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Introduction and model problem

Applications of multiscale methods

e Subsurface flow

e Composite materials

o ...
Need numerical solution of partial differential equations with rough data
(module of elasticity, conductivity, permeability, etc)

Major challenge

Solution has features on a several non-seperal scales



Introduction and model problem

Model problem

Consider the elliptic model problem

—V-AVu+(b-Vu)="finQ,
u=0on 99,

where we assume:
* 0 < Amin € R <A(x) € L>(Q,RIxA)
o feL%(Q)
ebe[WL(Q)?and V-b=0



Introduction and model problem

) method

Discontinuous Galerkin discretization

e Split Q into a elements 7 = {T},
and let £ = {e} be the set of all

edges in T.
Figure : Example of a mesh on a unit
square.
e Let Vy be the space of all vl
discontinuous piecewise (bi)linear '
uous p (bi) {v}:lm
polynomials. :

K e K

Figure : Example of {v} and [v]



Introduction and model problem

alerkln (DG) method
ca e

methods

The bilinear form is defined by:
an(u, v) = al(u, v) + a5 (u, v).
where

a(u,v) == (AVht, Viv) ey + 3 ( ([, [V]) o)
ecéy

~ ({ve - AV}, M) iz — ({ve - ATV}, [1]iz(e)))

where o is a constant and

ay (u,v) == (b Vyu+cu,v)q) + Z (belul, [V])12(e)

ecéy
1
> (e b{uh, Ve — >, 5((ve-b)u,v) 2o,
e€EHRN) ec&u(lN)

where be = |ve - b|/2.
e ad(-,-) approximates the diffusion a interior penalty method.
e a57(-,-) approximates the convection-reaction using upwind.
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Introduction and model problem

Discontinuous Galerkin discretization

e a,(-,-): symmetric interior penalty (SIPG) and upwind.
e The energy-norm is defined by

b v
1111 = 1429 - By + 305 + 2y

ec&

(One scale) DG method
Find u, € V), such that

ap(up,v) = F(v), forall v eVy.



Introduction and model problem

Model problem
Discontinuous Galerkin (DG) method

Different multiscale methods

(One scale) DG method (b = 0)
Find uy € Vg such that

ap(up,v) = F(v), forall v € Vy.

Figure : The coefficient A in the model
problem.

Figure : Reference solution.
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Model problem
Disgcntinuous Galerkin (DG) method

Different multisca ethods

(One scale) DG method (b = 0)
Find uy € Vg such that

ap(up,v) = F(v), forall v € Vy.

Figure : Energy norm with respect to Figure : Solution obtained using the
the degrees of freedom. discontinuous Galerkin method.
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Model problem

us Galerkin (DG) method
nethods

multisca !
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Introduction and model problem

DG) method

(One scale) DG method (b = 0)
Find uy € Vg such that

ap(up,v) = F(v), forall v € Vy.

Figure : Energy norm with respect to Figure :
the degrees of freedom.

Solution obtained using the
discontinuous Galerkin method.



Introduction and model problem

Galerkin (DG) method

Objective with the multiscale method

e Eliminate the dependency of A via a multiscale method i.e.,
L
llu — a4l < CeH,

where H does not resolve the variation in A

e Construct an adaptive algorithm to focus computational effort to
critical areas (for the case with pure diffusion)



Introduction and model problem

s Galerkin (DG) method
Itiscale methods

Incomplete list of other multiscale methods

e Variational multiscale method (VMS): [Hughes et al. 95]
e Multiscale FEM (MsFEM): [Hou-Wu 96]

e Heterogeneous multiscale method (HMM): [Engquist, E 03]
e Multiscale finite volume method: [Jenny et al. 03]

o Residual free bubbles: [Brezzi et al. 98]

e Upscaling techniques: [Durlofsky et al. 98]

e Equation free: [Kevrekidis et al. 05]

o Metric based upscaling: [Owhadi-Zang 06]

e Polyharmonic homogenization [Owhadi-Zang 12]

o Generalised MsFEM [Efendiev et al. 10]

e Mortar Multiscale Methods [Arbogast et al, 07]

