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Applications of multiscale methods

• Subsurface flow
• Composite materials
• . . .

Need numerical solution of partial differential equations with rough data
(module of elasticity, conductivity, permeability, etc)

Major challenge

Solution has features on a several non-seperal scales
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Model problem

Consider the elliptic model problem

−∇ · A∇u + (b · ∇u) = f in Ω,

u = 0 on ∂Ω,

where we assume:

• 0 < Amin ∈ R ≤ A(x) ∈ L∞(Ω,Rd×d
sym )

• f ∈ L2(Ω)

• b ∈ [W 1
∞(Ω)]d and ∇ · b = 0
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Discontinuous Galerkin discretization

•• Split Ω into a elements T = {T},
and let E = {e} be the set of all
edges in T .
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Figure : Example of a mesh on a unit
square.

• Let VH be the space of all
discontinuous piecewise (bi)linear
polynomials.
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Figure : Example of {v} and [v ]
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Discontinuous Galerkin discretization

• ah(·, ·): symmetric interior penalty (SIPG) and upwind.

• The energy-norm is defined by

||| · |||2H = ||A1/2∇H · ||2L2(Ω) +
∑
e∈E

(
σ

H
+
|b · ν|

2
)‖[·]‖2

L2(e)

(One scale) DG method

Find uH ∈ VH such that

ah(uH , v) = F (v), for all v ∈ VH .
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(One scale) DG method (b = 0)

Find uH ∈ VH such that

aH(uH , v) = F (v), for all v ∈ VH .
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Figure : The coefficient A in the model
problem.

Figure : Reference solution.
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(One scale) DG method (b = 0)

Find uH ∈ VH such that

aH(uH , v) = F (v), for all v ∈ VH .
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Figure : Energy norm with respect to
the degrees of freedom.
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Figure : Solution obtained using the
discontinuous Galerkin method.
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Objective with the multiscale method

• Eliminate the dependency of A via a multiscale method i.e.,

|||u − ums,L
H ||| ≤ CfH,

where H does not resolve the variation in A

• Construct an adaptive algorithm to focus computational effort to
critical areas (for the case with pure diffusion)
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Incomplete list of other multiscale methods
• Variational multiscale method (VMS): [Hughes et al. 95]
• Multiscale FEM (MsFEM): [Hou-Wu 96]
• Heterogeneous multiscale method (HMM): [Engquist, E 03]
• Multiscale finite volume method: [Jenny et al. 03]
• Residual free bubbles: [Brezzi et al. 98]
• Upscaling techniques: [Durlofsky et al. 98]
• Equation free: [Kevrekidis et al. 05]
• Metric based upscaling: [Owhadi-Zang 06]
• Polyharmonic homogenization [Owhadi-Zang 12]
• Generalised MsFEM [Efendiev et al. 10]
• Mortar Multiscale Methods [Arbogast et al, 07]
• . . .

Remarks
• Local approximations (in parallel) on a fine scale are used to modify

a coarse scale space or equation
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Local orthogonal decomposition
• Adaptivity [Larson, Målqvist 07], [Målqvist 11]
• Convergence analysis [Målqvist, Peterseim 14]
• Convergence analysis for DG [Elfverson et al. 13]
• Convection problem [Submitted]
• Semi-linear elliptic problem [Henning et al. 14]
• Egenvalue problem [Målqvist, Peterseim 14]
• Non-linear Schrödinger equation [Henning et al. 14]
• Petrov-Galerkin formulation [Submitted]
• Adaptivity for DG [Elfverson et al. 13]
• . . .

Remarks
• Builds on the idea of VMS

• Error analysis DOESN’T rely on assumptions such as scale
separation and periodicity

• Error analysis does depend on the contrast, however numerical test
show a very weak dependence
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Multiscale split

• Consider VH and Vh, such that VH ⊂ Vh
• Let ΠH be the L2-projection onto VH .

• Define V f (ω) = {v ∈ Vh(ω) : ΠHv = 0}
• We have a L2-orthogonal split; Vh = VH ⊕ V f
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Corrected basis functions
• For each λT ,j ∈ VH we compute a corrector, find φLT ,j ∈ V f (ωL

T )
such that

ah(φLT ,j , vf ) = ah(λT ,j , vf ), for all vf ∈ V f (ωL
T )

where L indicates the size of the patch.

