Resource-aware

Martin Tillenius, Elisabeth Larsson
Dept. of Information Technology
Uppsala University
Box 337, SE-751 05 Uppsala, Sweden
Email: {martin.tillenius, elisabeth.larsson} @it.uu.se

Abstract—Dependency-aware task-based parallel program-
ming models have proven to be successful for developing ap-
plication software for multicore-based computer architectures.
Here we consider the problem of scheduling tasks not only
with respect to their inter-dependencies, but also with respect
to their usage of resources such as memory and bandwidth. At
the software level, this is achieved by user annotations of the task
resource consumption. In the run-time system, the annotations
are translated into scheduling constraints. Experimental results
demonstrating performance gains both for model examples and
real applications are presented.

I. INTRODUCTION

Dependency-aware task-based parallelization is emerging as
an important programming model for extracting performance
from multicore and manycore architectures, especially for
scientific applications where dependencies typically are more
complex than in e.g., streaming applications.

The key idea in a task parallel programming framework is
to separate the expression of the potential parallelism from
the implementation of the parallel execution, thereby reducing
the effort of parallel programming. Application software is
written in a sequential style in terms of tasks, possibly allowing
for nesting of tasks and recursions. A run-time system then
handles the parallel execution and dynamic scheduling of
tasks onto the available cores. Dependencies are deduced
at run-time from user supplied annotations of data accesses
and are translated into a format that can be exploited by
the run-time system for scheduling purposes. Some examples
of successfully employed representations are directed acyclic
graphs (DAG) used in OmpSs [1] developed at Barcelona
Supercomputing Center, in StarPU [2] developed at INRIA-
Bordeaux, and in QUARK [3] employed by the PLASMA and
MAGMA projects at the Innovative Computing Laboratory,
University of Tennessee; data versions used in SuperGlue [4],
[5] and DuctTEiP [6] developed at UPMARC, Uppsala Uni-
versity, and related formats such as the ticket-based approach
used in Swan [7], which is a Cilk extension developed by
Vandierendonck et al. The first priority for the scheduler is
to assure that all dependencies are respected. However, the
knowledge of data dependencies can be further employed in

This work was supported in part by the Swedish Research Council through
the Linnaeus centre of excellence UPMARC, Uppsala Programming for
Multicore Architectures, and in part by COST Action IC0805 ”Open European
Network for High Performance Computing on Complex Environments”.

task scheduling

Rosa M. Badia, Xavier Martorell
Computer Sciences
Barcelona Supercomputing Center
C/ Jordi Girona 1-3, Barcelona 08034, Spain
Email: {rosa.m.badia, xavier.martorell} @bsc.es

order to schedule for locality by placing a task at the core
where (parts of) the required data is already in cache.

The StarPU run-time [2] also incorporates estimated or
measured task execution and data transfer times in order to
make scheduling decisions for heterogeneous architectures,
where the placement in the system of the tasks can be crucial
to the overall performance.

However, none of these frameworks take performance
degradation due to oversubscription of shared resources into
account. The most obvious resources to manage are the shared
caches and the bandwidth to main memory. Consider for
example a type of task that consumes a lot of bandwidth.
If we keep scheduling an increasing number of these tasks to
cores sharing the same memory bus, we reach a point where
the bandwidth is saturated and it is not possible to get better
performance by running more of these tasks in parallel. If there
are several types of tasks in the application, a resource-aware
scheduler can choose a mix of tasks that together puts less
strain on the bandwidth.

Methods for measuring performance issues related to cache
and memory bandwidth sharing between different types of
processes have been developed in for instance [8], [9], and
[10]. In this paper, we consider the related problem of taking
shared resources into account when scheduling different types
of tasks within a single process. For the time being, we take
the pragmatic approach that the programmer specifies how
the task uses resources, and leave the option to handle this
automatically for future work.

Using a similar idea and implementation as for solving
resource scheduling, we are also able to solve a problem
where the data dependency model in OmpSs fails to detect
parallelism in some cases. The situation arises when two or
more tasks need to update the same shared memory address,
and thus need exclusive access to this memory, but the order in
which the updates occurs does not matter. There is currently no
way to specify such dependencies in the StarSs programming
model. There are two options in the current model; the tasks
must either be executed in the order in which they were
submitted, or the programmer needs to manage the exclusive
accesses manually. Executing tasks in the order in which they
were submitted can lead to lost opportunities for parallelism,
and thus large performance penalties, as observed in for
instance [11]. Managing the exclusive accesses manually is
both an extra burden on the programmer, and a potential source

of inefficiency.

