

A discontinuous Galerkin local orthogonal decomposition (LOD) method for elliptic multiscale problems

Daniel Elfverson
daniel.elfverson@it.uu.se

Division of Scientific Computing Uppsala University Sweden

Outline

- Introduction and model problem
 Model problem
 Discontinuous Galerkin (DG) method
 Different multiscale methods
- 2 DG Local Ortogonal Decomposition (DG-LOD)

 Multiscale split

 Corrected basis function

 Discontinuous Galerkin LOD

 Numerical verifiation
- Petrov-Galerkin DG-LOD Petrov-Galerkin DG-LOD method Adaptivity Perspective towards Two-Phase flow
- 4 On going work LOD on complex geometries

Applications of multiscale methods

- Subsurface flow
- Composite materials
- ..

Need numerical solution of partial differential equations with rough data (module of elasticity, conductivity, permeability, etc)

Major challenge

Solution has features on a several non-seperal scales

Model problem

Consider the elliptic model problem

$$-\nabla \cdot A\nabla u + (\mathbf{b} \cdot \nabla u) = f \text{ in } \Omega,$$

$$u = 0 \text{ on } \partial\Omega,$$

where we assume:

•
$$0 < A_{min} \in \mathbb{R} \le A(x) \in L^{\infty}(\Omega, \mathbb{R}^{d \times d}_{sym})$$

•
$$f \in L^2(\Omega)$$

•
$$\mathbf{b} \in [\mathcal{W}^1_\infty(\Omega)]^d$$
 and $\nabla \cdot \mathbf{b} = 0$

Discontinuous Galerkin discretization

• Split Ω into a elements $\mathcal{T} = \{\mathcal{T}\}$, and let $\mathcal{E} = \{e\}$ be the set of all edges in \mathcal{T} .

Figure: Example of a mesh on a unit square.

 Let V_H be the space of all discontinuous piecewise (bi)linear polynomials.

Figure: Example of $\{v\}$ and [v]

The bilinear form is defined by:

$$a_h(u,v) := a_h^{\mathsf{d}}(u,v) + a_h^{\mathsf{c-r}}(u,v).$$

where

$$\begin{aligned} a_h^{\mathsf{d}}(u,v) &:= (A\nabla_h u, \nabla_h v)_{L^2(\Omega)} + \sum_{e \in \mathcal{E}_h} \left(\frac{\sigma_e}{h_e}([u],[v])_{L^2(e)} \right. \\ &- \left. \left(\left\{ \nu_e \cdot A \nabla u \right\}, [v] \right)_{L^2(e)} - \left(\left\{ \nu_e \cdot A \nabla v \right\}, [u]_{L^2(e)} \right) \right), \end{aligned}$$

where σ_e is a constant and

$$\begin{split} a_h^{\text{c-r}}(u,v) &:= (\mathbf{b} \cdot \nabla_h u + cu, v)_{L^2(\Omega)} + \sum_{e \in \mathcal{E}_h} (b_e[u], [v])_{L^2(e)} \\ &- \sum_{e \in \mathcal{E}_h(\Omega)} (\nu_e \cdot \mathbf{b}\{u\}, [v])_{L^2(e)} - \sum_{e \in \mathcal{E}_h(\Gamma)} \frac{1}{2} ((\nu_e \cdot \mathbf{b})u, v)_{L^2(e)}, \end{split}$$

where $b_e = |\nu_e \cdot \mathbf{b}|/2$.

- $a_h^d(\cdot,\cdot)$ approximates the diffusion a interior penalty method.
- $a_h^{\text{c-r}}(\cdot,\cdot)$ approximates the convection-reaction using upwind.

