Adaptive discontinuous Galerkin multiscale methods for elliptic problems:

Energy norm a posteriori error estimate

Daniel Elfverson daniel.elfverson@it.uu.se

Division of Scientific Computing
Uppsala University
Sweden

Outline

Background

Model problem
Discontinuous Galerkin (DG)

Multiscale method

Framework for Multiscale methods

Discretization

Decay of the fine scale solutions

Convergence

A posteriori error estimate

Adaptivity

Conclusions

Future work

Papers

 D. Elfverson, E. Georgoulis and A. Målqvist, Adaptive discontinuous Galerkin multiscale method: Energy norm a posteriori error estimate.

Model problem

Poisson's equation

Given a polygonal domain $\Omega \subset \mathbf{R}^d$. We want to find u such that

$$-\nabla \cdot \alpha \nabla u = f \text{ i } \Omega,$$

$$n \cdot \nabla u = 0 \text{ on } \partial \Omega,$$

where α is bounded $0 < \alpha_0 \le \alpha(x) \le \alpha^0$ and $f \in L^2(\Omega)$. L^2 has the inner product $(u,v) = \int_{\Omega} uv \, dx$ and norm $\|u\|^2 = \int_{\Omega} u^2 \, dx$.

Figure: Permeabilities α projection in log scale.

Weak formulation using a discontinuous Galerkin discretization (SIPG)

- Let Ω be subdivided into the partition $\mathcal{K} = \{\mathcal{K}\}$ and Γ^I be the union of all interior edges.
- Let also \mathcal{V}^h be the space of all discontinuous piecewise linear polynomials.

The bilinear form and right hand side are defined as:

$$\begin{aligned} a(v,w) &= \sum_{k \in \mathcal{K}} (\alpha \nabla v, \nabla w)_{\mathcal{K}} - \sum_{e \in \Gamma} (\mathbf{n} \cdot \{\alpha \nabla v\}, [w])_{e} \\ &- \sum_{e \in \Gamma'} (\mathbf{n} \cdot \{a \nabla w\}, [v])_{\partial \mathcal{K}} + \sum_{e \in \Gamma'} \frac{\sigma_{e}}{h_{e}} ([v], [w])_{e}. \\ l(v) &= (f, v). \end{aligned}$$

The discontinuous Galerkin method reads: find $u_h \in \mathcal{V}^h$ s.t

$$a(u_h, v) = I(v)$$
 for all $v \in \mathcal{V}^h$

Why do we need to resolve the coefficients?

Example with periodic coefficient

Consider Possion's equation with period coefficient $\alpha=\alpha(x/\epsilon)$. For the finite element method, we have (Hou-Wu-Cai),

$$||\sqrt{\alpha}\nabla(u-u_h)||_{L^2(\Omega)}\leq C\frac{H}{\epsilon}||f||_{L^2(\Omega)}$$

- Need $H \ll \epsilon$ for reliable results.
- To computational expensive to solve on a single mesh for many applications e.g flow in porous media and in composite materials.
- Want eliminate the ϵ dependence by using a multiscale method (Målqvist-Peterseim).

Framework for Multiscale methods

The problem is split into one coarse and fine scale contribution $\mathcal{V}^h = \mathcal{V}_c \oplus \mathcal{V}_f^h$.

- Let subdivide Ω into a coarse mesh $\mathcal{K}_c = \{\mathcal{K}_c\}$.
- $V_c = span\{\phi_i\} = \mathcal{I}_c \mathcal{V}^h$ and $\mathcal{V}_f^h = \{v \in \mathcal{V}^h : \mathcal{I}_c v = 0\}$, where $\mathcal{I}_c : \mathcal{V}^h \to \mathcal{V}_c$ is a inclusion operator.
- Define the map $\mathcal{T}: \mathcal{V}_c \to \mathcal{V}_f^h$ as $a(\mathcal{T}v_c, v_f) = -a(v_c, v_f)$.