In this paper we demonstrate how resource constraints can
be incorporated into the existing schedulers in the OmpSs
framework and that resource scheduling can lead to significant
performance gains. We also introduce a new dependency
clause, commutative, for denoting that tasks can execute in
any order but not concurrently. This leads to an efficient and
user-friendly solution to the problem, and renders the work-
around strategies suggested in [11] unnecessary.

II. THE RESOURCE MODEL

The resource model has two sides, the available resources,
which are the actual resources provided by the computer
system that is used, and the required resources, which are
the resources requested by the tasks. The resources can
be of different types. There are physical resources, which
are provided by the hardware such as cache sizes, memory
bandwidth, and memory size. Some of these can be detected
automatically by the run-time system, while others need to be
manually provided. The physical resources can be connected
with a hardware location, for example a bandwidth resource
is typically per socket. We also consider logical resources,
which can be set up by the programmer to mean for instance
accessing the hard drive or causing network traffic.

The declared amount of an available resource provides an
upper limit for how many of the tasks consuming that resource
can run at the same time. This requires some pre-knowledge of
the task behavior or tuning of the required resource parameter.
Typically, this kind of information can be obtained from
execution traces by observing how task execution times vary
depending on what the other threads are doing at the same
time. These kinds of observations were the motivation behind
this work.

Resources can also be used to bind a task to a certain node,
socket, core, or GPU. The ability to enforce that only a single
task can execute at a time can also be used for correctness, not
only for performance. For instance, if the order in which tasks
are executed does not matter but they modify the same data,
the tasks can be submitted without dependencies but require
exclusive access to a resource that represents write access to
this data.

III. COMMUTATIVE ACCESSES

As mentioned above, resources can be used for handling
commutative accesses, i.e, accesses that modify the same data,
but that can be executed in any order. However, applying
a resource model to a commutative access is unnecessarily
complicated. Since situations where for example several tasks
add results to the same variable are commonly occurring, we
simply include commutative among the access types that can
be annotated by the programmer and interpreted by the run-
time system. As has been noted for example in [4], [11], com-
mutative accesses cannot be efficiently represented in a DAG.
In Figure 1, we consider an application where computations
are performed for all pairs of data. The order does not matter.
If the commutative accesses are declared as inout in order to

Fig. 1. The left subfigure shows the DAG resulting from declaring all
dependencies as inout. The right subfigure shows an optimal scheme for the
actual commutative accesses.

create a DAG for the tasks, false dependencies are created
between tasks that access the same data. The resulting DAG
is shown in the left part of the figure. However, the right
part of the figure shows an optimal graph where a unique
combination of pairs is accessed at each level. As the figure
illustrates, failure to handle commutative accesses properly can
result in significant performance losses and reduced levels of
parallelism in an application.

IV. IMPLEMENTATION

We have developed prototype implementations of both the
resource-aware scheduling and the commutative accesses in
OmpSs. The fact that OmpSs employs DAGs for represent-
ing dependencies does not preclude an elegant and efficient
implementation.

A. Resources

The available resources are defined in a configuration file
with name and amount (integer). This file may be partly
automatically generated by probing the hardware and partly
supplied by the programmer. Resources can currently be
declared both globally and per socket. Since resources can be
defined per socket, this feature can also be used for affinity. By
declaring that a resource is only available on a certain socket,
all tasks requiring this resource will be pinned to that socket.
This feature could be expanded to include not only sockets
but also graphics cards and other accelerators, where pinning
certain tasks to certain accelerators could be very useful.

The required resources are implemented as an additional
clause when defining tasks in OmpSs. This clause defines
which resources the task requires, and the amount of resources.
The resources are specified by their name, which must also
appear in the configuration file, and the required amount
must be an integer. Figure 2 shows an example of how a
resource clause could appear. A task can require any number
of resources.

#pragma omp task input ([n]src) output([n]dst) \
resource (bandwidth, 2)
void copydata(int n, double xdst, double xsrc);

Fig. 2. A prototype syntax example for the resource clause in a task pragma.
The input and output clauses are used for detecting the data dependencies
between tasks.

By using an external configuration file, the same compiled
binary can be executed on several different systems, while the
scheduling constraints are adjusted in the configuration file
according to the available resources on the different systems.