Discontinuous Galerkin discretization

- $a_h(\cdot,\cdot)$: symmetric interior penalty (SIPG) and upwind.
- The energy-norm is defined by

$$|||\cdot|||_{h}^{2} = ||A^{1/2}\nabla_{H}\cdot||_{L^{2}(\Omega)}^{2} + \sum_{e\in\mathcal{E}} (\frac{\sigma}{H} + \frac{|\mathbf{b}\cdot\nu|}{2})||[\cdot]||_{L^{2}(e)}^{2}$$

(One scale) DG method

$$a_h(u_h, v) = F(v)$$
, for all $v \in \mathcal{V}_h$.

$$a_H(u_H, v) = F(v)$$
, for all $v \in \mathcal{V}_H$.

Figure : The coefficient *A* in the model problem.

Figure: Reference solution.

$$a_H(u_H, v) = F(v)$$
, for all $v \in \mathcal{V}_H$.

Figure: Energy norm with respect to the degrees of freedom.

Figure: Solution obtained using the discontinuous Galerkin method.

$$a_H(u_H, v) = F(v)$$
, for all $v \in \mathcal{V}_H$.

Figure: Energy norm with respect to the degrees of freedom.

Figure: Solution obtained using the discontinuous Galerkin method.

$$a_H(u_H, v) = F(v)$$
, for all $v \in \mathcal{V}_H$.

Figure: Energy norm with respect to the degrees of freedom.

Figure: Solution obtained using the discontinuous Galerkin method.

$$a_H(u_H, v) = F(v)$$
, for all $v \in \mathcal{V}_H$.

Figure: Energy norm with respect to the degrees of freedom.

Figure: Solution obtained using the discontinuous Galerkin method.

$$a_H(u_H, v) = F(v)$$
, for all $v \in \mathcal{V}_H$.

Figure: Energy norm with respect to the degrees of freedom.

Figure: Solution obtained using the discontinuous Galerkin method.

$$a_H(u_H, v) = F(v)$$
, for all $v \in \mathcal{V}_H$.

Figure: Energy norm with respect to the degrees of freedom.

Figure: Solution obtained using the discontinuous Galerkin method.

$$a_H(u_H, v) = F(v)$$
, for all $v \in \mathcal{V}_H$.

Figure: Energy norm with respect to the degrees of freedom.

Figure: Solution obtained using the discontinuous Galerkin method.

$$a_H(u_H, v) = F(v)$$
, for all $v \in \mathcal{V}_H$.

Figure: Energy norm with respect to the degrees of freedom.

Figure: Solution obtained using the discontinuous Galerkin method.

Objective with the multiscale method

• Eliminate the dependency of A via a multiscale method i.e.,

$$|||u-u_H^{ms,L}||| \leq C_f H,$$

where H does not resolve the variation in A

• Construct an adaptive algorithm to focus computational effort to critical areas (for the case with pure diffusion)

Incomplete list of other multiscale methods

- Variational multiscale method (VMS): [Hughes et al. 95]
- Multiscale FEM (MsFEM): [Hou-Wu 96]
- Heterogeneous multiscale method (HMM): [Engquist, E 03]
- Multiscale finite volume method: [Jenny et al. 03]
- Residual free bubbles: [Brezzi et al. 98]
- Upscaling techniques: [Durlofsky et al. 98]
- Equation free: [Kevrekidis et al. 05]
- Metric based upscaling: [Owhadi-Zang 06]
- Polyharmonic homogenization [Owhadi-Zang 12]
- Generalised MsFEM [Efendiev et al. 10]
- Mortar Multiscale Methods [Arbogast et al, 07]
- . . .

Remarks

 Local approximations (in parallel) on a fine scale are used to modify a coarse scale space or equation

Local orthogonal decomposition

- Adaptivity [Larson, Målqvist 07], [Målqvist 11]
- Convergence analysis [Målqvist, Peterseim 14]
- Convergence analysis for DG [Elfverson et al. 13]
- Convection problem [Submitted]
- Semi-linear elliptic problem [Henning et al. 14]
- Egenvalue problem [Målqvist, Peterseim 14]
- Non-linear Schrödinger equation [Henning et al. 14]
- Petrov-Galerkin formulation [Submitted]
- Adpativity for DG [Elfverson et al. 13]
- ...