Split $U = U_c + TU_c + U_f$ and $v = v_c + v_f$ where $u_c \in \mathcal{V}_c$, $v_f \in \mathcal{V}_f^h$.

$$a(U_c + \mathcal{T}U_c + U_f, v_c + v_f) = I(v_c + v_f)$$
 for all $v_c \in \mathcal{V}_c$ and $v_f \in \mathcal{V}_f^h$

Fine scale

Let $v_c = 0$ to get the fine scale equations

$$a(\mathcal{T}U_c + U_f, v_f) = I(v_f) - a(U_c, v_f),$$

split into two equations

$$\begin{split} &a(\textit{U}_f,\textit{v}_f) = \textit{I}(\textit{v}_f) \quad \forall \textit{v}_f \in \mathcal{V}_f^h, \\ &a(\mathcal{T}\textit{U}_c,\textit{v}_f) = -a(\textit{U}_c,\textit{v}_f) \quad \forall \textit{v}_f \in \mathcal{V}_f^h. \end{split}$$

Coarse scale

Let $v_f = 0$ on the coarse scale

$$a(U_c + \mathcal{T}U_c, v_c) = I(v_c) - a(U_f, v_c) \quad \forall v_c \in \mathcal{V}_c$$

Approximation of TU_c and U_f

Because of the local behavior in \mathcal{V}_f^h , $\mathcal{T}U_c$ and U_f can be solved on a subset ω_i^L instead of the whole domain Ω i.e. $V_f^h(\omega_i^L) \subset V_f^h$ (Målqvist-Peterseim).

Multiscale method discretization

- Let $\mathcal{I}_c = P_c$ be the piecewise linear L^2 -projection onto the coarse mesh.
- $\tilde{U}_f = \sum_{i \in \mathcal{N}} \tilde{U}_{f,i}$ where \mathcal{N} is the number of nodes.
- \mathcal{M}_i be all j s.t $\phi_j = 1$ in node i.
- Let also $\Phi_i = \sum_{j \in \mathcal{M}_i} \phi_j$

Fine scale equations

For all $i \in \mathcal{N}$: find $\tilde{\mathcal{T}}\phi_j \in \mathcal{V}_f^h(\omega_i^L)$ and $U_{f,i} \in \mathcal{V}_f^h(\omega_i^L)$ for $j \in \mathcal{M}_i$ s.t

$$\begin{split} &a(\tilde{\mathcal{T}}\phi_j, v_f) = -a(\phi_j, v_f), \quad \forall v_f \in \mathcal{V}_f^h(\omega_i^L), \\ &a(\tilde{U}_{f,i}, v_f) = I(\Phi_i v_f), \quad \forall v_f \in \mathcal{V}_f^h(\omega_i^L). \end{split}$$

Coarse scale equation

Find $U_c \in \mathcal{V}_c$ s.t

$$a(U_c + \tilde{\mathcal{T}}U_c, v_c) = I(v_c) - (\tilde{U}_f, v_c), \quad \forall v_c \in \mathcal{V}_c.$$

Decay in V_f

Problem setting

- Let the computational domain be ω_i^L for $L=1,2,\ldots,N$ where $\omega_i^L\subseteq\Omega$.
- Let also $\Phi_i = \sum_{j \in \mathcal{M}_i} \phi_j$
- The problem reads: find $U \in \mathcal{V}^h(\omega_i^L)$

$$a(U, v) = -a(\Phi_i, v), \quad \forall v \in \mathcal{V}^h(\omega_i^L).$$

• The reference solution U_{ref} is the solution computed on $\omega_i^N = \Omega$.

Figure: Permeabilities α .

Figure: The error in relative error in broken energy norm with respect to the path size.

Figure: Example of $U + \Phi_i$ computed on 2 layer patches.

Convergence

Problem setting

- Consider the model problem (Poisson's equation)
- Keeping the refinement level constant and increasing the patch sizes L = 1, ..., N for all local problems.
- The reference solution U_{ref} is the DG solution computed on the fine scale.

Figure: Permeabilities α .

Figure: The reference solution to the model problem using the permeabilities One, Period and SPE

Convergence

Figure: The relative error in broken energy norm with respect to the patch sizes.