Remarks

o Local approximations (in parallel) on a fine scale are used to modify
a coarse scale space or equation



Introduction and model problem

Galerkin (DG) method

iscale methods

Local orthogonal decomposition

Adaptivity [Larson, Malqvist 07], [Malqvist 11]
Convergence analysis [Malqvist, Peterseim 14]
Convergence analysis for DG [Elfverson et al. 13]
Convection problem [Submitted]

Semi-linear elliptic problem [Henning et al. 14]
Egenvalue problem [Malgvist, Peterseim 14]
Non-linear Schrodinger equation [Henning et al. 14]
Petrov-Galerkin formulation [Submitted)]

Adpativity for DG [Elfverson et al. 13]

Remarks
e Builds on the idea of VMS

e Error analysis DOESN'T rely on assumptions such as scale
separation and periodicity

e Error analysis does depend on the contrast, however numerical test
show a very weak dependence
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Multiscale
Correcte

split
DG Local Ortogonal Decomposition (DG-LOD) basis i
Disc

Numerical

Multiscale split

Consider Vy and Vy, such that Vy C V.

Let My be the L2-projection onto V.

Define Vf(w) = {v € Vu(w) : Myv = 0}.

We have a L%-orthogonal split; V, = Vy @ VT,

Figure : up = uy + uf



Multiscale split
DG Local Ortogonal Decomposition (DG-LOD) Corrected basi

Discontinuous G
Numerical ve

Corrected basis functions
e For each A7 € Vi we compute a corrector, find ¢% ; € V' (wF)
such that
a;,(ngLTJ, ve) = ap(A1 ), ve), forall ve € VF(wh).
where L indicates the size of the patch.
o Corrected space: Vjj* = span{Ar; — ¢ ;}.
e We have a a(-, -)-orthogonal split; V;, = Vs @ Vf.

Figure : up = ul® + uf
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Multiscale split
DG Local Ortogonal Decomposition (DG-LOD) Corrected basis function

Discon lerkin LOD

Numerical verifiation

Mesh patch

0.0 0.2 0.4 06 0.8 1.0



Multiscale split
DG Local Ortogonal Decomposition (DG-LOD) Corrected basis function

Discontinuous Galerkin LOD
Numerical verifiation

Examples of corrected basis functions




Multiscale split
DG Local Ortogonal Decomposition (DG-LOD) Corrected basis function

Discontinuous Galerkin LOD
Numerical verifiation

Examples of corrected basis functions




split
DG Local Ortogonal Decomposition (DG-LOD) Corrected basis function
Discontint Galerkin LOD

Numerical verifiation
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Multiscale split
DG Local Ortogonal Decomposition (DG-LOD) @it LEeh fmet

Example of corrected basis function
e With b= [0,0]".
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Multiscale split
DG Local Ortogonal Decomposition (DG-LOD) @it LEeh fmet

Example of corrected basis function
e With b = —[1,0]".
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DG Local Ortogonal Decomposition (DG-LOD) © is function

Example of corrected basis function
e With b= —[2,0]".
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Multiscale split
DG Local Ortogonal Decomposition (DG-LOD) @it LEeh fmet

Discontinuous Galerkin LOD
Numerical verifiation

Example of corrected basis function
o With b= —[4,0]".




Multiscale split
DG Local Ortogonal Decomposition (DG-LOD) @it LEeh fmet

Discontinuous Galerkin LOD
Numerical verifiation

Example of corrected basis function
o With b= —[8,0]".




Multiscale split
DG Local Ortogonal Decomposition (DG-LOD) @it LEeh fmet

Discontinuous Galerkin LOD

Numerical verifiation

Example of corrected basis function
e With b = —[16,0]".