Remarks

- Builds on the idea of VMS
- Error analysis DOESN'T rely on assumptions such as scale separation and periodicity
- Error analysis does depend on the contrast, however numerical test show a very weak dependence

Local orthogonal decomposition

- Adaptivity [Larson, Målqvist 07], [Målqvist 11]
- Convergence analysis [Målqvist, Peterseim 14]
- Convergence analysis for DG [Elfverson et al. 13]
- Convection problem [Submitted]
- Semi-linear elliptic problem [Henning et al. 14]
- Egenvalue problem [Målqvist, Peterseim 14]
- Non-linear Schrödinger equation [Henning et al. 14]
- Petrov-Galerkin formulation [Submitted]
- Adpativity for DG [Elfverson et al. 13]
- . . .

Remarks

- Builds on the idea of VMS
- Error analysis DOESN'T rely on assumptions such as scale separation and periodicity
- Error analysis does depend on the contrast, however numerical test show a very weak dependence

Multiscale split

- Consider V_H and V_h , such that $V_H \subset V_h$.
- Let Π_H be the L^2 -projection onto \mathcal{V}_H .
- Define $\mathcal{V}^f(\omega) = \{ v \in \mathcal{V}_h(\omega) : \Pi_H v = 0 \}.$
- We have a L^2 -orthogonal split; $\mathcal{V}_h = \mathcal{V}_H \oplus \mathcal{V}^f$.

Figure : $u_h = u_H + u^f$

Corrected basis functions

• For each $\lambda_{T,j} \in \mathcal{V}_H$ we compute a corrector, find $\phi_{T,j}^L \in \mathcal{V}^f(\omega_T^L)$ such that

$$a_h(\phi_{T,j}^L, v_f) = a_h(\lambda_{T,j}, v_f), \quad \text{for all } v_f \in \mathcal{V}^f(\omega_T^L).$$

where L indicates the size of the patch.

- Corrected space: $V_H^{ms} = \text{span}\{\lambda_{T,j} \phi_{T,j}^L\}.$
- We have a $a(\cdot,\cdot)$ -orthogonal split; $\mathcal{V}_h = \mathcal{V}_H^{ms} \oplus \mathcal{V}^f$.

Figure: $u_h = u_H^{ms} + u^f$

Mesh patch

• With $\mathbf{b} = [0, 0]$ '.

• With $\mathbf{b} = -[1, 0]$ '.

• With $\mathbf{b} = -[2, 0]$ '.

• With $\mathbf{b} = -[4, 0]$ '.

• With $\mathbf{b} = -[8, 0]$ '.

• With $\mathbf{b} = -[16, 0]$ '.

Discontinuous Galerkin multiscale method

Consider the problem: find $u_H^{ms,L} \in \mathcal{V}_H^{ms,L} = \mathrm{span}\{\lambda_{T,j} - \phi_{T,j}^L\}$ such that

$$a_h(u_H^{ms,L},v) = F(v), \quad \text{for all } v \in \mathcal{V}_H^{ms,L}.$$

- $\dim \mathcal{V}_H^{ms,L} = \dim \mathcal{V}_H$
- The basis function are solved independently of each other.
- Method can take advantage of periodicity.

