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Model problem

Consider the elliptic problem

−∇ · A∇u +
(
b · ∇u + cu

)
= f in Ω,

u = 0 on ∂Ω.

where 0 < Amin ∈ R ≤ A(x) ∈ L∞(Ω,Rd×d
sym ), b ∈ [W 1

∞(Ω)]d ,

c ∈ L∞(Ω), f ∈ L2(Ω), with the standard assumption

c2
o = c − 1

2
∇ · b ≥ c0 ∈ R > 0.
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Discontinuous Galerkin discretization

•• Split Ω into a elements T = {T},
and let E = {e} be the set of all
edges in T .
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Figure: Example of a mesh on a unit
square.

• Let VH be the space of all
discontinuous piecewise (bi)linear
polynomials.
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The bilinear form is defined by:

aH(u, v) := ad
H(u, v) + ac-r

H (u, v).

where

ad
H(u, v) := (A∇Hu,∇Hv)L2(Ω) +

∑
e∈EH

(σe
he

([u], [v ])L2(e)

− ({νe · A∇u}, [v ])L2(e) − ({νe · A∇v}, [u]L2(e))
)
,

where σe is a constant and

ac-r
H (u, v) := (b · ∇Hu + cu, v)L2(Ω) +

∑
e∈EH

(be [u], [v ])L2(e)

−
∑

e∈EH (Ω)

(νe · b{u}, [v ])L2(e) −
∑

e∈EH (Γ)

1

2
((νe · b)u, v)L2(e),

where be = |νe · b|/2.

• ad
H(·, ·) approximates the diffusion a interior penalty method.

• ac-r
H (·, ·) approximates the convection-reaction using upwind.
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• The energy-norm is defined by

|||v |||2H = ||A1/2∇Hv ||2L2(Ω) + ‖cov‖2
L2(Ω) +

∑
e∈E

(
σ

H
+
|b · ν|

2
)‖[v ]‖2

L2(e)

• Let VH be the space of discontinuous piecewise (bi)linear
polynomials.

(One scale) DG method
Find uH ∈ VH such that

aH(uH , v) = F (v), for all v ∈ VH .
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(One scale) DG method for a Poisson’s equation with variable
coefficients
Find uH ∈ VH such that

aH(uH , v) = F (v), for all v ∈ VH .
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Figure: The coefficient A in the model
problem.

Figure: Reference solution.
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(One scale) DG method for a Poisson’s equation with variable
coefficients
Find uH ∈ VH such that

aH(uH , v) = F (v), for all v ∈ VH .
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Figure: Energy norm with respect to
the degrees of freedom.
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Figure: Solution obtained using the
discontinuous Galerkin method.
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Objective with the multiscale method

• Eliminate the dependency of A via a multiscale method i.e.,

|||u − ums,L
H ||| ≤ CfH,

where H does not resolve the variation in A

• Construct an adaptive algorithm to focus computational effort to
critical areas (for Poisson’s equation with variable coefficients).
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Some known methods
• Upscaling techniques: Durlofsky et al. 98, Nielsen et al. 98.

• Variational multiscale method: Hughes et al. 95, Arbogast 04,
Larson-Målqvist 05, Nolen et al. 08, Nordbotten 09.

• MsFEM: Hou-Wu 96, Efendiev-Ginting 04, Aarnes-Lie 06.

• Residual free bubbles: Brezzi et al. 98.

• Heterogeneous multiscale method: Engquist-E 03, E-Ming-Zang 04,
Ohlberger 05.

• Equation free: Kevrekidis et al. 05.

• GFEM: Babuska-Lipton et al. 11.

• Metric based upscaling: Owhadi-Zang et al. 06.

• Generalized MsFEM: Efendiev et al. 13.

• . . .

Remarks

• Local approximations (in parallel) on a fine scale are used to modify
a coarse scale space or equation.
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Multiscale split

• Consider a coarse VH and a fine space Vh, such that VH ⊂ Vh.