In OmpSs, the Nanos++ runtime system is responsible
for different mechanisms such as context switching, idling,
blocking, and queuing, as well as scheduling tasks according
to the scheduling policy. All mechanisms are oblivious of the
actual policy in use, which can be configured at execution.

Nanos++ supports different task scheduling policies (ex-
tensible through a plugin interface) with centralized and
distributed queues, in the latter case optionally with work
stealing. The default scheduling policy uses a locality-aware
scheduling algorithm. It uses the data directionality hints
provided in the task directive and favors execution at the
thread/GPU or node where most of the referenced data is.

The affinity scheduling policy favors execution of tasks
where most of the accessed data currently resides. A global
directory stores the location of all data in the system. When a
new task is submitted, the scheduler computes an affinity score
for each logical device, and selects the one with the highest
affinity. In case of a tie, the task is placed in a global queue
which is accessed by all devices and the main host.

The global resource scheduling feature can be used by
all the OmpSs schedulers, while the per socket resource
declarations only apply for socket-aware schedulers.

The actual implementation is straight-forward. When a task
is checked for execution, a new test marks the task as not
ready if not all requested resources are available. Otherwise,
the resources are acquired during the resource check, and
released again when the task completes its execution. The
resource awareness is thus limited to knowing whether a
task is prevented from running, and is independent of which
scheduling strategy is selected in OmpSs.

Tasks in OmpSs can be suspended. If the task is using some
resources, it may in some cases, but not always, be desirable to
release these resources while the task is suspended. A resource
representing memory use should not be released, since the
memory will still be held during the suspension. Conversely,
a resource referring to cache use should be released, as the
task cannot hold on to the cache during suspension. Hence,
whether a resource is to be released or not when a task is
suspended is a property of the resource. This behavior can be
specified per resource in the configuration file.

Since the number of available resources is defined in an
external file, and varies with different computer systems, it is
possible for a task to require a larger quantity of a resource
than is available, preventing it from ever being executed. This

#pragma omp task input ([size] [NDIM]local_vec, [size]lidx) \
commutative ([NGLOB] [NDIM]global_vec)

int size, int idx[size],

float local_vec([size] [NDIM],

float global_vec[NGLOB] [NDIM]);

void scatter (

Fig. 3. The declaration of the scatter task in the SpecFEM3D application
using the commutative clause.

is detected at task submission, and generates a run-time error.

B. Commutative accesses

Figure 3 shows an example of how commutative accesses
are declared. The actual implementation of commutative ac-
cesses is very similar to that of resources. When a task in
the ready-queue is checked for execution and a commutative
access has been flagged, the run-time system tries to acquire a
lock on the memory address it needs exclusive access to. There
may be several such accesses for a single task, in which case
a lock is acquired for each. If there is a failure along the line
of lock acquisition, the already acquired locks (if any) have
to be released and the execution check moves to the next task
in the ready-queue. If successful, the task is started, and the
locks are released upon completion of the task execution.

V. EXPERIMENTAL RESULTS

In this section we present experimental results from using
the two new constructs; resource-constrained scheduling and
the commutative clause. All the tests were run on a 4 core
Intel 2600K processor, with 8 MB shared cache and hyper-
threading disabled, unless otherwise stated.

A. Resource-constrained scheduling

We present two examples that use the resource-constrained
scheduling feature to illustrate the possible performance bene-
fits. The first example contains two types of tasks; a copy task
that copies 100 MB of memory (more than fits in the cache)
from one location to another, and a computation task that
performs dummy computations and have very few memory
accesses.

Since the memory bandwidth is shared between the cores,
it is expected that the copy tasks will take much longer time
when several threads compete for the bandwidth. Instead of
running several tasks that use a lot of bandwidth at the same
time, we expect better efficiency if a single or few such tasks
run at the same time, and tasks whose performance does not
depend on memory bandwidth are scheduled on the other
threads.

To enforce such a scheduling, a resource called
bandwidth is defined, and the copy task is declared
to require one such resource, as in Figure 2. The available
quantity of these resources is then varied, to investigate
how the run-time of the application behaves. Figure 4 shows
execution traces of these runs. Here we have selected a number
of copy tasks that is large enough to show the behavior clearly,
and then we selected the number of computation tasks to be
large enough to occupy all threads even if only a single copy

Thread
O = N W

0 2 4 6 8 10 12 14
Time

(a) No limitation on the number of copy tasks (black).

Thread
O = N W

0 2 4 6 8 10 12 14
Time

(b) Only 3 copy tasks (black) can run at a time.

