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Model problem

Poisson’s equation
Given a polygonal domain Q € R?. We want to find v such that

—V-aVu=1iQ,
n-Vu=0on 0%,

where « is bounded 0 < 8 < a(x) € L>=(Q), f € L?(Q) and [, f dx = 0.

AT 'W »_v. H"ﬂ‘\ﬁ’
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(a) g2 ~10°  (b) § ~10°  (c) 97 ~10°  (d) §re ~10°

Figure: Permeabilities o projected in log scale and taken from the Society of
Petroleum Engineer http://www.spe.org/
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Discontinuous Galerkin discretization

Discretization

> Let Q be subdivided into the partition K = {K} and '’ be the union

of all interior edges.

> Let also V}, be the space of all discontinuous piecewise (bi)linear
polynomials.

» Define the weighted average and jump on face e as:

(Vo = afiv;_ + af;”;_ and [V = vt — v
v |
a- a+ {v}ﬂ[v]
K- K+ o é e

(a) Here K = {KT, K~} and I = {e}

D. Elfverson,

(b) Example of {v} and [v]
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Consider a symmetric inconsistent interior penalty
discontinuous Galerkin method

» Expanded DG space: V = V), + H*¢ with € > 0.

» Denote M : (L2(Q))? — (V4)? the L2-projection onto (V4)?

The bilinear form a(-,-) : V x ¥V — R and right hand side /(:) : V = R
are defined as:

a(v,2) = Y (aVv,V2)izgo = ((n ANV, [2]) 20

KeK eerl’!

+ (- {aNV 2}, V) 200) — 225([v], [Z])Lz(e)>,

he
/(V) = (f, V)L2(Q)~
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Comments

» Why use weighted averages?

» Using I, since we want to assume as little regularity as possible in u
for the a posteriori error analysis.

» For v € (V4)? then Mv = v and a(-, ") is reduced to a more familiar
fashion.
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Multiscale method

Motivation
In many applications, solution exist on several different scales e.g. flow in
porous media and in composite materials.

» Secondary oil recovery.
» Sequestration of Carbon Dioxide.
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Why do we need to resolve the coefficients?

Example with periodic coefficient
Consider Possion's equation with period coefficient o = a(x/¢€). For the
finite element method, we have

H
VaV(u — up)||2@) < C?Hf”Lz(Q)

» Need H < € for reliable results.

» To computational expensive to solve on a single mesh for many
applications e.g. flow in porous media and in composite materials.

» Want eliminate the ¢ dependence by using a multiscale method
(Malgvist-Peterseim).

;
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Framework for Multiscale methods
The problem is split into one coarse and fine scale contribution
Vi =V @ Vr.
> Let subdivide Q into a coarse mesh K. = {K.}.
> Ve =span{¢;} =NV and Ve = {v €V, : Mcv =0}, where
Me : Vi, — V. is the L? projection onto the coarse mesh.
» Define the map 7 : V. — Vs as
a(Tve,ve) = —a(ve, vr), Vve € Ve, vr € Vr
Split up = ue + T ue + ur and v = ve + v¢ where u. € Ve, v¢ € Vr.

a(uc + Tuc + up,ve + ve) = I(ve + vr), Yve € Ve, v € Vr

(c) ue (d) Tuc + ur (e) up = uc +Tuc+ur
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Fine scale
Let v. = 0 to get the fine scale equations

a(Tuc + ur,ve) = I(ve) — a(uc, vr),
split into two equations

a(Uf, Vf) = /(Vf) Vv € Vr,
a(Tuc,ve) = —alue, v¢) Yvr € Vr.

Coarse scale
Let v/ = 0 on the coarse scale

a(uc + Tue,ve) = I(ve) — a(ur, ve) Vve € Ve

Comments
» Equally hard to solve as the original problem.
» Other chooses then [N, can be coincided.
> A symmetric split can also be considered for the coarse scale

;
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View solution as span av modified basis functions

» Let V. = span{¢;} and V™ = span{¢; + T ¢i}.
> View ¢; + T ¢; as a modified basis function.

From the multiscale map we have, V, = Vs L, Vr, for all i

a(¢,- + T¢,‘, V) =0, v e Vr

i
£
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Approximation of T ¢;

» The fast decay of 7 ¢; motivates approximations of T ¢; to patches
L
wr C Q.

8

Figure: Example of a one layer patch w} and a two layer patch w?
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Multiscale method discretization

» 7 is he restriction of 7 to a patch w C Q

> Ur =3, Ur,i where \ is the number of nodes, be the
approximation of uy.

