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Model problem
Given a polygonal domain Q C RY: find u € H*(Q) such that
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for 0 < amin < ax) € L®(Q), f € L%(Q) and Jofdx=0.
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Figure: Permeabilities o projected in log scale and taken from the Society of
Petroleum Engineer http://www.spe.org/.
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Discontinuous Galerkin discretization

o Consider the partition K = {K} and let ' be the union of all edges.

e Let also V), be the space of all discontinuous piecewise (bi)linear
polynomials.

o Define the weighted average and jump on face e as:
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Discontinuous Galerkin Multiscale method

a(v,z) = > (aVv,V2)p) — D ((n A{aVvhw, [2]) )
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(One scale) DG method

Find up € V4, such that

a(up, v) = F(v), forall v €Vp.
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Example

Let @ = a(x/€). We have the known result for periodic coefficients

H
llu = unll] < C—Ifll2@)-

e Need H < ¢ for reliable results, computational prohibitive to solve on
a single mesh.

Note: From now on we only consider 0 < amin < ax) € L*°(2) without
any assumtions on scale or periodicity.

Objective
o Eliminate the e-dependence via a multiscale method i.e.,
l[lu—uiPlll < C(FH.

e Construct an adaptive algorithm to focus computational effort in
critical areas.



Discontinuous Galerkin Multiscale method

Some known methods

e Upscaling techniques: Durlofsky et al. 98, Nielsen et al. 98.

e Variational multiscale method: Hughes et al. 95, Arbogast 04,
Larson-Mélqvist 05, Nolen et al. 08, Nordbotten 09.

e Multiscale FEM: Hou-Wu 96, Efendiev-Ginting 04, Aarnes-Lie 06.
o Residual free bubbles: Brezzi et al. 98.

o Heterogeneous multiscale method: Engquist-E 03, E-Ming-Zang 04,
Ohlberger 05.

e Equation free: Kevrekidis et al. 05.
o Metric based upscaling: Owhadi-Zang et al. 06.
e GFEM: Babuska-Lipton 2011.

Remarks

e Local approximations (in parallel) on a fine scale are used to modify
a coarse scale space or equation.
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Variational multiscale framework

e Consider a coarse mesh Ky C KCp.
o Let Vy = span{¢;} = NyVy and Ve = {v € V), : Myv = 0}, where
My : Vy — Vy is the L2 projection onto the coarse mesh.

e The problem is split into one coarse and fine scale contribution
Vy=Vy D V.

(c) un

(€) up = uy + uf

Conclusions
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View solution as span of modified basis functions
Define the map 7 : Vy — Vr as

a(TvH, Vf) = —a(vH, V,r)7 Yvy € Vy, vr € V.

We let V™ = Vi + TVy = span{¢; + T ¢;i}.
o; + T ¢; can be viewed as a coarse modified basis function.
e From the multiscale map we have, Vy, = Vs @, Vr.
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Localization of T ¢,

e For each i we have, a(T;t¢;, v) = —a(¢;, v) for all v € Ve(wh),
solved on local Dirichlet or Neumann patches.

o Define the localized multiscale space by, V™ := span{¢; + T:-¢;}.

N
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Figure: Example of a one layer patch w} and a two layer patch w?
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A priori results
Consider the problem: find ufj* € V™ = span{¢; + T:t¢:} such that

a(ufy®,v) = F(v), forallve V™.

Lemma (Decay of modifed basisfunction)

For Tt¢; € Ve(wh), there exist a, 0 < v < 1, such that

I17¢i — T illl S v Ml1gi + Tilllor-

Theorem
For uf}s, € V™, there exist a, 0 < v < 1, such that

= w7 IS Ml = aalll + HE = Nl + HHL) Y245

Note: Theorem holds without any assumptions on scales or regularity!
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Numerical verification

—+— Ones

—6— Period
—a—SPE

107 et = = = H-convergance

Choose L = [2log(#)].
Let the right hand side be:
f =1+ sin(wx) + sin(wy).
Let H=2"" for
m={1,2,3,4,5}.
Reference mesh is 277.

Figure: Permeabilies are piecewise constant on a mesh with size 27°, with ratio
O5ma)</amin - {1, 10, 7 - 106}



Adaptivity

Adaptivity
e Construct an adaptive algorithm to automatically tune the fine mesh
size and the patch sizes.
e We now consider a non-symmetric coarse scale problem, using local

Neumann problems for the modified basis functions, and using a
right hand side correction.

Figure: Example of an adapted mesh with varying patch sizes.



Adaptivity

e Let NV be the set of all coarse nodes and M; be the set of all j such
that ¢;(x;) = 1.

e Let V™ = span{¢; + 77L(i)<bj}, with varing patch sizes.

o Let U}: =D ien U,f’,- be a right hand side correction obtaind by
solving: find U};,- € V,c(w,-L(i)) such that

a(Uf;,v)=F(v), forallve Vf(wiL(i)).

Coarse equation (with right hand side correction)

We consider: find U™ € V™ such that
a(U™,v) = F(v) — a(Uf,v), forall veVy.

where the multiscale solution is U = U™ + Uf.



Adaptivity

Theorem (A posteriori error estimate for ADG-MS)

Let U; .= Zje/vl,- U™ + Ur,i. Then,
V(= OIPS D phy + D ALt
KneKh iEN
where

Prka = D ﬁ|\f+v aVU||x

Kek(Ky)
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e p? | measures the effect of the truncated patches.
L,w;

e p? . measures the effect of the refinement level.
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Numerical experiment

e Refine 30% of the coarse elements and increase 30% of the patch
sizes in each iteration.
o Coarse mesh is 32 x 32 elements and reference grid is 256 x 256

elements.
e The right hand side is —1 in the lower left corner and 1 in the upper
right.
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Figure: Permeabilities o projection in log scale.

Adaptivity Conclusions
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Relative error in energy norm

2
lterations

(a) The relative error in broken energy
norm with respect to number of iter-
ations. lteration O corresponds to the
standard DG solution and iteration 1 the
start values in the adaptive algorithm.
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Relative error in energy norm
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(b) The relative error in broken energy
norm with respect to the mean value of
the degrees of freedom for the fine scale
problems.

(c) Refinement level, hyx (d) Layers, L (e) Permeability, o
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Conclusions

Conclusions:

e The exponential decay in the modifed basis function allows small
patches which are perfectly parallelizable.

e The error estimate and the adaptivity algorithm focus computational
effort in critical areas.

o Get optimal convergance for the (crude) SPE Benchmark problem.

e DG: Flexibility in fine scale approximation spaces, boundary
conditions and good conservation properties of the state variable

Futurework

e Using DG on the coarse scale but CG on the fine scale to save
computational work.

e Construct an adaptive algorithem that increases the patch sizes only
in the direction where the error is large.
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