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Abstract

Many algorithms in image analysis require a priority queue,a data structure that holds pointers to pixels in the image, and which
allows efficiently finding the pixel in the queue with the highest priority. However, very few articles describing such image analysis
algorithms specify which implementation of the priority queue was used. Many assessments of priority queues can be found in
the literature, but mostly in the context of numerical simulation rather than image analysis. Furthermore, due to the ever-changing
characteristics of computing hardware, performance evaluated empirically 10 years ago is no longer relevant. In this paper I
revisit priority queues as used in image analysis routines,evaluate their performance in a very general setting, and come to a very
different conclusion than other authors: implicit heaps are the most efficient priority queues. At the same time, I propose a simple
modification of the hierarchical queue (or bucket queue) that is more efficient than the implicit heap for extremely largequeues.
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1. Introduction

A priority queue is a data container that supports insertion
of a new data element and extraction of the element with the
highest priority. These operations are often called enqueue and
dequeue, orinsert anddelete-min (since lower values are
usually associated to higher priority). Various implementations
complement these with other operations, such asfind-min,
merge, delete anddecrease-key. Each of these operations
can be performed in a fraction of a microsecond on modern
hardware. However, a typical program might perform millions
of these operations, and spend an important fraction of total
execution time accessing the queue. It is therefore important to
select an efficient queue implementation.

Many algorithms for image analysis, especially those that
can be described with the “recursive propagation” paradigm,
can be implemented efficiently using priority queues. Examples
are the distance transform in non-convex domains [1], the grey-
weighted distance transform [2, 3], fast marching level sets [4],
morphological reconstruction [5], area and attribute openings,
closings and thinnings [6, 7], the watershed transform [8],re-
gion growing [9] and skeletonisation [10]. All these algorithms
are implemented using onlyinsert anddelete-min. There-
fore, this paper considers only these two operations.

For all of these algorithms, the priority given to the elements
in the queue are either pixel values in the input image or prop-
agation distances. Whether this priority value is given in inte-
ger or floating-point representation depends on the application.
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The advantages of using integer values are reduced memory
usage and faster arithmetic operations. Both these advantages
are becoming less significant: modern computers can perform
floating-point calculations just as fast as integer calculations,
and memory prices no longer are a limiting factor. The advan-
tages of using a floating-point representation are the increased
accuracy of the result and the near elimination of problems re-
lated to overflow, underflow and rounding. For these reasons,
this paper explicitly examines only priority queues that use a
floating-point priority value. This excludes the very efficient hi-
erarchical queue (also known as bucket queue), in which there
is a separate list for each possible priority. In this paper Ipresent
a slight modification of the hierarchical queue that makes itap-
plicable when the priority value has a very large range or is not
integer. The computational overhead makes it more efficient
than the heap only when the queue size is very large. Note that,
for some applications, slightly altering the processing order of
pixels introduces an error smaller than the accuracy of the algo-
rithm. For these cases it is possible to quantise priority values,
enabling the use of the hierarchical queue [11].

Some priority queue algorithms are stable, meaning that el-
ements with identical priority are dequeued in the same order
that they were enqueued (in FIFO order, “first in, first out”).
Non-stable queues can be made stable with the addition of one
integer to each enqueued element [12]. Stability hasn’t been
considered in this paper, though it is important for severalalgo-
rithms such as the watershed and skeletonisation algorithms.

Algorithm performance can be evaluated theoretically or
empirically. Theoretical performance, derived from e.g. the
number of comparisons, is used extensively in the literature [for
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example, see 13, 14, 15, 16] but is not representative of perfor-
mance in practice, due to the complex multilevel caching [17]
and pipelined computation cores of modern computing archi-
tectures. On the other hand, empirically evaluated performance
depends on the design of the input data set, and is relevant only
for the class of computer used in the evaluation. The empiri-
cal evaluation presented here uses a very simple random model
for the input data, and shows how the performance is affected
by the choice of input. Because of this input data model and
because only the two operations needed for image analysis al-
gorithms are considered in the evaluation, the results presented
in this paper apply specifically to image analysis applications.
For an application that stores larger blocks of data with each
key, and for applications that require other thaninsert and
delete-min operations, the best option for priority queue will
be different than that recommended here.

Good priority queue comparison papers appear occasion-
ally [18, 19, 20, 21], though I have been able to find only one
dedicated explicitly to image analysis applications [12].In that
paper, Breen and Monro conclude that the splay tree and the
AVL tree, two types of self-adjusting binary search trees, per-
form better than the heap data structure. These three priority
queue algorithms are included the present comparison. They
also evaluated the hierarchical heap and propose the SplayQ.
Both were found to outperform other data structures, but areby
definition limited to a relatively small set of possible priorities,
and are therefore not considered here.