> Let M; bealljs.t ¢; =1in node .
> Let also ®; =3 .\ &

(b) ®; = ZJ‘GM, (bj
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Bilinear form for the fine scale problem

> Let K(wh) = {K: KNwt #0}.
» Let also I (w!) be all interior edges on K(w?).
Define a; : Vr(w;) X Vr(w;) — R, as

ai(v,z) = > (aVv, V2w — Y. ((n-{aan}W,[z])Lz(e)
KeK(wt) eelI(wh)
+ (0 {aNVzhu, [ — 101 D).
/,'(V) = (d),'f, V)Lz(Q).
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Fine scale equations
Forall i € N find T¢; € Vr(wh) and Ur; € Vr(wh) for j € M; st

ai(T oy, ve) = —ai(dj, ve), Vv € Ve(wh),
a,-((NJ,c,,-, Vf) = /,'(CD,'Vf), VVf S Vf(w,-L).

Coarse scale equation

Find U. € V. s.t

a(Ue 4+ TUec,ve) = I(ve) — (Ur,ve), Vve € Ve.
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Decay in V¢
Problem setting

> Let the computational domain be oJ,-L for L=1,2,..., N where
w,-L c Q.

Let also ®; =3 .\, &)
The problem reads: find 7®; € Vy(wk)

v

v

a(7'¢,-, v) = —a(®;,v), Vv e Vy(wh).

The reference solution 7®; is the solution computed on wN = Q.

v

Coarse mesh is 8 x 8 element and reference grid is 64 x 64 elements.

v

TR
| R R
¥,

A
Lok
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Figure: The error in relative error in broken energy norm with respect to the
path size.
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Convergence

Problem setting

» Consider the model problem (Poisson’s equation)

Keeping the refinement level constant and increasing the patch sizes
L=1,...,N for all local problems.

The coarse grid is 8 x 8 coarse elements.

The reference solution U,r is the DG solution computed on 64 x 64
elements.

The right hand side is —1 in the lower left corner and 1 in the upper
right.
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Figure: The reference solution to the model problem using the permeabilities
One, Period and SPE
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Figure: The relative error in broken energy norm with respect to the patch sizes.
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Implementation

Split into local problems, transfer data

a,f,82

Solve independent local fine scale equations

To; VjeM, T VjeMy || To; VjeMg

Ura Ur Urs te
K, b, Kb Kij,0 5

Generate the solution of the multiscale equation U
or intereslting parts of U

U=3U ($+78;)+U;

Figure: Scheme of the implementation.
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Constraints on the fine scale equations

» The condition is realised using Lagrangian multiplier.
> Let ¢ be a coarse basis function and ¢ be a fine basis function.

Want so fined Tw € Vf(w,-L)

ai(Tw,v) = —ai(w,v) Yv e Ve(wh).

K PTN . _ (b
P 0 —\0)”
where Ky ) = ai(k, ¢1), be = —ai(¢1, k) and

(61,01)  (d1,92) ... (d1,9¢n)
(f2:01)  (d2,02) ... (¢2,0n)

Algebraic problem reads:

P =

(¢M;901) (¢M;902) (¢M;<PN)
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Adaptivity
Set up
» Need an a posteriori error estimate for the discontinuous Galerkin

method.

» Use this in the framework for Multiscale methods to construct a a
posteriori error estimate for the multiscale method.

» Construct a adaptive algorithm to automatically tune the critical
parameters.
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Theorem (A posteriori error estimate for DG method)

> Let u, up be given by the exact solution respectively the DG solution.

> Let also x € Vy N HY(Q)

» Moreover, let £ :=E.+ Eg where Ec .= u— x and Eq4 := x — up.
Then,

D IVaVEllfk S D (ox(un) + Cr(un, X)),

KeK KeK

where

h
o (un) = \/—Z_OIIHV - aVup||2(k);

+\/27l;(||(1 - Wk e)) [OZVU[-,]H[_z (0K) + || [Uh]”[_z aK\rB))
C (uhv )_ ||\/_V(Uh — )||L2(K)-
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Treatment of Cx(up, X)

1. First, x has to be chosen in a clever way.
2. Second, Ck(un, x) can either be estimated or evaluated.

» One possible chose is x = Zosup.

» Under certain assumption on «, (x(up, x) can be evaluated and
hidden in ok (up).

Lemma (Oswald interpolation operator)

> Let Zos: Vp — Vp N HY

Toww =Y (o 3 4lx)ei).

ieN Ml JjEM;
Then,

WVaV(v —Tosv)||? < o v]| |2 8
| ( )| | \/—[ 2 (or\rsy:

;
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Sketch of proof
We have

Z ||\/5ng||%2(;() =a(&c, &) = a(€, &) — al&a, &),

Kek
where

a(,&) = a(u, &) — a(up, &) = 1(E:) — a(up, &),
I(n) — a(un,n),

where n = &, — mpée.
» First integration by parts /(n) — a(un,n) element wise and using the
identity [vz] = {v}w[z] + {v}a[z].
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We get,

I(n) — a(un,n)
= > (F+V-aVunn)ew + Y ( [aVun] {n}w) iz e

Kek ecrl!

+ (- {aNVi b, )iz — ovehy ([nl. [z ) + D (0 aVun, n)izge):

eelrs

1. Then, using the inequalities and stability for the piecewise constant
L2-projection.

h
v — movllizmy S —gonﬂvv”pm, Vv € HY(K),

h
v = movllizok) <4/ a_';H\/avVHL?(K) Yv € HY(K).