A posteriori error estimate

- Let $\mathscr{E} = u U$ where $U = U_c + \tilde{\mathcal{T}}U_c + U_f$.
- $U_i = \sum_{j \in \mathcal{M}_i} U_{c,j} (\phi_j + \tilde{\mathcal{T}} \phi_j) + U_{f,i}$.
- $\lesssim \Leftrightarrow \leq c$ when the constant c is independent of H, h and L.

Theorem (A posteriori error estimate)

The error $\mathscr E$ satisfies the estimate

$$\big(\sum_{K \in \mathcal{K}} ||\sqrt{\alpha} \nabla \mathcal{E}||_{L^2(K)}^2\big)^{1/2} \lesssim \sum_{K \in \mathcal{K}_c} \rho_{h,K}^2 + \sum_{i \in \mathcal{N}} \rho_{L,\omega_i^t}^2,$$

where

$$\begin{split} \rho_{L,\omega_{i}^{L}}^{2} &= \sum_{e \in \Gamma^{B}(\omega_{i}^{L}) \setminus \Gamma^{B}} \rho_{L,\omega_{i}^{L},e}^{2}, \\ \rho_{L,\omega_{i}^{L},e} &= \frac{H_{\omega_{i}^{L}}}{\sqrt{h_{e}\alpha_{0}}} ||n \cdot \{\alpha \nabla U_{i}\}||_{L^{2}(e)} + \frac{H_{\omega_{i}^{L}}\sqrt{\sigma_{e}}}{h_{e}^{2}} ||[U_{i}]||_{L^{2}(e)}, \end{split}$$

and

$$\begin{split} \rho_{h,K}^2 &= \sum_{K \in \mathcal{K}_c} \frac{h}{\sqrt{\alpha_0}} ||f + \nabla \cdot \alpha \nabla U||_{L^2(K)} \\ &+ \sum_{e \in \Gamma^I(\mathcal{K}_c)} \left[\sqrt{\frac{h_K}{\alpha_0}} ||n \cdot [\alpha \nabla U]||_{L^2(e)} + \sqrt{\frac{\sigma}{h_K}} ||[U]||_{L^2(e)} \right] \\ &+ \sum_{e \in \Gamma^B(\mathcal{K}_c) \setminus \Gamma^B} \frac{1}{2} \left[\sqrt{\frac{h_K}{\alpha_0}} ||n \cdot [\alpha \nabla U]||_{L^2(e)} + \sqrt{\frac{\sigma}{h_K}} ||[U]||_{L^2(e)} \right]. \\ &+ \sum_{e \in \Gamma^B(\mathcal{K}_c) \cap \Gamma^B} \sqrt{\frac{h_K}{\alpha_0}} ||n \cdot \alpha \nabla U||_{L^2(e)}, \end{split}$$

- $\rho_{L,\omega_{+}}^{2}$ measure the effect of the truncated patches.
- $\rho_{L,K}^2$ measure the effect of the refinement level.

17/24

Adaptivity

- Consider the model problem
- Using the a posteriori error estimate to construct an adaptive algorithm.
- Start with one refinement and 2 layers patches everywhere.
- Refine 30% of the coarse elements and increase 30% of the patch sizes in each iteration.

Figure: Permeabilities α projection in log scale.

Figure: The relative error in broken energy norm with respect to number of iterations. Iteration 0 corresponds to the standard DG solution and iteration 1 the start values in the adaptive algorithm.

Figure (a) and (b) illustrates where the adaptive algorithm puts most effort

- Figure (a) corresponds to the refinements
- Figure (b) corresponds to the patch sizes.
- Figure (c) is the permeability α .

Figure: The relative error in broken energy norm with respect to the mean value of the degrees of freedom for the fine scale problems.

Conclusions

Advantage

- The fine scale problems are perfectly parallelizable.
- The exponential decay in the fine scale solution allows small patches.
- The error estimate and the adaptivity algorithm focus computational effort in critical areas.
- Very high aspect ratio in α can be solved.
- Possible to construct a conservative flux on the coarse scale.

Future work

- Using a discontinuous Galerkin method with weighted average.
- Solve the local problems iteratively with a appropriate preconditioner. Condition number scale nicely with H,h but not with $\alpha_{max}/\alpha_{min}$.
- Convergence of the discontinuous Galerkin multiscale method.
- 3D implementation.

Questions