Jones [18] concluded from his empirical comparison of pri-
ority queues that “implicit heaps are [...] consistently worse
than many other priority queue implementations.” In contrast,
LaMarca and Ladner [17] concluded the opposite: “the low
memory overhead of implicit heaps makes them an excellent
choice as a priority queue.” The difference between these two
studies is 10 years of computer hardware development. LaMarca
and Ladner used a computer with 3 levels of cache, and for
which main memory access is expensive compared to com-
parisons. Their theoretical algorithm evaluation is basedon
analysing cache misses rather than number of comparisons. This
paper will discover what changes are introduced by another 12
years of hardware development.

2. Priority Queue Algorithms

2.1. Implicit Heaps

The implicit heap is widely used as a priority queue because
it does not have any memory overhead. It is also the oldest
priority queue implementation with anO(logN) performance
(with N the number of items in the queue) [18]. The heap is not
stable, but can be made stable with the addition of an integer
to each element that stores the enqueue order. In short, theN
elements in the queue are stored in an array, which implicitly
represents a complete binary tree of height⌈log2 N⌉. Each ar-
ray elementi has its two children, at array locations 2i+1 and
2i + 2. The heap property, that each element has higher prior-
ity (lower value) than its two children, is always maintained.
Thus, the highest priority element is always at the root of the

tree (array element 0). When dequeueing, the last element in
the array is placed at the root and iteratively swapped with its
highest-priority child until the heap property is restored. To en-
queue an element, it is appended to the array, then percolated
up the tree until the heap property is restored. Both operations
areO(logN). The dequeue operation typically needs to move
an element from the top all the way down, performing roughly
2 log2 N comparisons, since that element was originally at the
bottom of the tree. An enqueue operation will move the new
item up 1.6 levels on average, independent ofN, if all the pri-
ority values are from the same uniform distribution [22]. How-
ever, in the image analysis algorithms mentioned in the intro-
duction, new priorities tend to be lower than old priorities, fur-
ther reducing the cost of the enqueue operation.

The heap can be generalised to ak-way heap. The heap de-
scribed above is a 2-way heap, since each element has two chil-
dren. It is trivial to adapt this such that each nodei hask chil-
dren atki+1, ki+2, ... ki+ k. Increasingk reduces the height
of the tree, but increases the number of comparisons that need
to be done at each node. The advantage to using a largerk is in-
creased memory locality of the elements compared, which can
increase speed when reading data from cached memory [17]
(see Subsection 3.3).

2.2. Binary Search Trees

When dequeueing, the implicit heap requires taking the last
element in the array, an element that is at the bottom of the tree,
moving it to the root, then repeatedly exchanging it with oneof
its children until the heap property is restored, most probably
when the element is back at the bottom of the tree. The reason
this is necessary is because the heap requires the binary tree
to be complete, otherwise the array it is stored in would have
gaps. That is, each level, except for the last one, is full, and the
last level has all elements as far to the left as possible. When
representing a binary tree using explicit pointers to childnodes,
there is more flexibility in the placing of the elements in the
tree. Furthermore, moving nodes around only requires swap-
ping child pointers, not copying the data stored in the nodes.
Of course, with small data items as used for image analysis al-
gorithms, swapping the data is not much more expensive than
swapping the pointers.

A binary search tree uses such explicit child pointers to cre-
ate a tree where a node’s left child is smaller than the node itself,
and its right child is larger. To find an element, one compares
the value searched for with the root node’s value, and moves
to its left or right child depending on the result. This compari-
son is repeated until the required value is found. For a priority
queue, where the element with the highest priority typically is
the one with the lowest value, no comparisons are necessary.
One simply descents iteratively to the left child until a node is
found without left child. This is the lowest-valued item in the
tree. Deleting this node is accomplished simply by replacing
it with its right child, if it has one. To enqueue an element, a
search is performed, descending all the way to the bottom of the
tree, where the new element can be appended. Binary search
trees are stable priority queues if an element to be insertedis
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considered larger than any equal valued element already in the
tree.

These operations are allO(logN) as long as the tree is bal-
anced (i.e. its leaves are all at the same depth). When the tree
becomes severely unbalanced, performance will degrade sig-
nificantly. In the extreme, the tree can become a linear linked
list.

Many techniques have been described to maintain the tree
balanced, most notably the AVL tree [23], the red-black tree
[23] and the splay tree [24]. They all use node rotations to rebal-
ance the tree, but use different techniques to determine which
rotations are needed. Self-balancing trees are also stable.