• Let ΠH be the L2-projection onto VH . This will be used as the split
between the coarse and fine scale.

• Define V f (ω) = {v ∈ Vh(ω) : ΠHv = 0}.
• We have a L2-orthogonal split; Vh = VH ⊕ V f .
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Figure: uh = uH + uf
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Corrected basis functions
• For each basis function λT ,j ∈ VH we calculate a corrector, find
φLT ,j ∈ V f (ωL

T ) such that

ah(φLT ,j , vf ) = ah(λT ,j , vf ), for all vf ∈ V f (ωL
T ).

where supp(λT ,j) = T and L indicates the size of the patch.
• Let the new corrected space be defined by Vms

H = span{λT ,j − φLT ,j}.
• We have an uh = ums

H + uf where uh ∈ Vh, ums
H ∈ Vms

H , and uf ∈ V f .
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Examples of corrected basis functions
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Example of corrected basis function
• With b = [0, 0]’.
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Figure: The coefficients A in the model problem.
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Example of corrected basis function
• With b = −[1, 0]’.
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Example of corrected basis function
• With b = −[2, 0]’.
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Example of corrected basis function
• With b = −[4, 0]’.
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Example of corrected basis function
• With b = −[8, 0]’.
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Example of corrected basis function
• With b = −[16, 0]’.
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Discontinuous Galerkin multiscale method

Consider the problem: find ums,L
H ∈ Vms

L = span{λT ,j − φLT ,j} such that

ah(ums,L
H , v) = F (v), for all v ∈ Vms,L

H .

• dimVms,L
H = dimVH

• The basis function are solved independently of each other.

• Method can take advantage of periodicity.
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A priori error bound for Poisson’s equation with variable
coefficients

Lemma (Decay of corrected basisfunctions)
For φT ,j ∈ V f (ωL

i ), there exist a, 0 < γ < 1, such that

|||φT ,j − φLT ,j ||| . γL|||λj − φT ,j |||.

Theorem
For ums,L

H ∈ Vms,L
H , there exist a, 0 < γ < 1, such that

|||u − ums,L
H ||| . |||u − uh|||+ ||H(f − ΠH f )||L2 + H−1(L)d/2γL||f ||L2 .

Choosing L = dC log(H−1)e both terms behave in the same manor with
an appropriate C.
Note: Theorem holds without any assumptions on scales or regularity!

Elfverson, Georgoulis, Målqvist and Peterseim

Convergence of discontinuous Galerkin multiscale methods. Submitted.
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A priori error bound for convection-diffusion-reaction
Under the assumption O(‖A‖L∞(Ω)) = O(‖Hb‖L∞(Ω)) we have:

Lemma (Decay of corrected basisfunctions)
For φT ,j ∈ V f (ωL

i ), there exist a, 0 < γ < 1, such that

|||φT ,j − φLT ,j ||| . γL|||λj − φT ,j |||.

Theorem
For ums,L

H ∈ Vms,L
H , there exist a, 0 < γ < 1, such that

|||u − ums,L
H ||| . |||u − uh|||+ ||H(f − ΠH f )||L2 + H−1(L)d/2γL||f ||L2 .

Choosing L = dC log(H−1)e both terms behave in the same manor with
an appropriate C.
Note: Theorem holds without any assumptions on scales or regularity!

Elfverson and Målqvist

Discontinuous Galerkin multiscale method for convection dominated

problems. Technical report.
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Theorem
For ums,L

H ∈ Vms,L
H , such that

|||u − ums,L
H |||h ≤ |||u − uH |||h + CAmax/Amin,fH

given f ∈ L2(Ω) and choosing L = dC log(H−1)e.
Note: Theorem holds without any assumptions on scales or regularity!
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Poisson’s equation on L-shaped domain
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• Choose L = d2 log( 1
H )e.

• Let the right hand side be:
f = 1 + sin(πx) + sin(πy).

• Let H = 2−m for
m = {1, 2, 3, 4, 5, 6}.