Thread

o = N W

0 2 4 6 8 10 12 14
Time

(c) Only 2 copy tasks (black) can run at a time.

Thread
O = N W

0 2 4 6 8 10 12 14
Time

(d) Only 1 copy task (black) can run at a time.
Fig. 4. Memory bandwidth benchmark: Execution traces with different limits

on the number of copy tasks that may execute at a time. Black triangles
represent copy tasks and red triangles represent computation tasks.

3
o
@2
£ 1
1000 1005 1010 1015 1020 1025 1030
Time

(a) Without constraints, allowing several file accesses
(black) concurrently.

Thread

O = N W

1000 1005 1010 1015

Time

1020 1025 1030

(b) Using resources to constrain file accessing tasks
(black) to at most 1 at a time.

Fig. 5. JPEG compression application: Execution traces for an application
that reads images from file and compresses them. There are three task types;
read (black), compress (red), and write (green). The writes are very quick and
barely visible here.

task is allowed to run at once. All the executions in Figure 4
perform the same amount of work and has the same number
of tasks, but due to bandwidth limitations, the execution time
varies with how many copy tasks are allowed to run at a
time. In this example, the execution time was reduced by
about 30% when the bandwidth demanding tasks were run
sequentially, as compared to when they run concurrently on
all four threads.

The second example we present that use the new resource-

// Gather nodes from displ to local
gather (size, idx, displ, elemvec);

// Perform computations on the local vector
process(elemvec);

// Add results into global vector accel

scatter(size, idx, elemvec, accel);
Fig. 6. Code for generating the three tasks used to process an element.
(75 h >» DO DOIDD D)

©5

04)

c "

2 4 Ly
m l¢) 1
0 DhO W
0.0 0.2 0.4 0.6 0.8 1.0

Time
(a) Using the inout clause.
IR IR R i

o5 W PP

04) ledaeiideq

£3 44 gty

c »)

[BPA e dided p i
1 ¢4 [

! pp g
0.0 0.2 0.4 0.6 0.8 1.0

Time
(b) Using the commutative clause.

Fig. 7. Execution traces for an n-body simulation illustrating the benefit of
using the information that certain accesses are commutative.

constrained scheduling is an application for converting raw
images to JPEG files. A large number (about a thousand)
of uncompressed images are read from file, compressed, and
written back to disk. This is performed by three different kind
of tasks called read, compress, and write. In this case we wish
to limit the number of tasks that access the disk at the same
time, that is, the read and write tasks.

Figure 5 shows small parts of execution traces from the
application, when resources are used to limit the file accesses,
and for comparison also when tasks are scheduled freely.

As can be seen in Figure 5a, the read tasks are wider when
several of them are executed at the same time. Comparing the
black triangles on thread 2 in the first part of the trace, these
are distinguishably shorter than the black triangles on thread
0 and 1.

We then introduce a resource for file accesses that both the
read and the write task requires, and a part of an execution
trace from running with these constraints is shown in Figure
5b. In this trace, the read tasks are always fast and notably
more uniform in length than in Figure Sa.

By using resources to constrain the read and write tasks,
reads became 30% faster and writes 40% faster, while the
compression tasks were unaffected. Since most of the total
run-time is spent on compression, speeding up the read and
write tasks have a smaller impact, but still gave a total speedup
of 6%.

B. The commutative clause

For evaluating the commutative clause, we also have two
different applications. The first application is an n-body sim-
ulation. The application uses a time-stepping algorithm where

3
B
g2t DR
£1

0 5 10 15 20 25 30
Time

(a) Using the concurrent clause and atomic updates.

0 5 10 15 20 25 30

0 5 10 15 20 25 30
Time

(c) Using the commutative clause.

Fig. 8. Execution traces for the SpecFEM3D benchmark, using three different
methods for writing the results into the shared vector.

each time step consists of calculating the force interactions
between all pairs of particles, and then moving the particles
according to these forces. For each particle, the forces from
all other particles acting upon this particle are accumulated.
If this accumulation is performed by a task that uses the
inout clause, the run-time system must accumulate the forces
in the order the tasks were created. This introduces false
dependencies, and is the situation illustrated in the left side
of Figure 1. Using the commutative clause instead, the
run-time system is free to schedule the accumulation of the
forces in any order, and can run the tasks as in the right-hand
side of Figure 1 instead.