The AVL tree adds a balance value to each node, that keeps
track of the difference in height of its left and right branches.
When this difference is larger than 1, one or two node rota-
tions bring the balance at that node back to 0. After inserting or
deleting a node, the algorithm walks back to the root, updating,
checking and rebalancing nodes.

The red-black tree adds a colour to each node, and thereby
the binary tree can simulate a 2-3-4 tree (i.e. a tree where each
internal node has either two, three or four children). A 2-3-4
tree has all leafs at the same level. In the red-black tree, each
red node is part of the same 2-3-4 node as its parent. Therefore,
each red node must have only black children. To keep this in-
variant, rotations of nodes need to be performed when inserting
or deleting a node, and thereby the tree is kept in balance. The
code for a red-black tree is very complex when compared to
either the AVL tree or the splay tree. Sedgewick [25] recently
presented a small modification to the red-black tree, in which, if
a node has only one red child, it is required that the red childis
to the left. This greatly reduces the number of possible config-
urations to examine when keeping the tree invariance, thereby
simplifying the code. He calls this structure the left-leaning
red-black tree. This is the version of the red-black tree used in
the present comparison.

Finally, the splay tree, introduced by Sleator and Tarjan
[24], has the advantage of not requiring an extra integer to be
stored with each node. Instead, both insertions and deletions
are performed through an operation called splaying, in which
the accessed node is moved to the root of the tree. For inser-
tion, the node closest in value to the new element is splayed
to the root, then the new item is inserted as the new root. For
dequeueing, the lowest-valued node is splayed to the root and
removed. The splay tree is not designed as a priority queue,
but rather as a search tree in which elements are accessed mul-
tiple times. The splay operation keeps frequently accessedel-
ements near the root of the tree, thereby optimising the search
tree. However, Breen and Monro [12] found the splay tree to
work better as a priority queue than other self-balancing binary
trees.

There exist many more variations on the tree theme than
the three described above. They are not included in the present
study because their main strength is not relevant to the algo-
rithms used for image analysis. The Fibonacci heap [26] is ex-
pected to be efficient whenmergeordecrease-keyare needed.
The relaxed heap [27] and the 2-3 heap [28] are improvements
on the Fibonacci heap. All three are based on the premise of

delaying the sorting of enqueued elements. This idea is carried
further by several much more complex data structures, such as
the ladder queue.

2.3. Ladder Queue

The two-list structure [29] simply divides the set of queued
elements into near future (NF) and far future (FF). Elements
in the NF are sorted, those in the FF are not. When enqueue-
ing, only elements that fall in the NF section need to be sorted,
other elements can simply be appended to the FF list. When
dequeueing, the first element for the sorted list can directly be
extracted. Only when the NF becomes empty is it necessary to
do any work. In this case, a new threshold is determined and a
subset of the FF is sorted into the NF list.

This structure has been refined as the lazy queue [30] and
later the ladder queue [31]. These two queues divide the dataset
into three groups. The NF is again a sorted list. The FF is some
data structure with many unsorted bins, such that elements in
the first bin all have higher priority than the elements in the
second bin, and so forth. Finally, the very far future (VFF) is
an unsorted list, which is completely emptied into the FF when
needed. Adding the middle layer improves performance, and
the structure of this middle layer is the difference betweenthe
lazy queue and the ladder queue. The ladder queue is a multi-
scale structure, where, if a bin is too large to sort into the NF
list, a new rung in the ladder can be added. The bin can now be
sorted over many smaller bins, one of which can be sorted into
the NF. The ladder queue is the only queue in this comparison
that is expected to have anO(1) amortized cost for enqueue and
dequeue operations [31].

As opposed to the heap and the binary search trees, the lad-
der queue expects newly enqueued elements to be larger than
the last dequeued element, and becomes highly inefficient when
this requirement is not met. Similarly, the queue is most effi-
cient when all newly enqueued elements can be inserted into the
VFF rather than the FF or NF. Thus, this data structure is po-
tentially very efficient for algorithms such as the grey-weighted
distance transform, which tends to produce new priority values
that are larger than most of the values currently in the queue, but
is not at all applicable to an algorithm such as the seeded water-
shed, which can enqueue pixels with a lower priority value than
any seen previously.

