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Model problem

Poisson’s equation
Given a polygonal domain Q € RY. We want to find v such that

—V-aVu="fiQ,
n-Vu=0on 0%,

where o is bounded 0 < ap < a(x) < a°, f € L3(Q) and [, fdx =0. L*

has the inner product (u,v) = [, uv dx and norm [u? = [, u® dx.
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Figure: Permeabilities v projection in log scale and taken from the Society of
Petroleum Engineer http://www.spe.org/
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Weak formulation using a discontinuous Galerkin discretization

(SIPG)

@ Let Q be subdivided into the partition K = {K} and I'" be the union
of all interior edges.

@ Let also V" be the space of all discontinuous piecewise linear
polynomials.

The bilinear form and right hand side are defined as:

a(v,w) =Y (aVv,Vw)k =Y (n-{aVv},[w])e

KeK ecl
= > (0 {aVwh ok + Y 2 (] w)e:
ecr! ecr! €
I(v) = (f,v).

The discontinuous Galerkin method reads: find u, € V' s.t

a(up, v) = I(v) for all v € V"
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Why do we need to resolve the coefficients?

Example with periodic coefficient

Consider Possion’s equation with period coefficient & = «(x/€). For the
finite element method, we have

H
VaV(u = up)lliz@) < C?H’CHLZ(Q)

@ Need H < ¢ for reliable results.

@ To computational expensive to solve on a single mesh for many
applications e.g flow in porous media and in composite materials.

@ Want eliminate the € dependence by using a multiscale method
(Malqvist-Peterseim).
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Framework for Multiscale methods
The problem is split into one coarse and fine scale contribution
Vh=v. eV}
@ Let subdivide Q into a coarse mesh K. = {K.}.
o V. = span{¢;i} = Z. V" and V;’ ={ve vh. pov= 0}, where
P.: VM = V. is the L2 projection onto the coarse mesh.
@ Define the map T : Ve — V! as a(Tve, ve) = —a(ve, vr).
Split U= U, + T U:+ Ur and v = v, + vr where u. € V., vs € V;’.

a(Ue + TUc+ Us,ve + ve) = I(ve + vr)
for all v. € V. and vf € V,'r’

(a) UC (b) TU: + Uf (C) U=U:~+TU:+ Uf
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Fine scale
Let v. = 0 to get the fine scale equations

a(TUc + Ur, ve) = I(vr) — a(Uq, vr),
split into two equations

a(Us, ve) = I(vs) Yvr € VP,
a(TUe, ve) = —a(Uec, ve) Vvr € VI

Coarse scale
Let v/ = 0 on the coarse scale

a(Ue + TUec,ve) = I(ve) — a(Ur,ve) Vve € Ve
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Multiscale method discretization

@ 7 is he restriction of T to a patch w C Q

o Ur = Yien Ur.; where NV is the number of nodes.
o M;bealljst @ =1innodei.

9 Let also @; = ZjEMi oF

(e) d)i = ZJ'EM,' ¢j
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Fine scale equations
For all i € N find T¢; € VI(wh) and Ur; € VI(wh) for j € M; st

3(7—¢j, Vf) = _a(d)jv Vf)ﬂ Vv € V;,(W/L)
a(Uri,ve) = 1(®ive), Ve € VE(WH).

Coarse scale equation
Find U. € V¢ s.t

a(Ue + T Ue,ve) = I(ve) = (Ur, ve), Vv € Ve
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Approximation of 7 U, and U

Because of the local behavior in V}’, T U. and Ur can be solved on a
subset w! instead of the whole domain Q i.e. V/(wh) c V/
(Malqvist-Peterseim).
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Decay in V¢
Problem setting

@ Let the computational domain be w! for L =1,2,... N where
w,-L c Q.

o Letalso ®; =3 .\ ¢;
@ The problem reads: find 7&; € Vh(wh)

a(T®;,v) = —a(d;,v), Vve Vhiwh.

@ The reference solution T®; is the solution computed on w! = Q.
@ Coarse mesh is 8 x 8 element and reference grid is 64 x 64 elements.
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Figure: Permeabilities a.
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Figure: Example of 7®; + ®; computed on 2 layer patches.
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Figure: The error in relative error in broken energy norm with respect to the
path size.
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Convergence

Problem setting

©

Consider the model problem (Poisson’s equation)

@ Keeping the refinement level constant and increasing the patch sizes
L=1,...,N for all local problems.

@ The coarse grid is 8 x 8 coarse elements.

@ The reference solution U,r is the DG solution computed on 64 x 64
elements.

@ The right hand side is —1 in the lower left corner and 1 in the upper

right.
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Figure: The reference solution to the model problem using the permeabilities
One, Period and SPE
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Figure: The relative error in broken energy norm with respect to the patch sizes.
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A posteriori error estimate
@ Let & = u— U where U= U, + T U, + Ur.
U, = Eje/\/l,- Uc,j(¢j + T¢J) + Uf’,'.
@ < & < ¢ when the constant c¢ is independent of H, h and L.

Theorem (A posteriori error estimate)
The error & satisfies the estimate

1/2
Z”\/_ngLZ(K) Z th"’Zpl_w
KeK KeK. iEN
where

2 _ § : 2
pL,wiL - pL,wiL,e’

ec FB(w,.L)\FB

H,e\/oe
[ln-{aV Ui}z + h3/2 Ul 2oy

Hw.L

— i
pL,wiL,e - \/h—
e

@ L is proportional to log(h™1).
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and

h
2
Phk = § —||f + V- aVU||2k
Kek. V0

T Z \/7||n [aVU]||L2e)+\/%”[U]HLZ(E)}

eel(K.

hk g
. Z 21y 2l [0V Ul + /)]

e€TB(K)\TB

+ Z “ ||n OéVUHQ(e

e€lMB(K.)Nre

@ p? | measure the effect of the truncated patches.
L,ws;

@ p? , measure the effect of the refinement level.
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Adaptivity

@ Consider the model problem

@ Using the a posteriori error estimate to construct an adaptive
algorithm.

@ Start with one refinement and 2 layers patches everywhere.

@ Refine 30% of the coarse elements and increase 30% of the patch
sizes in each iteration.

@ Coarse mesh is 32 x 32 element and reference grid is 256 x 256
elements.

@ The right hand side is —1 in the lower left corner and 1 in the upper

right.
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Figure: Permeabilities o projection in log scale.
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Figure: The relative error in broken energy norm with respect to number of
iterations. Iteration O corresponds to the standard DG solution and iteration 1
the start values in the adaptive algorithm.
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Figure (a) and (b) illustrates where the adaptive algorithm puts most
effort

o Figure (a) corresponds to the refinements
@ Figure (b) corresponds to the patch sizes.
@ Figure (c) is the permeability a.

(a) Refine hy (b) Layers, L (c) Layers, L
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Figure: The relative error in broken energy norm with respect to the mean

value of the degrees of freedom for the fine scale problems.
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Conclusions

Advantage

@ The fine scale problems are perfectly parallelizable.
@ The exponential decay in the fine scale solution allows small patches.

@ The error estimate and the adaptivity algorithm focus computational
effort in critical areas.

@ Very high aspect ratio in a can be solved.
@ Possible to construct a conservative flux on the coarse scale.
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Future work

@ Using a discontinuous Galerkin method with weighted average.

@ Solve the local problems iteratively with a appropriate preconditioner.
Condition number scale nicely with H,h but not with amax/min-

@ Convergence of the discontinuous Galerkin multiscale method.

@ 3D implementation.
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Questions
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