• Reference mesh is 2−8.

Figure: Permeabilities are piecewise constant on a mesh with size 2−5, with
ratio Amax/Amin = {10, 7 · 106}
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Convection-diffusion-reaction problems

−∇ · A∇u + b · ∇u + cu = f in Ω,

u = 0 on ∂Ω.
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• Let A = 1, c = 0, and
b = C [1, 0]’ for
C = 32, 54, 128.

• Choose L = d2 log( 1
H )e.

• Let the right hand side be:
f = 1 + sin(πx) + sin(πy).

• Let H = 2−m for
m = {2, 3, 4, 5}.

• Reference mesh is 2−7.
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Convection-diffusion-reaction problems

−∇ · A∇u + b · ∇u + cu = f in Ω,

u = 0 on ∂Ω.

• Let c = 0, and b = [1, 0]’.

Figure: Diffusion coefficient A,
Amax/Amin = 100 and Amin = 0.01.
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Convection-diffusion-reaction problems

−∇ · A∇u + b · ∇u + cu = f in Ω,

u = 0 on ∂Ω.

• Let c = 0, and b = [512, 0]’.

Figure: Diffusion coefficient A with
Amax/Amin ∼ 105.

10
1

10
2

10
−3

10
−2

N
dofs

(#Degrees of freedom)

R
e
la

ti
v
e
 e

rr
o
r 

in
 e

n
e
rg

y
−

n
o
rm

Figure: #dofs vs |||uh − ums
H,L|||/|||uh|||

20 / 26



Model problem and underlying discretization
Multiscale method

Convergence
Adaptivity

A posteriori error bound
Numerical experiments

Adaptivity and a posteriori error bound for pure diffusion

Theorem (A posteriori error bound)
Let ums,L

H be the multiscale solution, then

|||u − ums,L
H ||| .

(∑
T∈Th

ρ2
h,T

)1/2

+

(∑
T∈Th

ξ2
h,T

)1/2

+

(∑
T∈TH

ρ2
L,ωL

T

)1/2

.

• ρ2
L,ωL

T
, ξ2

h,T and ρ2
h,K depends on ums,L

H .

• ρ2
L,ωL

T
measures the effect of the truncated patches.

• ρ2
h,T and ξ2

h,T measures the effect of the refinement level.

Elfverson, Georgoulis, and Målqvist

An adaptive discontinuous Galerkin multiscale method for elliptic

problems. To appear in Multiscale Modeling and Simulations (MMS).

21 / 26



Model problem and underlying discretization
Multiscale method

Convergence
Adaptivity

A posteriori error bound
Numerical experiments

Let ums,L
H =

∑
T∈T ums,L

H,T we have

ρ2
L,ωL

T
=

∑
e∈Γ(∂ωL

T )

H2

hAmin

(
‖n · {A∇ums,L

H,T }‖L2(e) +
σ

h
‖[ums,L

H,T ]‖L2(e)

)2

,

ρT =
h

A
1/2
min

‖(1− Π)f +∇ · A∇ums,L
H ‖L2(T )

+
h1/2

A
1/2
min

(
‖[A∇ums,L

H ]‖L2(∂T ) +
σ

h
‖[ums,L

H ]‖L2(∂T )

)
,

ξ2
T = ‖A1/2∇(ums,L

H − Ichu
ms,L
H )‖2

L2(T ) + ‖
√
σ

h
[ums,L

H ]‖2
L2(∂T ).
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Numerical experiment

• We consider the permeabilities

Figure: Permeabilities One left and SPE right.
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Numerical experiments

• Using a refinement level of 30% we have.
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Figure: Convergence plot for One left and SPE right.
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Numerical experiments

Figure: The level of refinement and size of the patches illustrated in the upper
resp. lower plots for the different permeability One (left) and SPE (right).
White is where most refinements resp. larger patch are used and black is where
least refinements resp. smallest patches are used.
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The End
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