2.4. Hierarchical Queue

When the priority values are limited to small integers (e.g.
digital images often have 8-bit or 12-bit integers as pixel val-
ues when they come off the imaging sensor), it is possible to
allocate a FIFO queue (bucket) for each possible priority value.
An array contains a pointer to each of these buckets, and when
enqueueing an element, the correct bucket can be directly in-
dexed using the priority value. Both enqueue and dequeue are
O(1) operations. This is called a hierarchical queue in the liter-
ature [e.g. 12]. As mentioned in the introduction, the limitation
of priority values to small integers makes this data structure in-
applicable in a general algorithm, though it is the best choice
under certain circumstances. Breen and Monro [12] suggest the
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SplayQ as an alternative to the hierarchical queue. The SplayQ
is a splay tree with a FIFO queue at each node, and its advan-
tage is that it is not limited to small integers. However, enqueue
and dequeue still require traversing a binary search tree with k
nodes,k being the number of different priority values on the
queue. This means that, ifk is small compared to the total num-
ber of elementsN in the queue, the SplayQ is an efficient data
structure. However, when priority values are taken from a very
large set,k will be close toN, and the algorithmic complexity
reverts to that of the splay tree.

2.5. Hierarchical Heap

To make the hierarchical queue applicable when priority
values are not limited to small integers, I propose using an im-
plicit heap instead of a FIFO queue for each bucket, and a sim-
ple linear mapping of priority values to bucket indices (as in
the computation of the histogram of an image). Computing the
bucket indexi from the priority valuep is thus accomplished
with

i = ⌊
p− pmin

pmax − pmin
k⌋ , (1)

wherek is the number of buckets,pmin is the lowest andpmax

is the highest expected priority value. This still limits priority
values to a predefined range, but it is no longer necessary to
have as many buckets as different values exist in that range.For
added flexibility, wheni exceedsk−1, the element can simply
be added to the last bucket. In this case, when most elements
exceed the expected priority range, the algorithmic complexity
of the hierarchical heap reverts to that of the implicit heap.

By dividing the N elements in the queue overk buckets,
the average size of each heap is reduced by a factork, and
the enqueueing and dequeueing operations thus are of order
O(logN/k) if the buckets are chosen correctly. Of course, the
actual algorithmic complexity depends strongly on the distri-
bution of priority values. Calculating the bucket index adds a
constant time to the enqueue operation that needs to be amor-
tised by theO(logk) reduction in time to enqueue the element
in the implicit heap. It is therefore necessary to choosek large
enough.

3. Implementation Aspects

When implementing the algorithms described in Section 2,
it is possible to include many optimisations. This section details
some of the optimisations mentioned in the literature.

3.1. Dynamically Increasing Array Size

The implicit heap is implemented in an array, a contiguous
block of memory of a fixed size. Usually, at the start of the
image analysis algorithm it is not possible to know how large
the queue will become. Therefore it is important to be able to
enlarge the array as necessary. The most trivial implementation
[32] is to allocate a new, larger array, and copy the data over.
The C functionrealloc can do this efficiently when there is
a block of free memory available directly after the array to be

enlarged; it does not need to copy any data in this case. If data
needs to be copied, this is anO(N) operation. To amortise this
cost and keep the average enqueue operation atO(logN), the
array needs to be doubled in size every time a new element
does not fit [33]. That is, the memory block is always between
N and 2N in size.

An alternative implementation of resizeable arrays divides
the array into equal-sized blocks. The array index must then
be translated to a block number and an index into the block.
Some additional overhead is required to manage these blocks:
either keep a list of pointers to the blocks, or put the blocksin a
linked list or binary tree. For more elegant approaches see e.g.
Brodnik et al. [34] or Demaine [33]. A block-based approach to
the array might be efficient in environments that do not natively
support resizing memory blocks.

3.2. Dedicated Memory Management
The binary search tree and its derivatives are composed of

nodes, small blocks of data containing one enqueued element
(a pointer) and its priority value (a floating-point number), and
two pointers to the node’s children. On a 64-bit computer this
is a 32 byte block. When allocating such a node through the
C library’s malloc function on my Linux computer, this block
actually requires 40 bytes of storage, the overhead is for the
system to know how large the block is. This means that 20% of
the memory used by the queue is wasted. If instead the nodes
are allocated in larger groups of, for example, 1000 nodes, the
overhead is reduced to 0.025%.

To manage these allocated but unused nodes, my implemen-
tation links them in a list. When a new node is needed, the first
one in the linked list is used. When a node is deleted, it is in-
serted at the beginning of this linked list. Both operationsare
constant-time operations that do not depend on the number of
nodes allocated in each block.

