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Model problem

Consider the PDE

−∇ · A∇u = f in Ω,

u = 0 on ∂Ω.

which in variational form reads, find u ∈ V := H1
0 (Ω) such that

a(u, v) :=

∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx =: F (v) for all v ∈ V.
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Discontinuous Galerkin discretization

•• Split Ω into a elements T = {T},
and let E = {e} be the set of all
edges in T .
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Figure: Example of a mesh on a unit
square.

• Let Vh be the space of all
discontinuous piecewise (bi)linear
polynomials.
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4 / 27



Model problem and discretization Discontinuous Galerkin Multiscale method Convergence results Adaptivity

(One scale) DG method

Find uh ∈ Vh such that

ah(uh, v) = F (v), for all v ∈ Vh.
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Figure: The coefficients A in the model
problem.
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Figure: Reference solution.
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(One scale) DG method

Find uh ∈ Vh such that
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Figure: Energy norm with respect to
the degrees of freedom.
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Figure: Solution obtained using the
discontinuous Galerkin method.
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discontinuous Galerkin method.
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Objective

• Eliminate the dependence of A via a multiscale method i.e.,

|||u − ums,L
H ||| ≤ C (f )H,

where H does not resolve A

• Construct an adaptive algorithm to focus computational effort in
critical areas.
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Multiscale split

• Consider a coarse VH and a fine mesh Vh, such that VH ⊂ Vh.

• Let ΠH be the L2-projection onto VH . This will be used as the split
between the coarse and fine scale.

• Define V f (ω) = {v ∈ Vh(ω) : ΠHv = 0}.
• We have a L2-orthogonal split; Vh = VH ⊕ V f .
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Figure: uh = uH + uf
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Corrected basis functions
• For each basis function λT ,j ∈ VH we calculate a corrector, find
φLT ,j ∈ V f (ωL

T ) such that

ah(φLT ,j , vf ) = ah(λj , vf ), for all vf ∈ V f (ωL
T ).

where T is the element where φLT ,j lives, and L indicates the size of
the patch.

• Let the new corrected space is defined by Vms
H = span{λj − φj}.

• We have ah-orthogonal split; Vh = Vms
H ⊕ V f
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Examples of corrected basis functions
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Examples of corrected basis functions
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Examples of corrected basis functions
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A priori results
Consider the problem: find ums,L

H ∈ Vms
L = span{λj − φj} such that

ah(ums,L
H , v) = F (v), for all v ∈ Vms,L

H .

Lemma (Decay of modifed basisfunction)

For φT ,j ∈ V f (ωL
i ), there exist a, 0 < γ < 1, such that

|||φT ,j − φLT ,j ||| . γL|||λj − φT ,j |||.

Theorem

For ums,L
H ∈ Vms,L

H , there exist a, 0 < γ < 1, such that

|||u − ums,L
H ||| . |||u − uh|||+ ||H(f − ΠH f )||L2 + H−1(L)d/2γL||f ||L2 .

Choosing L = dC log(H−1)e, then both terms behave in the same manor
with a appropriate C.
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Numerical verification
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Figure: #dofs vs |||uh − ums
H,L|||/|||uh|||

• Choose L = d2 log( 1
H )e.

• Let the right hand side be:
f = 1 + sin(πx) + sin(πy).

• Let H = 2−m for
m = {1, 2, 3, 4, 5, 6}.

• Reference mesh is 2−8.

Figure: Permeabilities are piecewise constant on a mesh with size 2−5, with
ratio αmax/αmin = {10, 7 · 106}
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Adaptivity
• Construct an adaptive algorithm to automatically tune the fine mesh

size and the patch sizes.

• We now consider a non-symmetric coarse scale problem, using local
Neumann problems for the corrected basis functions, and using a
right hand side correction.

Figure: Example of an adapted mesh with varying patch sizes.
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Theorem (A posteriori error estimate for ADG-MS)

Let Ui :=
∑

j∈Mi
Ums
j + Uf ,i . Then,

|||u − U|||2 .
∑
T∈Th

ρ2
h,T +

∑
T∈TH

ρ2
L,ωL

T
.

• ρ2
L,ωL

i
measures the effect of the truncated patches.

• ρ2
h,K measures the effect of the refinement level.
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Numerical experiment

• Refine 30% of the coarse elements or the patches are increase.

Figure: Permeabilities One left and SPE right.
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Numerical experiments
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Figure: Convergence plot for One left and SPE right.
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Numerical experiments

Figure: The level of refinement and size of the patches illustrated in the upper
resp. lower plots for the different permeability One (left) and SPE (right).
White is where most refinements resp. larger patch are used and black is where
least refinements resp. smallest patches are used.
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The End
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