SMT by requiring
it to travel a shorter distance up the power curve to meet a
given IPC. On the other hand, high symbiosis can hurt SMT
by making the SMT curve too close to the CMP.

Finally, we note that the energy efficiency of CMP would
be reduced if it could not increase its IPC linearly with the
number of cores. This could happen due to bus contention
or highly asymmetric workloads (since our cores are sym-
metric).

3.1.3 A Combined CMP/SMT Architecture

Our results so far show that CMP is by far the more energy
efficient architecture than SMT for our workloads. How-
ever, SMT does have the advantage of potentially higher

Workload A B C
MPGencMPGencMPGencMPGenc 12-24 8-14 8-13
MPGencMPGencG728decG728enc 8-19 6-10 5-10
H263decH263encGSMencH263enc 15-28 5-18 2-7
H263decH263encG728decH263dec 13-27 3-15 0-6
MPGdecMPGencGSMencGSMenc 17-27 13-18 9-14
G728decH263decGSMdecMPGdec 9-14 0-9 -5-3
GSMencH263decGSMencH263dec 12-18 3-13 -5-6
GSMencGSMencGSMencGSMenc 15-22 14-19 -1-10
Average of min and max 13-22 7-15 4-9

Table 5. Range of % EPI savings of the best CMP over
the best CMP/SMT for different performance regions.

single-thread performance, which may be valuable for other
workloads on the system and even in some cases for mul-
timedia workloads. With this in mind, we propose an ar-
chitecture that combines the single-thread performance ad-
vantage of an SMT with the energy efficiency advantage of
a CMP. This combined CMP/SMT architecture consists of
multiple SMT processor cores in a CMP configuration.

As mentioned in Section 2, we study a CMP/SMT archi-
tecture with two processors, each of which is a two-thread
SMT. We run the four-thread workload on this architecture
using all the core architectures and frequencies. Figure 3
includes results for this architecture as well. Table 5 sum-
marizes the magnitudes of the EPI improvements. Since
CMP is the best architecture so far, we compare the EPI of
the combined architecture with that of a CMP.

The results show that for all performance regions, the
EPI advantage of CMP over CMP/SMT is much dimin-
ished, as compared to its advantage over the SMT archi-
tecture. Overall, CMP is only moderately better than the
CMP/SMT architecture, in terms of EPI. Moreover, in per-
formance region C, we see that sometimes the CMP/SMT
architecture has lower EPI values than the CMP architec-
ture. As seen from Figure 3, this happens at lower perfor-
mance points where there is only one CMP configuration
available in that performance region (due to a bound on the
lowest frequency and the inability of CMP configurations
to further increase execution time). The CMP/SMT con-
figurations available in this region can further reduce volt-
age/frequency and achieve lower EPI values.

From Figure 3, we see that the core architecture for the
least energy CMP/SMT is usually wider than that for the
CMP at most performance points. This gives the CMP/SMT
a potential performance advantage for single-thread work-
loads. Thus, CMP/SMT provides an interesting compro-
mise point to achieve multithreaded EPI close to that of
CMP with the single thread performance advantage of an
SMT. Such an architecture also provides a more evolution-
ary migratory path to CMP for existing SMT processors.
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3.2 Energy-Delay Product and Other Metrics

So far, we have focused on determining least-energy con-
figurations for a given target performance. Here we discuss
other energy related metrics.

Considering the lowest energy configurations overall (re-
gardless of performance), we find that for CMP, this is al-
ways CMP-2 (except for 3 workloads where CMP-2 is up
to 3% worse relative to the best EPI). This configuration
is also 2%-18% better than the least energy SMT configu-
ration for each workload and 0%-11% better than the least
energy CMP/SMT configuration. For SMT, with two-thread
workloads, SMT-3 is the lowest energy configuration over-
all (except for 3 workloads where it is 1% worse relative to
the best EPI). Similarly, for CMP/SMT, CMP/SMT-3 is the
lowest energy configuration overall (except for one work-
load where it is 1% worse).

To consider performance, the energy-delay product met-
ric has been proposed in the past. The CMP with the overall
best (i.e., lowest) energy-delay product is CMP-4. This is
always the best except in a few workloads where it is at
most 6% worse than the best configuration for that work-
load. For each workload, the best CMP configuration (in
terms of energy-delay product) is 8% to 60% better than the
best SMT configuration and 11% - 26% better than the best
CMP/SMT configuration.

Thus, again we find that even in terms of the more con-
ventional energy metrics, CMP is superior to SMT. How-
ever, looking at these metrics, we find that one CMP con-
figuration mostly suffices, whereas the previous metric mo-
tivates more flexible and adaptive systems.

4 Conclusions

Several existing general purpose processors support mul-
tithreading either in the form of CMP or SMT. Multime-
dia applications, which are becoming a prominent workload
and are inherently multithreaded, are a potentially good
match for such systems. This paper evaluates the energy
efficiency of general-purpose CMP and SMT procesors for
multimedia workloads, with out-of-order processor cores.
We explore the design space of CMP and SMT by simulat-
ing processor cores with different complexity. To evaluate
energy efficiency, we develop a methodology by which we
consider all configurations over a range of frequencies, al-
lowing us to compare the energy of equal-performance con-
figurations.

We evaluate two-thread and four thread multimedia
workloads, derived from eight (sequential) multimedia
benchmarks. We find that across the performance spectrum,
CMP configurations are more energy efficient than SMT, for
our systems and workloads. The relative difference in EPI
between the best CMP and SMT generally increases with

the total IPC of the workload and the number of threads
supported. The difference is also larger for higher perfor-
mance points. We analyze the reasons for these differences,
identifying aggressive clock gating and the relatively steep
power vs. core complexity curve for SMT as two reasons
for our results.

We also found that at most performance points, the CMP
with the 4-wide processor core architecture was optimal.
There were, however, other performance points where other
core architectures were optimal. This motivates the use
of adaptive architectures that can deactivate parts of the
core that lead to energy inefficiencies. Similar observations
also motivate DVS. Further, we also found that exploiting
heterogeneity in the CMP cores could further improve the
CMP energy efficiency. SMT processors are not amenable
to such adaptation.

Finally, even though CMP clearly gave the best EPI
across the design space, it did so at lower complexity core
configurations. Wider configurations of SMT can provide
better single-thread performance. We propose and evaluate
a hybrid CMP/SMT architecture, which is a CMP with SMT
cores. We show that such an architecture is much better
in terms of EPI for a four-thread system than a four-thread
SMT and only moderately worse than a CMP architecture.
Such an architecture could provide good energy efficieny
if there is a need for wider cores to support single thread
performance of very high IPC applications.

There are several directions for future work. We would
like to study the effect of various real-time scheduling al-
gorithms on these systems and also explore how adaptive
cores can bring more energy savings.
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