3.3. Memory Cache
Processor speeds have increased far beyond the speed at

which data can be moved from the main memory to the pro-
cessor. To alleviate this bottleneck, processors include asmall
amount of memory that works at the same clock speed as the
processor itself. Often there will be a second or third level
cache that is larger but works at a lower speed. When a mem-
ory address is accessed, a block of memory around it is moved
to the cache, under the assumption that the program will ac-
cess nearby addresses. Cache management logic has become
very complex, to better predict what pieces of memory will
be needed and what pieces of memory can be moved out of
the cache. Consequently, programs perform differently today
than they did when Jones [18] or LaMarca and Ladner [17] did
their priority queue comparisons. Currently, caches are better
adapted to real-world algorithms, meaning it is less important
to tailor the algorithms to match the system’s cache. One thing
still holds true: if all the data that a program uses fit in the cache,
the program will run faster than if the data do not fit. Further-
more, if the data do not fit in the cache, the program will run
faster if the subset of the data it needs for one task is grouped to-
gether in memory, rather than scattered over the address space.
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LaMarca and Ladner [17] and Naor et al. [35] describe meth-
ods to cluster the nodes in implicit heaps and binary trees to
improve their performance on cached memory.

3.4. Recursion

Heaps and binary search trees, like many other algorithms,
can be described very elegantly using recursive functions.Com-
puter science classes typically teach to remove recursion for
better performance. This is not necessary if the function istail
recursive, that is, it calls itself just before exiting. In this case,
any good optimising compiler will create object code that is
just as efficient as the non-recursive version of the code [36] (or
even more efficient, as can be seen in the experimental results
in Section 4). If the function is not tail-recursive, removing re-
cursion is more complex. The performance hit of function calls
is platform-dependent.

4. Comparison

All experiments, except where indicated, were performed
on a Hewlett Packard workstation with an Intel Xeon E5430
CPU (a quad-core, 64-bit processor clocked at 2.66 GHz) and
16 GiB1 of memory, running Red Hat Linux 5. This computer
is representative for the systems typically used today for im-
age analysis applications, though measurements vary from sys-
tem to system. Code was compiled using the GNU C compiler
(GCC) version 4.1.2 with the -O3 option, which turns on all
optimisations.

4.1. The Algorithms

I implemented and tested the algorithms listed in Table 1.
The code used for this empirical comparison is available on-
line at
http://www.cb.uu.se/~cris/priorityqueues.html,
and includes everything required to reproduce the graphs inthis
paper.

4.2. Memory Requirements

I used the Linux commandps to measure the amount of
memory used by a process. Two of the values it can return, res-
ident set size (RSS) and virtual memory size (VSZ), are useful
for this task. RSS indicates the amount of memory that a pro-
cess has in use and is not swapped out to the page file. As long
as the process does not exceed the available main memory, this
number will indicate the amount of physical memory used by
that process. This is not the same as the amount of memory
allocated by that process:malloc reserves a contiguous block
in the address space, but only the portion of this block that has
been accessed is mapped to the physical memory. VSZ is the
size of the address space reserved for the process. When a pro-
gram starts, the system reserves a fixed amount of address space
for it. A call to malloc will increase the virtual memory size
when the requested block size exceeds the space available.

1In this paper I use 1 GiB = 210 MiB = 220 KiB = 230 bytes.

Table 1: Algorithms implemented for this comparison, and their names as ref-
erenced in the figures.

Name Description

Heap (PA) The implicit heap with the array split over blocks,
and an array with pointers to these blocks.

Heap The implicit heap with the array dynamically
grown, usingrealloc.

4-heap The implicit 4-way heap, usingrealloc.
H-heap The hierarchical heap (Subsection 2.5), using

1024 buckets in the range [0,100]. Each bucket
is implemented as ‘Heap’.

BST (SM) The binary search tree, with each node allocated
independently usingmalloc.

BST The binary search tree, with nodes allocated in
groups of 1024.

BST (NR) The binary search tree, with nodes allocated in
groups of 1024, using non-recursive code.

AVL tree The AVL tree, using code from Pfaff [37], and
nodes allocated in groups of 1024.

LLRB tree Left-leaning red-black tree, using code from
Sedgewick [25], and nodes allocated in groups of
1024.

Splay tree The splay tree, using code from Sleator [38] (top-
down splaying, non-recursive code), and nodes
allocated in groups of 1024.

Ladder Q The ladder queue, according to Tang et al. [31];
additional details in Appendix.

Figure 1(a) shows the RSS for the test program when using
the various priority queues, for a wide range of queue sizes.For
simplicity, only data for five of the algorithms are plotted,each
of the other priority queues produced (nearly) identical results
to one of the five plotted algorithms.