• Corrected space: Vms
H = span{λT ,j − φLT ,j}

• We have a a(·, ·)-orthogonal split; Vh = Vms
H ⊕ V f
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Examples of corrected basis functions
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Example of corrected basis function
• With b = [0, 0]’
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Example of corrected basis function
• With b = −[1, 0]’

0.1

0.15

0.2

0.25

0.3

0.35

0.1

0.15

0.2

0.25

0.3

0.35

−0.5

0

0.5

1

1.5

Figure : The coefficients A in the model problem

15 / 33



Introduction and model problem
DG Local Orthogonal Decomposition (DG-LOD)

Petrov-Galerkin DG-LOD
On going work - LOD on complex geometries

Multiscale split
Corrected basis function
Discontinuous Galerkin LOD
Numerical verification

Example of corrected basis function
• With b = −[2, 0]’

0.1

0.15

0.2

0.25

0.3

0.35

0.1

0.15

0.2

0.25

0.3

0.35

−0.5

0

0.5

1

1.5

Figure : The coefficients A in the model problem

15 / 33



Introduction and model problem
DG Local Orthogonal Decomposition (DG-LOD)

Petrov-Galerkin DG-LOD
On going work - LOD on complex geometries

Multiscale split
Corrected basis function
Discontinuous Galerkin LOD
Numerical verification

Example of corrected basis function
• With b = −[4, 0]’
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Example of corrected basis function
• With b = −[8, 0]’
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Example of corrected basis function
• With b = −[16, 0]’
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Discontinuous Galerkin multiscale method

Consider the problem: find ums,L
H ∈ Vms,L

H = span{λT ,j − φLT ,j} such that

ah(ums,L
H , v) = F (v), for all v ∈ Vms,L

H

• dimVms,L
H = dimVH

• The basis function are solved independently of each other

• Method can take advantage of periodicity
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A priori error bound

Under the assumption O(‖Hb‖L∞(Ω)/Amin) = 1 it holds:

Lemma (Decay of corrected basisfunctions)

For φT ,j ∈ V f (ωL
i ), there exist a, 0 < γ < 1, such that

|||φT ,j − φLT ,j ||| . γL|||λj − φT ,j |||

Theorem

For ums,L
H ∈ Vms,L

H , there exist a, 0 < γ < 1, such that

|||u − ums,L
H ||| . |||u − uh|||+ ||H(f − ΠH f )||L2 + H−1(L)d/2γL||f ||L2 .

Choosing L = dC log(H−1)e both terms behave in the same manor with
an appropriate C.
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Pure diffusion on L-shaped domain
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Figure : #dofs vs |||uh − ums
H,L|||/|||uh|||

• Choose L = d2 log( 1
H )e.

• Let the right hand side be:
f = 1 + sin(πx) + sin(πy).

• Let H = 2−m for
m = {1, 2, 3, 4, 5, 6}.

• Reference mesh is 2−8.

Figure : Permeabilities are piecewise constant on a mesh with size 2−5, with
ratio Amax/Amin = {10, 7 · 106}
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Multiscale split
Corrected basis function
Discontinuous Galerkin LOD
Numerical verification

Numerical verification of the convergence

−∇ · A∇u + b · ∇u = f in Ω,

u = 0 on ∂Ω.

10
1

10
2

10
−3

10
−2

10
−1

N
dofs

(#Degrees of freedom)

R
e
la

ti
v
e
 e

rr
o
r 

in
 e

n
e
rg

y
−

n
o
rm

 

 

C = 32

C = 64

C = 128
N

dof

−3/2

Figure : #dofs vs |||uh − ums
H,L|||/|||uh|||

• Let A = 1 and b = C [1, 0]’ for
C = 32, 64, 128.

• Choose L = d2 log( 1
H )e.

• Let the right hand side be:
f = 1 + sin(πx) + sin(πy).

• Let H = 2−m for
m = {2, 3, 4, 5}.

• Reference mesh is 2−7.
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Multiscale split
Corrected basis function
Discontinuous Galerkin LOD
Numerical verification

−∇ · A∇u + b · ∇u = f in Ω,

u = 0 on ∂Ω.

• Let b = [1, 0]’.

Figure : Diffusion coefficient A,
Amax/Amin = 100 and Amin = 0.01.
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Figure : #dofs vs |||uh − ums
H,L|||/|||uh|||
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Multiscale split
Corrected basis function
Discontinuous Galerkin LOD
Numerical verification

−∇ · A∇u + b · ∇u = f in Ω,

u = 0 on ∂Ω

• Let b = [512, 0]’

Figure : Diffusion coefficient A with
Amax/Amin ∼ 105 and Amin = 0.05
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Figure : #dofs vs |||uh − ums
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Petrov-Galerkin DG-LOD method
Perspective towards Two-Phase flow

Petrov-Galerkin DG-LOD

Consider the problem: find ums,L
H ∈ Vms,L

H = span{λT ,j − φLT ,j} such that

ah(ums,L
H , v) = F (v), for all v ∈ VH = span{λT ,j}

Same as before:

• dimVms,L
H = dimVH

• The basis function are solved independently of each other.