A priori error bound

Under the assumption $\mathcal{O}(\|H\mathbf{b}\|_{L^{\infty}(\Omega)}/A_{min})=1$ it holds:

Lemma (Decay of corrected basisfunctions)

For $\phi_{T,j} \in \mathcal{V}^f(\omega_i^L)$, there exist a, $0 < \gamma < 1$, such that

$$|||\phi_{T,j} - \phi_{T,j}^{\boldsymbol{L}}||| \lesssim \gamma^{\boldsymbol{L}}|||\lambda_j - \phi_{T,j}|||.$$

Theorem

For $u_H^{ms,L} \in \mathcal{V}_H^{ms,L}$, there exist a, $0 < \gamma < 1$, such that

$$|||u-u_H^{ms,L}|||\lesssim |||u-u_h|||+||H(f-\Pi_H f)||_{L^2}+H^{-1}(L)^{d/2}\gamma^{L}||f||_{L^2}.$$

Choosing $L = \lceil C \log(H^{-1}) \rceil$ both terms behave in the same manor with an appropriate C.

Pure diffusion on L-shaped domain

Figure: #dofs vs $|||u_h - u_{H,L}^{ms}|||/|||u_h|||$

- Let the right hand side be: $f = 1 + sin(\pi x) + sin(\pi y)$.
- Let $H = 2^{-m}$ for $m = \{1, 2, 3, 4, 5, 6\}$.
- Reference mesh is 2^{-8} .

Figure : Permeabilities are piecewise constant on a mesh with size 2^{-5} , with ratio $A_{max}/A_{min} = \{10, 7 \cdot 10^6\}$

Numerical verification of the convergence

$$-\nabla \cdot A \nabla u + \mathbf{b} \cdot \nabla u = f \text{ in } \Omega,$$

$$u = 0 \text{ on } \partial \Omega.$$

Figure: $\#dofs \overset{\circ\circ}{vs} |||u_h - u_{H,L}^{ms}|||/|||u_h|||$

- Let A = 1 and b = C[1,0]' for C = 32,54,128.
- Choose $L = \lceil 2 \log(\frac{1}{H}) \rceil$.
- Let the right hand side be: $f = 1 + \sin(\pi x) + \sin(\pi y)$.
- Let $H = 2^{-m}$ for $m = \{2, 3, 4, 5\}.$
- Reference mesh is 2^{-7} .

$$-\nabla \cdot A\nabla u + \mathbf{b} \cdot \nabla u = f \text{ in } \Omega,$$

$$u = 0 \text{ on } \partial\Omega.$$

• Let $\mathbf{b} = [1, 0]$.

Figure : Diffusion coefficient A, $A_{max}/A_{min} = 100$ and $A_{min} = 0.01$.

Figure : #dofs vs $|||u_h - u_{H,L}^{ms}|||/|||u_h|||$

$$-\nabla \cdot A\nabla u + \mathbf{b} \cdot \nabla u = f \text{ in } \Omega,$$

$$u = 0 \text{ on } \partial\Omega.$$

• Let **b** = [512, 0]'.

Figure : Diffusion coefficient A with $A_{max}/A_{min} \sim 10^5$ and $A_{min} = 0.05$.

Figure : #dofs vs $|||u_h - u_{H,L}^{ms}|||/|||u_h|||$

Petrov-Galerkin DG-LOD

Consider the problem: find $u_H^{ms,L} \in \mathcal{V}_H^{ms,L} = \operatorname{span}\{\lambda_{T,j} - \phi_{T,j}^L\}$ such that

$$a_h(u_H^{ms,L}, v) = F(v), \quad \text{for all } v \in \mathcal{V}_H = \text{span}\{\lambda_{T,j}\}$$

Same as before:

- $\dim \mathcal{V}_H^{ms,L} = \dim \mathcal{V}_H$
- The basis function are solved independently of each other.
- Method can take advantage of periodicity.

Pros

- Quadrature for the coarse system becomes easier, i.e., $a_h(\lambda_{T,j} \phi_{T,j}^L, \lambda_{T,j})$
- Sparser coarse system
- Less memory consumption, after being computed the correctors $\phi_{T,j}^L$ can be disgarded.