The various versions of the heap all occupy roughly the
same amount of memory, close to the theoretical minimum. The
splay tree and the binary search trees need about twice as much
memory as the heap needs (the two child pointers take up as
much space as the data stored in each node). The left-leaning
red-black tree and the the AVL tree occupy 25% more than the
binary search tree. This is because these two data structures use
one extra bookkeeping value in each node. Both the AVL and
the red-black trees can be implemented by writing the book-
keeping values to the lower bits of the child pointers, whichare
not used because of the alignment to 8-byte boundaries. I have
not implemented this, as it complicates the code and increases
computational cost. The binary search tree using the system
malloc requires almost 50% more space than the same tree
using a dedicated memory management. This does not match
with the overhead estimated in Subsection 3.2. The hierarchi-
cal heap has some memory overhead when compared to the im-
plicit heap, because it starts off with 1024 small heaps. As the
amount of enqueued elements increases, the relative overhead
becomes smaller. Finally, the ladder queue has a huge overhead
because the VFF and the FF are both large enough to hold the
full initial data set. The imposed limit of 900000 elements in
the VFF (see Appendix) can clearly be seen in the horizontal
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(b) Virtual memory size

Figure 1: Memory usage of the queue. (a) The resident set sizeis the non-swapped physical memory used by the program. Thisdoes not reflect memory that
was allocated but not addressed. (b) The virtual memory sizeis the total size of the program, and is given by the number of pages assigned to the process by the
operating system. In both graphs, the horizontal black dashed line is the size reported for a program that uses the ‘null’queue (that doesn’t store any information);
the diagonal black dashed line is the amount of memory necessary to only store the data enqueued. The black dashed curve isthe sum of these two quantities, and
represents the smallest possible size of the program. Not shown: ‘4-heap’ is identical to ‘Heap,’ ‘LLRB tree’ is identical to ‘AVL tree,’ and ‘Splay tree’ is identical
to ‘BST.’

portion of the graph starting at 106 items.
Figure 1(b) shows the VSZ of the test program using the

various priority queue algorithms. Note that the initial virtual
memory size is very large compared to the amount of memory
used by the program. Also note that the heap, which doubles
in size when it needs to be expanded, now shows the expected
staircase-like behaviour, which it didn’t show in the RSS graph.
The amount of memory allocated by the heap is at most twice
as much as needed, which makes it at worst equal in size to the
binary search tree. The hierarchical heap is composed of heaps,
and therefore also shows the same behaviour.

4.3. Time Requirements
In many applications it is acceptable to increase the mem-

ory usage if it will make the program faster. Both Jones [18]
and Breen and Monro [12] found certain self-balancing treesto
outperform the more memory-efficient heap. I performed sim-
ilar experiments to see if the increased memory usage of these
data structures indeed is justifiable.

The classic performance experiment uses the hold model
[12, 18, 17, 20]. A queue is set up withN elements, then the
average time it takes for one hold cycle (one dequeue operation
followed by one enqueue operation) is measured. This model
is very simple and does not recognise the dynamic nature of
queue sizes [21]. I will, non-the-less, use this model as itssim-
plicity avoids making many assumptions on the input data set.
The priority queue is filled with random priority values froma
uniform distribution in the the interval [0,50]. The hold oper-
ation dequeues an element, adds a random value to its priority
(using a uniform distribution in the interval [0,2]) and enqueues

an element with this new priority. As discussed later, the incre-
ment used to generate new priorities influences the measured
times. Most papers using the hold model apply various prob-
ability distributions. The reported differences in performance
caused by changing the distribution are relatively small, and
therefore only the uniform distribution is considered here.

The hold operation was repeated 107 times on each queue,
so that the C functionclock can report accurate timing infor-
mation even though it only has a 10 ms resolution. The timing
of a ‘null’ queue, one that doesn’t actually store any data, was
measured in the same way to determine the overhead of gener-
ating the random numbers. This value was subtracted from all
the measured times.

Figure 2(a) shows the measured times for all the priority
queue algorithms listed in Subsection 4.1.N, the number of
elements in the queue, was varied exponentially from 2 to 108

(equivalent of enqueueing all pixels in a large 3D image). Fig-
ure 2(b) is the same experiment run on a similar system, a
FineTec server with two AMD Opteron 248 processors (a single-
core, 64-bit processor clocked at 2.2 GHz), and 4 GiB of mem-
ory, running the Fedora Core 6 distribution of Linux. Some
minor differences aside, these two graphs are very similar,sup-
porting the claim made earlier that the computer used in these
experiments is representative of the systems used today in prac-
tice.

