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Model problem

Given a polygonal domain Ω ⊂ Rd : find u ∈ H1(Ω) such that

−∇ · α∇u = f in Ω,

n · α∇u = 0 on ∂Ω,

for 0 < αmin ≤ α(x) ∈ L∞(Ω), f ∈ L2(Ω) and
∫

Ω
f dx = 0.

(a) αmax
αmin

∼ 105 (b) αmax
αmin

∼ 105 (c) αmax
αmin

∼ 105 (d) αmax
αmin

∼ 106

Figure: Permeabilities α projected in log scale and taken from the Society of
Petroleum Engineer http://www.spe.org/.
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Discontinuous Galerkin discretization

• Consider the partition K = {K} and let Γ be the union of all edges.

• Let also Vh be the space of all discontinuous piecewise (bi)linear
polynomials.

• Define the weighted average and jump on face e as:

{v}w =
α+v−

α+ + α−
+

α−v+

α+ + α−
and [v ] = v+ − v−.

K⁻ K⁺

e
α⁻ α⁺

(a) Here K = {K+,K−} and ΓI = {e}
K⁻K⁺ e

{v} [v]

v|
K⁺

v|
K⁻

(b) Example of {v} and [v ]
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Let

a(v , z) =
∑
K∈K

(α∇v ,∇z)L2(K) −
∑
e∈ΓI

(
(n · {α∇v}w , [z ])L2(e)

+ (n · {α∇z}w , [v ])L2(K) −
σeγe
he

([v ], [z ])L2(e)

)
,

F (v) = (f , v)L2(Ω).

where
|||v |||2 =

∑
K∈K

‖
√
α∇v‖2

L2(K) +
∑
e∈Γ

σeγe
h
‖[v ]‖2

L2(e)

(One scale) DG method

Find uh ∈ Vh such that

a(uh, v) = F (v), for all v ∈ Vh.
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Example

Let α = α(x/ε). We have the known result for periodic coefficients

|||u − uH ||| ≤ C
H

ε
||f ||L2(Ω).

• Need H < ε for reliable results, computational prohibitive to solve on
a single mesh.

Note: From now on we only consider 0 < αmin ≤ α(x) ∈ L∞(Ω) without
any assumtions on scale or periodicity.

Objective

• Eliminate the ε-dependence via a multiscale method i.e.,

|||u − ums
H ||| ≤ C (f )H.

• Construct an adaptive algorithm to focus computational effort in
critical areas.
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Some known methods

• Upscaling techniques: Durlofsky et al. 98, Nielsen et al. 98.

• Variational multiscale method: Hughes et al. 95, Arbogast 04,
Larson-Målqvist 05, Nolen et al. 08, Nordbotten 09.

• Multiscale FEM: Hou-Wu 96, Efendiev-Ginting 04, Aarnes-Lie 06.

• Residual free bubbles: Brezzi et al. 98.

• Heterogeneous multiscale method: Engquist-E 03, E-Ming-Zang 04,
Ohlberger 05.

• Equation free: Kevrekidis et al. 05.

• Metric based upscaling: Owhadi-Zang et al. 06.

• GFEM: Babuška-Lipton 2011.

Remarks

• Local approximations (in parallel) on a fine scale are used to modify
a coarse scale space or equation.
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Variational multiscale framework

• Consider a coarse mesh KH ⊂ Kh.

• Let VH = span{φi} = ΠHVh and Vf = {v ∈ Vh : ΠHv = 0}, where
ΠH : Vh → VH is the L2 projection onto the coarse mesh.

• The problem is split into one coarse and fine scale contribution
Vh = VH ⊕ Vf .
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(c) uH
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(d) ufh
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View solution as span of modified basis functions
• Define the map T : VH → Vf as

a(T vH , vf ) = −a(vH , vf ), ∀vH ∈ VH , vf ∈ Vf .
• We let Vms = VH + T VH = span{φi + T φi}.
• φi + T φi can be viewed as a coarse modified basis function.
• From the multiscale map we have, Vh = Vms ⊕a Vf .
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Localization of T φi

• For each i we have, a(T L
i φi , v) = −a(φi , v) for all v ∈ Vf (ωL

i ),
solved on local Dirichlet or Neumann patches.

• Define the localized multiscale space by, Vms
L := span{φi + T L

i φi}.

ω
1

i

i

i

ω
2

Figure: Example of a one layer patch ω1
i and a two layer patch ω2

i
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A priori results

Consider the problem: find ums
H,L ∈ Vms

L = span{φi + T L
i φi} such that

a(ums
H,L, v) = F (v), for all v ∈ Vms

L .