Figure 7 shows execution traces of an simulation of 8192
particles divided up in blocks of 512 particles each, run
for 4 time steps. In Figure 7a, the lack of parallelism in
the beginning and in the end of the run is evident. This
corresponds to the narrow parts in the beginning and the
end of the DAG in the left-hand side of Figure 1. When the
commutative clause is used instead, the tasks are much
more densely packed, as shown in Figure 7b. In this case,
using the commutative clause instead of the inout clause
gave a speedup of 13%.

We have also used the commutative clause in an applica-
tion software for simulating earthquakes called SpecFEM3D.
This software uses a finite element method with large el-
ements, consisting of 5 x 5 x 5 nodes each. The part of
the application that is interesting for our case is the local
computations on each element, shown as pseudo-code in
Figure 6. The calculations on each node are performed by
first gathering the nodes that belong to the element from a
vector with global indexing of all the nodes, into a local vector.
The element is then processed by calculations on this local
vector, and when the computations are finished, the results are

accumulated in another large vector using the global indexing.
This is performed in three different tasks; gather, process,
and scatter. Several different scatter tasks write to the same
elements in the global output vector, as nodes are shared
between several elements. The order in which the results are
accumulated does not matter, but two tasks must not write to
the same element at the same time.

This mutual exclusion can be managed in different ways in
the current version of OmpSs. We will compare our solution
using the new commutative clause to two other options;
(1) using the concurrent clause, or (ii) using the inout
clause. In the first case, the scatter tasks can run in any order,
and at the same time, but all updates need to be performed
atomically. The drawback of this is that atomic updates are
more expensive than direct writes, especially when there is
contention. In the other case, the scatter tasks are executed in
the order they were submitted, as the run-time system cannot
assume that it is safe to reorder the tasks. This may cause bad
scheduling.

An alternative solution is to introduce a resource of which
there is only one available, and use the concurrent clause
on the output vector but at the same time require this resource.
This would cause the tasks to execute one at a time, and in
any order. However, by using the new commutative clause
instead, the mutual exclusion will automatically be associated
with the memory address, and it is not necessary to introduce
resources and specify which tasks requires them. This is more
elegant, requires less writing, and does not rely on using
resources for correctness.

Figure 8 shows small parts of execution traces for the
three methods. A single gather-compute-scatter cycle is shown,
while the full execution contains many such steps, together
with other tasks. Here, the black triangles represent the scatter
tasks, red tasks are computation tasks, and the barely visible
green tasks are gather tasks. In 8a, the scatter tasks are much
slower than in the other methods, because of the additional
costs from using the compare-and-swap instruction. Figure 8b
shows the behavior when the scatter tasks have an inout
access to the output vector. Here the scatter tasks are much
faster, but since they must execute in a predefined order, almost
all of them are executed first after all the other tasks have
finished. A few scatter tasks are actually executed on thread
0, after the first computation task (red triangle), but since the
scatter tasks must execute in a given order, and they have
dependencies on the computation tasks, the scatter task that
depend on the last computation task is encountered, and the
remaining scatter tasks must wait to the end. In average it is
expected that about half of the scatter tasks must execute at
the end, but in practice computation tasks that are added early
are executed late by the default scheduler, causing most scatter
tasks to be pushed to the end. Hence, the execution trace in
this figure does not show a particularly unlucky scheduling,
but a representative for the common case.

In this application, there are no other tasks that run between
the computation tasks and the next step, so this causes a
section where a single thread executes scatter tasks, and the

Thread
-
3
o~
e

Time
(a) Worst case: First run all tasks that shares resources,
then run the remaining, resource-independent, tasks.

toy

Thread

tr/x

Time
(b) Best case: Constrain the tasks that share resources,
and fill remaining threads with the remaining tasks.

Fig. 9. The worst and best case for running tasks that shares resources.
The total time spent on resource-independent tasks (¢,,) is the same in both
figures, while the time for running resource-sharing tasks (¢,) is divided by
a speedup factor av when the scheduling is resource constrained.

other threads are idle.

Using the commutative clause reduced the time by 40%
compared to atomic updates and by 10% compared to inout
dependencies.

VI. ANALYSIS

Here we analyze and predict what speedup can be achieved
by taking resource sharing into account when scheduling, by
finding the upper limit in a best-case scenario. We consider a
single resource, which is used to decide how many tasks of a
certain type that may run concurrently.