Figure 2(c) and (d) show the results on yet another plat-
form, a Sun Blade 2500 workstation with two UltraSPARC IIIi
processors (a single-core, 64-bit processor clocked at 1.6GHz),
and 4 GiB of memory, running SunOS 5.8. Figure 2(c) shows
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(a) Intel Xeon E5430 / GCC 4.1
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(b) AMD Opteron 248 / GCC 4.1
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(c) Sun UltraSPARC IIIi / Sun C 5.3
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(d) Sun UltraSPARC IIIi / GCC 2.95

Figure 2: Speed of a hold operation. (a)-(d) Time for a singlehold (dequeue one element, enqueue a new element) versus thequeue size, for various architectures.
All except the binary search tree (yellow) areO(logN) operations, meaning we expect straight lines in this graphs.

the results on code compiled with Sun WorkShop C version
5.3 and the -O4 optimising option, Figure 2(d) shows the re-
sults on code compiled with GCC version 2.95.2 and the -O3
optimising option, generating a 32-bit executable. The biggest
difference between these two graphs is the vertical axis: most
algorithms took 50% longer to run when compiled as 32-bit ex-
ecutables. Many other differences are caused by the compiler
quality. Most notably, GCC 2.95 does not do tail recursion op-
timisation, severely degrading the performance of the binary
search tree with recursive code.

There are several striking things in these graphs, that willbe
analysed in the remainder of this subsection. Conclusions are

drawn in Section 5.
Except for the binary search tree and the ladder queue, all

algorithms are supposed to beO(logN). This means that, in
these semi-logarithmic plots, the time should be represented by
a straight line. This is (approximately) only the case for the hi-
erarchical heap. All other algorithms are affected by the cache
size. Figure 3 shows the portion of the graphs in Figure 2(a)
and (c) for smallerN. Note that these algorithms do behave as
expected in this domain. For very largeN the plots also form
straight lines, but with a higher slope. This reflects the higher
cost of memory access when the amount of data exceeds the
cache size. Figure 4 plots time against memory usage, with the
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(b) Sun UltraSPARC IIIi / Sun C 5.3

Figure 3: Speed of a hold operation. (a),(b) Detail of the graphs in Fig-
ure 2(a),(c), respectively.

O(logN) model fitted separately to the data to the left and to the
right of the “border” at 6 MiB, the cache size on the test sys-
tem. The hierarchical heap has the advantage that enqueueing
an element does not require moving data across the full length
of an array of lengthN, but only across an array of approximate
lengthN/k.

The execution time of the binary search tree peaks around
N = 2 · 105. This is an artifact of the testing method. After
creating the tree, it is fairly well balanced because the data is
entered unsorted. During the timing of the hold operation, how-
ever, the tree becomes increasingly unbalanced because newly
enqueued elements are larger than the dequeued elements. The
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Figure 4: Speed of hold operation versus memory usage. The speed of the algo-
rithms changes dramatically when the memory occupied by thequeue becomes
larger than the cache size. The data for each algorithm is fitted with two log(n)
lines: one to the points where the queue is smaller than the cache size, and one
where it is larger than the cache size. For the hierarchical queue a single line
was fitted. The data for the splay tree is not shown for clarityof the graph, the
fits were similar to the other balanced binary search trees.

more unbalanced the tree is, the longer the hold operation takes.
For a tree that initially is larger thanN = 2 · 105, the chosen
priority increment distribution does not debalance the tree sig-
nificantly with 107 hold operations. In these cases, its perfor-
mance is better than any of the self-balancing trees, which per-
form node rotations that are unnecessary. When the probability
distributions are changed so that the tree is debalanced much
quicker (Figure 5, using an initial uniform distribution inthe
range [0,1], and a uniform increment distribution in the range
[1,2]), the binary search tree’s performance is degraded enor-
mously, whereas the self-balancing trees perform comparably.
On the Sun workstation only 106 hold operations were done in
each test, and hence the BST graphs peak one decade earlier, at
N = 2 ·104.

Whereas the various heap implementations behave similarly
on the various architectures, the binary search trees and self-
balancing trees do not. In particular, the splay tree has a slightly
steeper slope than the AVL tree on all architectures when the
queue size exceeds the cache size, but for small queues the
AVL tree performs relatively much worse on the Sun worksta-
tion than on the two Linux computers. The splay tree seems
to access the memory more frequently in one hold operation,
but the AVL tree does many more function calls (it contains re-
cursive code that is not tail-recursive, and hence the compiler
cannot optimise away). On the Sun machine the relative costs
of these operations favour the splay tree, whereas on the Intel
and AMD machines they balance out almost exactly.