DG Local Ortogonal Decomposition (DG-LOD)

Discontinuous Galerkin LOD
Numerical verifiation

Discontinuous Galerkin multiscale method

Consider the problem: find u}*" € V*! = span{Ar — %} such that

an(uf™t,v) = F(v), forall ve Vot

o dimViot = dimVy
e The basis function are solved independently of each other.

e Method can take advantage of periodicity.
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DG Local Ortogonal Decomposition (DG-LOD)

Dlscontmuous Galevkm LOD
al verifiation

A priori error bound

Under the assumption O(||Hb|| s (q)/Amin) = 1 it holds:

Lemma (Decay of corrected basisfunctions)

For ¢ € Vf(wh), there exist a, 0 < v < 1, such that

o7y = 8511l S 4HIIN = ¢ lll-

Theorem

ms,L
For u,™

e V=t there exist a, 0 < v < 1, such that
ms,L
la = a1l S Mllu = walll + [|H(F = Apf)lle + HHL) 2 IF]] 2.

Choosing L = [Clog(H™1)] both terms behave in the same manor with
an appropriate C.



DG Local Ortogonal Decomposition (DG-LOD)

+A1

marey Choose L = [2log(+)].
Let the right hand side be:

- = =Naot

Let H=2""™ for
m=1{1,2,3,4,5,6}.

Reference mesh is 278.

10°

Ny #Degrees of freedom)

Up — Ufj HI/IHUhIH

Figure : #dofs vs |

Figure : Permeabilities are piecewise constant on a mesh with size 27%, with
ratio Amax/Amin = {10,7 - 10°}

f =1+ sin(wx) + sin(my).
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DG Local Ortogonal Decomposition (DG-LOD)

tion
D in LOD
Numerical verifiation

Numerical verification of the convergence

—V-AVu+b-Vu="FfinQ,
u =0 on 9.

Let A=1and b= C[1,0] for

C =32,54,128.

Choose L = [2log(#)].

Let the right hand side be:

f =1+ sin(wx) + sin(wy).
S Let H=2"" for

ot m={2,3,4,5}.

Reference mesh is 277.

10' 10°

N, q(#Degrees of reedom)
Figure - #dofs vs |[[un — ufi[[|/ Il uall|



DG Local Ortogonal Decomposition (DG-LOD)

s nu erkin LOD
Numerical verifiation

-V -AVu+b-Vu="finQ
u =0 on 9Q.

o Let b=[1,0]".

Relative error in energy-norm

10°
N,s(#Degrees of freedom)

Figure : Diffusion coefficient A,

Amax/Amin — 100 and Amin — 0.01. Flgure . #dOfS A\ |HUh - uH,L|H/H|uhH|



DG Local Ortogonal Decomposition (DG-LOD)

-V -AVu+b-Vu="finQ
u =0 on 9Q.

e Let b=[512,0]".

Relative error in energy-norm

Ny 5(#Degrees of freedom)

Figure : Diffusion coefficient A with

Amax/Amin ~ 10° and Aumin = 0.05. Flgure : #fdofs vs |Huh - uH,L|H/H|uhH|

N
N
r



Petrov-Galerkin DG-LOD method
Ad
Pe

Petrov-Galerkin DG-LOD

Petrov-Galerkin DG-LOD

Consider the problem: find u}*" € V*! = span{Ar — %} such that

an(uf™t,v) = F(v), forall v & Vy = span{\r}

Same as before:
o dimViot = dimVy
e The basis function are solved independently of each other.

e Method can take advantage of periodicity.



Petrov-Galerkin DG-LOD method
Ad

Petrov-Galerkin DG-LOD ctive towards Two-Phase flow

Pros
e Quadrature for the coarse system becomes easier, i.e.,
an(ATj— 0% s A1)
e Sparser coarse system

e Less memory consumption, after being computed the correctors gb’-Tj
can be disgarded.

Cons
e Non-symmetric coarse system

e Harder (missing) analysis
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Petrov-Galerkin DG-LOD

Adaptivity and a posteriori error bound (b = 0)

Theorem (A posteriori error bound)
Let ul™" be the multiscale solution, then

1/2 1/2

ms,L ms,L ms,L
lu =g S| D0 Arrlug™) |+ D (™)

TETH TETH

e p? | measures the effect of the truncated patches.
L,w;

e p2 + measures the effect of the refinement level.