Lemma (Decay of modifed basisfunction)

For T L
i φi ∈ Vf (ωL

i ), there exist a, 0 < γ < 1, such that

|||T φi − T L
i φi ||| . γL|||φi + T φi |||ωL

i
.

Theorem

For ums
H,L ∈ Vms

L , there exist a, 0 < γ < 1, such that

|||u − ums
H,L||| . |||u − uh|||+ ||H(f − ΠH f )||L2 + H−1(L)d/2γL||f ||L2 .

Note: Theorem holds without any assumptions on scales or regularity!
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Numerical verification
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Figure: #dofs vs |||uh − ums
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• Choose L = d2 log( 1
H )e.

• Let the right hand side be:
f = 1 + sin(πx) + sin(πy).

• Let H = 2−m for
m = {1, 2, 3, 4, 5}.

• Reference mesh is 2−7.

Figure: Permeabilies are piecewise constant on a mesh with size 2−5, with ratio
αmax/αmin = {1, 10, 7 · 106}
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Adaptivity
• Construct an adaptive algorithm to automatically tune the fine mesh

size and the patch sizes.

• We now consider a non-symmetric coarse scale problem, using local
Neumann problems for the modified basis functions, and using a
right hand side correction.

Figure: Example of an adapted mesh with varying patch sizes.
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• Let N be the set of all coarse nodes and Mi be the set of all j such
that φj(xi ) = 1.

• Let Ṽms = span{φj + T L(i)
i φj}, with varing patch sizes.

• Let U f
h =

∑
i∈N U f

h,i be a right hand side correction obtaind by

solving: find U f
h,i ∈ Vf (ω

L(i)
i ) such that

a(U f
h,i , v) = F (v), for all v ∈ Vf (ω

L(i)
i ).

Coarse equation (with right hand side correction)

We consider: find Ums ∈ Ṽms such that

a(Ums , v) = F (v)− a(U f
h , v), for all v ∈ VH .

where the multiscale solution is U = Ums + U f
h .
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Theorem (A posteriori error estimate for ADG-MS)

Let Ui :=
∑

j∈Mi
Ums
j + Uf ,i . Then,

|||∇(u − U)|||2 .
∑

KH∈KH

ρ2
h,KH

+
∑
i∈N

ρ2
L,ωL

i
,

where

ρ2
h,KH

=
∑

K∈K(KH )

hK√
α0
||f +∇ · α∇U||L2(K),

+

√
hK
α0

(
||(1− wK(e))n · [α∇U]||L2(∂K) + ||σeγe

he
[U]||L2(∂K\ΓB )

)
,

ρ2
L,ωL

i
=

∑
e∈ΓB (ωL

i )\ΓB

(
HωL

i√
hKα0

(
||n · {α∇Ui}w ||L2(e) +

σeγe
he
||[Ui ]||L2(e)

))
,

• ρ2
L,ωL

i
measures the effect of the truncated patches.

• ρ2
h,K measures the effect of the refinement level.
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Numerical experiment

• Refine 30% of the coarse elements and increase 30% of the patch
sizes in each iteration.

• Coarse mesh is 32× 32 elements and reference grid is 256× 256
elements.

• The right hand side is −1 in the lower left corner and 1 in the upper
right.

(a) αmax
αmin

∼ 105 (b) αmax
αmin

∼ 105 (c) αmax
αmin

∼ 105 (d) αmax
αmin

∼ 106

Figure: Permeabilities α projection in log scale.
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(a) The relative error in broken energy
norm with respect to number of iter-
ations. Iteration 0 corresponds to the
standard DG solution and iteration 1 the
start values in the adaptive algorithm.
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(b) The relative error in broken energy
norm with respect to the mean value of
the degrees of freedom for the fine scale
problems.
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Conclusions:

• The exponential decay in the modifed basis function allows small
patches which are perfectly parallelizable.

• The error estimate and the adaptivity algorithm focus computational
effort in critical areas.

• Get optimal convergance for the (crude) SPE Benchmark problem.

• DG: Flexibility in fine scale approximation spaces, boundary
conditions and good conservation properties of the state variable

Futurework

• Using DG on the coarse scale but CG on the fine scale to save
computational work.

• Construct an adaptive algorithem that increases the patch sizes only
in the direction where the error is large.

18 / 18


	Model problem and discretization
	Discontinuous Galerkin Multiscale method
	A priori results
	Adaptivity
	Conclusions