Cons

- Non-symmetric coarse system
- Harder (missing) analysis

Adaptivity and a posteriori error bound ($\mathbf{b} = 0$)

Theorem (A posteriori error bound)

Let $u_H^{ms,L}$ be the multiscale solution, then

$$|||u - u_H^{ms,L}||| \lesssim \left(\sum_{T \in \mathcal{T}_H} \rho_{h,T}^2(u_H^{ms,L})\right)^{1/2} + \left(\sum_{T \in \mathcal{T}_H} \rho_{L,\omega_T}^2(u_H^{ms,L})\right)^{1/2}.$$

- $ho_{L,\omega_i^L}^2$ measures the effect of the truncated patches.
- $\rho_{h,T}^2$ measures the effect of the refinement level.

Adaptivity

• We consider the permeabilities

Figure: Permeabilities One left and SPE right.

• Using a refinement level of 30% we have.

Figure: Convergence plot for One left and SPE right.

Figure : One (left) and SPE (right). The level of refinement (upper) and size of the patches (lower).

Perspective towards Two-Phase flow

Buckley-Leverett system

$$-\nabla \cdot (K\lambda(S)\nabla p) = q$$
 and $\partial_t S + \nabla \cdot (f(s)\mathbf{v}) = q_w$

is solved using IM(plicit)P(ressure)E(plicit)S(aturation)

- K is the hydraulic conductivity
- $\lambda(S)$ is the total mobility (essentially macroscopic)
- and $\mathbf{v} = -K\lambda(S)\nabla p$ is obtained from the pressure equation

- Coarse mesh $H = 2^{-5}$ and fine mesh $h = 2^{-8}$.
- Boundary condition p=1, on left boundary p=0 on right boundary, and $K\lambda(S)\nabla p=0$ otherwise.
- Prepossessing step: compute the basis corrected basis using $\lambda(S)=1$

Figure : K_1 ($A_{max}/A_{min} \approx 5 \cdot 10^5$) left and K_2 ($A_{max}/A_{min} \approx 4 \cdot 10^5$) right on a mesh with size 2^{-6} .

Figure : Saturation profile K_1 for T_1 , T_2 , and T_3 .

Figure : Saturation profile K_2 for T_1 , T_2 , and T_3 .

Data	$\ e(T_1)\ _{L^2(\Omega)}$	$\ e(T_2)\ _{L^2(\Omega)}$	$\ e(T_3)\ _{L^2(\Omega)}$
1	0.088	0.073	0.070
2	0.058	0.087	0.079

Table: Error in relative L^2 -norm, $e(T) = S(T) - S^{ref}(T)$.

On going work - LOD on complex geometries

- Construt a method which with textbook convergance which do not resolve the boundary.
- Add correctors locally to handel e.g. singularites and/or interfaces.

Preliminary numerical results

- Homogeneous Dirichlet boundary condition
- Choose $L = \lceil \log(\frac{1}{H}) \rceil$.
- Let $H = \sqrt{2} \cdot 2^{-m}$ for $m = \{2, 3, 4, 5\}$
- Reference mesh is $h = \sqrt{2} \cdot 2^{-8}$
- Holes has radius $r = \{0.01, 0.03\} (\{2^{-6.6439}, 2^{-5.0589}\})$
- $f = \cos(8\pi x)\cos(8\pi y) + 0.5$

Figure: Computational domain.

Figure: Error estimate.

- D. ELFVERSON, G. H. GEORGOULIS, AND A. MÅLQVIST An adaptive discontinuous Galerkin multiscale method for elliptic problems. *Multiscale Model. Simul.*.
- D. ELFVERSON, G. H. GEORGOULIS, A. MÅLQVIST AND D. PETERSEIM Convergence of discontinuous Galerkin multiscale methods. SIAM J. Numer. Anal..
- D. ELFVERSON A discontinuous Galerkin multiscale method for convection-diffusion problems. *Submitted*.
- D. ELFVERSON, V. GINTING, P. HENNING On Multiscale Methods in Petrov-Galerkin formulation. arXiv:1405.5758, submitted.