25/34



Petrov-Galerkin DG-LOD method
Adaptivity

Petrov-Galerkin DG-LOD Prsnective towards TiwosPhase flow

Adaptivity

e We consider the permeabilities

i

Figure : Permeabilities One left and SPE right.
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PetroviGalerkinDGALOD method
Petrov-Galerkin DG-LOD (ekridiy

Perspective tov

SPE
—*— Trufh-mesh. —%— Truth: mesh grrgr p
SR, e T T, e
< 212
10’ T (2"2)‘2 AL,
~3 _ g - (R Bt s & - (R 2+ ))

lterations lterations

Figure : Convergence plot for One left and SPE right.



Petrov-Galerkin DG-LOD

Figure : One (left) and SPE (right). The level of refinement (upper) and size
of the patches (lower).



Petrov-Galerkin DG-LOD method
Adaptivit

Petrov-Galerkin DG-LOD

Perspective towards Two-Phase flow

Perspective towards Two-Phase flow

Buckley-Leverett system
—V - (KAX(S)Vp) =g and 9;S+ V- (f(s)v) = qu

is solved using IM(plicit)P(ressure)E(plicit)S(aturation)
e K is the hydraulic conductivity
e \(S) is the total mobility (essentially macroscopic)
e and v = —K\(S)Vp is obtained from the pressure equation
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Petrov-Galerkin DG-LOD method
Adaptivit

Petrov-Galerkin DG-LOD

Perspective towards Two-Phase flow

e Coarse mesh H = 275 and fine mesh h =278,

e Boundary condition p =1, on left boundary p = 0 on right
boundary, and KA(S)Vp = 0 otherwise.

e Prepossessing step: compute the basis corrected basis using
AS)=1

Figure : Ki (Amax/Amin = 5 - 105) left and K2 (Amax/Amin = 4 - 105) right on a
mesh with size 276,



Ga
Adaptivit

) Ak
Petrov-Galerkin DG-LOD Perspective towards Two-Phase flow

AW AL
A P dLN

Figure : Saturation profile Ki for Ty, Figure : Saturation profile K> for Ty,
T2, and T3. T>, and Ts.

[ Data [ [le(T1)lliz@) | lle(T2)llz) | e(T3)lli2q) |
1 0.088 0.073 0.070
2 0.058 0.087 0.079

Table : Error in relative L>-norm, e(T) = S(T) — S™(T).
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On going work - LOD on complex geometries

On going work - LOD on complex geometries

e Construt a method which with textbook convergance which do not
resolve the boundary.

e Add correctors locally to handel e.g. singularites and/or interfaces.



On going work - LOD on complex geometries

Preliminary numerical results

Homogeneous Dirichlet boundary condition

Choose L = [log(#)].

Let H=+/2-2"™ for m = {2,3,4,5}

Reference mesh is h = /2 -278

Holes has radius r = {0.01,0.03} ({27°:6439 2-5.0589})
f = cos(8mx) cos(8my) + 0.5

+— LoD
-~ dof(-1)

Figure : Computational domain. Figure : Error estimate.



On going work - LOD on complex geometries

D. ELFVERSON, G. H. GEORGOULIS, AND A. MALQVIST An
adaptive discontinuous Galerkin multiscale method for elliptic
problems. Multiscale Model. Simul..

e D. ELFVERSON, G. H. GEORGOULIS, A. MALQVIST AND D.
PETERSEIM Convergence of discontinuous Galerkin multiscale

methods. SIAM J. Numer. Anal..
e D. ELFVERSON A discontinuous Galerkin multiscale method for
convection-diffusion problems. Submitted.

e D. ELFVERSON, V. GINTING, P. HENNING On Multiscale
Methods in Petrov-Galerkin formulation. arXiv:1405.5758,
submitted.
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