• Method can take advantage of periodicity.
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Petrov-Galerkin DG-LOD method
Perspective towards Two-Phase flow

Pros
• Convergence rates are preserved

• Quadrature for the coarse system becomes easier, i.e.,
ah(λT ,j − φLT ,j , λT ,j)

• Sparser coarse system

• Less memory consumption, after being computed the correctors φLT ,j

can be discarded.

Cons
• Non-symmetric coarse system

• Assumption between the fine and coarse mesh size needed in DG
case

23 / 33



Introduction and model problem
DG Local Orthogonal Decomposition (DG-LOD)

Petrov-Galerkin DG-LOD
On going work - LOD on complex geometries

Petrov-Galerkin DG-LOD method
Perspective towards Two-Phase flow

Perspective towards Two-Phase flow

Buckley-Leverett system

−∇ · (Kλ(S)∇p) = q and ∂tS +∇ · (f (s)v) = qw

is solved using IM(plicit)P(ressure)E(plicit)S(aturation)

• K is the hydraulic conductivity

• λ(S) is the total mobility (essentially macroscopic)

• and v = −Kλ(S)∇p is obtained from the pressure equation
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Petrov-Galerkin DG-LOD method
Perspective towards Two-Phase flow

• Coarse mesh H = 2−5 and fine mesh h = 2−8

• Boundary condition p = 1, on left boundary p = 0 on right
boundary, and Kλ(S)∇p = 0 otherwise

• Prepossessing step: compute the basis corrected basis using
λ(S) = 1

Figure : K1 (Amax/Amin ≈ 5 · 105) left and K2 (Amax/Amin ≈ 4 · 105) right on a
mesh with size 2−6
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Petrov-Galerkin DG-LOD method
Perspective towards Two-Phase flow

Figure : Saturation profile K1 for T1,
T2, and T3

Figure : Saturation profile K2 for T1,
T2, and T3

Data ‖e(T1)‖L2(Ω) ‖e(T2)‖L2(Ω) ‖e(T3)‖L2(Ω)

1 0.088 0.073 0.070
2 0.058 0.087 0.079

Table : Error in relative L2-norm, e(T ) = S(T )− Sref(T )
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On going work - LOD on complex geometries

• Construct a method which with textbook convergence which do not
resolve the boundary

• Add correctors locally to handle e.g. singularities and/or interfaces
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Error analysis

• Let ΩΓ the part of the domain where fine scale enrichment is added
to the finite element space

Theorem (Locally enriched LOD method)

Given that u ∈ V ∩ H2(Ω \ ΩΓ′
) and that uΓ

H ∈ V
Γ,L
H is the solution, then

|||u − uLOD
H |||h ≤ |||u − Ihu|||h,ΩΓ′

+ ‖H∆u‖L2(Ω\ΩΓ) + ‖Hf ‖L2(Ω) + (L)d/2γL||f ||L2

• Ihu: Clément interpolation operator

• L: Number of layers

• γ: a constant stratifying 0 < γ < 1
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Local singularities

• Homogeneous Dirichlet boundary condition

• Choose L = dlog( 1
H )e.

• Let H =
√

2 · 2−m for m = {2, 3, 4, 5, 6}
• Reference mesh is h =

√
2 · 2−9

• f = 1
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“Saw” boundary
• On saw boundary, test both Homogeneous Dirichlet and Neumann

boundary condition

• Dirichlet boundary condition on the rest

• Choose L = dlog( 1
H )e.

• Let H =
√

2 · 2−m for m = {2, 3, 4, 5, 6}
• Reference mesh is h =

√
2 · 2−9

• f = 1
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• D. Elfverson, G. H. Georgoulis, A. Målqvist and D.
Peterseim Convergence of discontinuous Galerkin multiscale
methods. SIAM J. Numer. Anal..

• D. Elfverson A discontinuous Galerkin multiscale method for
convection-diffusion problems. Submitted.

• D. Elfverson, V. Ginting, P. Henning On Multiscale
Methods in Petrov-Galerkin formulation. arXiv:1405.5758,
submitted.
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