2. For a(&4,&c) use the Lemma (Oswald interpolation operator).
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Theorem (A posteriori error estimate for ADG-MS)

> Let u, U be the exact solution respectively the multiscale solution.
> Let X = ZosU € HY(Q).

> Set & .= &, + &y where &, == u— X and &5 .= X — U.

> U= 30, Uei(d) + T ¢;) + Ur.i, where U are the nodal values.

Then,
Z ||\/&Vé”c||i2(,{) S Z p%,Kc + Z pi‘*’f’

Kek Keekc ieEN
where

2 _ § 2
pL,w[.L - pL,wf,e’
eEFB(wI.L)\FB

Hw ,L OeTVe

prate = i (17 @V Ul + ZE Ul )

measures the effect of the truncated patches.
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Also

Ph.= Y (ox(U)+ Ck(U, X)),

KeK.

with ok and (k as in previous theorem.
Comments
> pi,wf measure the effect of the truncated patches.
> pj k measure the effect of the refinement level.
> ﬁn[u,-]ng(e) behave as h=3/2e L ~ 1 = L ~ 3logh!

» Another possible choice is a weighted Oswald-type interpolation
operator with the weights depending on the diffusion tensor.
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Sketch of proof
We have
a(&e, 8:) = a(&, &) — a(84, &),

where

a(&, &) = a(u, &) — a(U, &),
(&) — a(U, &),
=I(éc — ve) — a(U, &: — ve),

=3 (W6 = ve = vi) = a(Upy 6 = ve) + 3i(Uis vr) )
ieN

here v. € V. and vf € Vr.
Notice that

a8, 6)=a(8,6)+ > ((n.{avu,-}w,[vf])p(e)
e€lB(wh)ré
Oee

{0V U, [z — 752 (UL Do)
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Then,
a8, 8) = (/(@@C Ve — ) —a(&, e — v — vf))
+3 3 (0 {aV U i + (0 {aV Uibs [

ieN eEFB(w,.L)FB

- T D)

=1+

1. The first term (/), is bounded by the a apoteriori error estimate for
DG.
2. To bound the second term (//),
» Select v. and vf as the piecewise constant L2-projection onto V. and
Vs, respectively.
» Then using a trace inequality, a interpolation estimate and
L2-stability of ¢, Il is bounded.
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Adaptive algorithm

Algorithm 1 Adaptive Discontinuous Galerkin Multiscale Method

1: Initialize the coarse mesh with mesh size H.
2: Let the fine mesh size be hx = H/2 for all K. € K. and L(w;) = 2 for

© O N>R W

allie N
while 3, (05 o, + P1..,) > TOL do
for i €¢ N do
if p%_wl_ > TOL/(2N) then
Ll(w,-) =L(w)+1
end if
end for
for K. € K. do
if p2, > TOL/(2|K|) then
h’K = hK/2
end if
end for
end while
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Adaptivity

» Consider the model problem

» Using the a posteriori error estimate to construct an adaptive
algorithm.

» Start with one refinement and 2 layers patches everywhere.

» Refine 30% of the coarse elements and increase 30% of the patch
sizes in each iteration.

» Coarse mesh is 32 x 32 element and reference grid is 256 x 256
elements.

» The right hand side is —1 in the lower left corner and 1 in the upper

right.
DA
«& *4: ‘W

(a) gma ~10°  (b) gz ~10° (c) gz ~10° (d) gme ~ 10°

Figure: Permeabilities « projection in log scale.
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Figure: The relative error in broken energy norm with respect to number of
iterations. Iteration O corresponds to the standard DG solution and iteration 1
the start values in the adaptive algorithm.
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Figure (a) and (b) illustrates where the adaptive algorithm puts most
effort

» Figure (a) corresponds to the refinements
» Figure (b) corresponds to the patch sizes.

» Figure (c) is the permeability «.

(a) Refine hyk (b) Layers, L (c) Layers, L
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Figure: The relative error in broken energy norm with respect to the mean

Relative error in energy norm
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value of the degrees of freedom for the fine scale problems.

D. Elfverson,

Adaptive discontinuous Galerkin multiscale methods for elliptic problems, Energy norm a posteriori error estimate

36/39



Conclusions

Advantage

» The fine scale problems are perfectly parallelizable.
» The exponential decay in the fine scale solution allows small patches.

» The error estimate and the adaptivity algorithm focus computational
effort in critical areas.

» Very high aspect ratio in « can be solved.
Possible to construct a conservative flux on the coarse scale.
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Future work

A priori analysis of the discontinuous Galerkin multiscale method.
Hybrid method using DG on coarse scale and CG on fine scale.

Extend the method and analysis to diffusion-convection problems.

vV v vv

Investigate to sensibility in input data (uncertainty in the
permeability «)

» Extend the implementation to triangular meshed to allow for
complicated geometries.

» 3D implementation.
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Questions
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