Let all tasks be divided into two categories, one for tasks
that are limited by the resource, and one for the other tasks.
The run-time for tasks not limited by a resource is assumed
to be independent of which other tasks are running. Tasks that
are limited by a resource are assumed to run faster when they
are not all running at the same time. We let a denote the mean
speedup of the resource-limited tasks when they are running
on n, threads instead of on all available threads n.

To find the upper limit of the possible speedup, we consider
the best and worst case scenarios, as illustrated in Figure 9. In
the worst case scenario all tasks that share a resource run at
the same time. In the best case scenario, tasks that require a
resource are mixed with other tasks. Also, the relation between
time spent in resource constrained tasks ¢, and time spent in
unconstrained tasks ¢, should be such that the execution of
both task types finish at the same time when all the resource
constrained tasks are run on n, processing units while the
remaining n—n, threads execute the unconstrained tasks. That
is, the relation should be

ty tu

an,.

n—n,

If there are more resource constrained tasks than this, there
are no unconstrained tasks to fill the remaining threads with,
and there will be idle threads. On the other hand, if the time
spent on resource constrained tasks is smaller, it is a smaller
fraction of the total run-time, and speeding them up will affect
the total run-time less.

Under these conditions, the expected speedup from resource
scheduling is

Ny
1+ —(a—-1).
+ 2 (@ 1)

Applying this for the JPEG compression application, we
have n, = 1, n = 4, a = 1.30, and the best possible speedup
is found to be 7.5 %, quite close to the speedup of 6 % we
achieved in the experiment.

VII. CONCLUSIONS

We have proposed two simple additions to the OmpSs
programming model. First we have introduced the concept
of resources into OmpsSs, to provide a method for con-
straining too many tasks that share common resources from
being scheduled at the same time. We have made a prototype
implementation of this feature in OmpSs, and present two
example applications where the total run-time was shortened
by 30% by avoiding depletion of the memory bandwidth in the
first case and by 6% in the second, by serializing IO accesses.

Secondly, we have added a new dependency clause to
OmpSs; commutative. This allows tasks to be executed in
any order but not at the same time. By simply changing the
directive inout to commutative for tasks that performs
commutative accesses, we were able to achieve a speedup
of 13% in a n-body simulation application, and 10% in
SpecFEM3D, a software for earthquake simulations.

REFERENCES

[1] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas, “OmpSs: a proposal for programming heteroge-
neous multi-core architectures,” Parallel Processing Letters, vol. 21,
no. 2, pp. 173-193, 2011.

[2] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
a unified platform for task scheduling on heterogeneous multicore
architectures,” Concurrency and Computation: Practice and Experience,
vol. 23, no. 2, pp. 187-198, 2011.

[31 A. YarKhan, J. Kurzak, and J. Dongarra, “QUARK Users’ Guide:
QUeueing And Runtime for Kernels,” ICL, University of Tennessee,
Tech. Rep. ICL-UT-11-02, 2011.

[4] M. Tillenius and E. Larsson, “An efficient task-based approach for
solving the n-body problem on multicore architectures,” in PARA 2010:
State of the Art in Scientific and Parallel Computing. University of
Iceland, Reykjavik, 2010, 4 pp.

[5] M. Tillenius, “Leveraging multicore processors for scientific comput-
ing,” Licentiate thesis, Department of Information Technology, Uppsala
University, Sep. 2012.

[6] A. Zafari, M. Tillenius, and E. Larsson, “Programming models based
on data versioning for dependency-aware task-based parallelisation,” in
CSE 2012: The 15th IEEE International Conference on Computational
Science and Engineering, Paphos, Cyprus, 2012, 6 pp.

[71 H. Vandierendonck, G. Tzenakis, and D. S. Nikolopoulos, “A unified
scheduler for recursive and task dataflow parallelism,” in PACT, 2011,
pp. 1-11.

[8] C. Xu, X. Chen, R. P. Dick, and Z. M. Mao, “Cache contention and
application performance prediction for multi-core systems,” in ISPASS,
2010, pp. 76-86.

[9]1 D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten, “Cache
pirating: Measuring the curse of the shared cache,” in ICPP, 2011, pp.
165-175.

[10] ——, “Bandwidth bandit: Understanding memory contention,” in IS-
PASS, 2012, pp. 116-117.

C. Niethammer, C. Glass, and J. Gracia, “Avoiding serialization effects
in data / dependency aware task parallel algorithms for spatial decompo-
sition,” in Parallel and Distributed Processing with Applications (ISPA),
2012 IEEE 10th International Symposium on, july 2012, pp. 743-748.

(11]