The ladder queue produces results that are more difficult to
interpret, due to the complexity of the data structure and the
delay in sorting. It is possible that the knee at 104 elements
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Figure 5: Influence of input on performance. The continuous lines are the
corresponding lines from Figure 2(a), the dashed lines are hold operation times
for those same algorithms, but with input that quickly surpasses the range of
data initially in the queue.

is caused by the need of a second rung in the FF. On the Sun
workstation there is a peak presumably caused by the 900000
element limit imposed on the VFF. When this limit was not
imposed, the performance on this platform degraded exponen-
tially for larger queues, though it did not affect performance on
the Linux machines. I guess that this phenomenon is related to
the less efficientrealloc on the Sun machine, but was unable
to test this hypothesis. In the debalancing graph (Figure 5)it
can be seen that for 107 or more elements the hold operation
can be even faster than for very small queue sizes. This is again
an artifact of the testing method. Only 107 hold operations are
performed on the queue, and all of these 107 new elements have
a priority larger than any on the initial queue. With such a large
queue, none of the elements enqueued during the test need to
be sorted, since the queue already contains enough elementsto
satisfy all the dequeue operations. When the time needed to
dequeue all elements in the queue is taken into account, this
advantage disappears.

4.4. Enqueueing and Dequeueing Times

The hold operation does not represent all of the work done
by a priority queue when used in an image analysis routine.
Typically, the queue is first initialised by enqueueing somepix-
els, for example all the pixels on the border of the objects. The
pixels in the queue are then processed one by one, each poten-
tially resulting in the enqueueing of some of its neighbours. But
at some point all pixels have been processed or are in the queue
to be processed, and no further enqueueing happens. Pixels
are dequeued until the queue is empty. To measure the perfor-
mance in this initial enqueueing-only and final dequeueing-only
stages, I plotted in Figure 6 the times for filling and emptying
the queues used to measure hold times. These values were di-

Table 2: Execution time (in seconds) for the grey-weighted distance transform
using various priority queues. The algorithm ran out of memory when using
the ladder queue with the largest image size.

Image size (pixels) 1283 2563 5123

number of seeds 27 216 1728

H-heap 9.25 126.4 1228
Ladder Q 10.77 138.3 -
Heap 11.72 153.4 1517
AVL tree 17.11 217.0 2401
Splay tree 19.65 261.8 2875

vided byN to get an average time per enqueue or dequeue. Note
that this is not the time it takes to perform one operation on a
queue of sizeN, but rather the average time to perform the op-
eration on a queue as it grows from 0 toN or shrinks fromN
to 0. Only the times for largeN are plotted, because theclock
function used for measuring times is rather coarse. The en-
queue operation on the heap is, on average, independent ofN,
as explained by Doberkat [22], whereas the dequeue operation
is rather expensive when compared to binary trees. In contrast,
the enqueue operation on any of the binary trees takes up much
more time than the dequeue operation if the queue is very large
(please note the difference in scaling of the vertical axis).

4.5. Priority Queues in Practice

To demonstrate the importance of selecting a good priority
queue when implementing an algorithm, I took a grey-weighted
distance transform algorithm from the DIPlib library2 (Delft
University of Technology, The Netherlands), and replaced the
calls to the priority queue with calls to the algorithms imple-
mented for this paper. I then generated a small 3D image of
size 1283 pixels filled with Normally distributed noise (µ = 0,
σ = 10), smoothed this image using a Gaussian filter (σ = 10),
and added Normally distributed noise again (µ = 0, σ = 1).
To insure a strictly positive image, I subtracted the minimum
value and added 10−6. I then generated a seed image by setting
27 randomly selected pixels. The grey-weighted distance trans-
form computes the distance to the nearest seed, where distance
is defined as the integral of grey values along the path. When
using the splay tree or the AVL tree, as recommended by Breen
and Monro [12], this algorithm took, respectively, 19.65 s and
17.11 s to complete. In contrast, using a very simple implicit
heap the time is significantly reduced, to 11.72 s. With the hi-
erarchical heap the time is further decreased to 9.25 s. This
shows that, in this type of algorithm, the priority queue uses a
very significant portion of the computation time. Increasing the
image size makes these times more important, see Table 2. In
this table one can see that for a large 3D image, computation
time can be reduced from 40 minutes to 20 minutes by using a
hierarchical heap rather than an AVL tree.

2Obtainable fromhttp://www.diplib.org/.
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(a) Enqueue speed
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(b) Dequeue speed

Figure 6: Average enqueue and dequeue speed per element. (a)Enqueue speed shows measured time to enqueueN elements on an initially empty queue, divided
by N. (b) Dequeue speed shows measured time to dequeue all elements from a queue withN elements, divided byN. Note the different scaling of they axis on the
two graphs. Due to the coarseness of the time measurements itwas only possible to plot timings for very largeN. All the data points are in the right-side domain of
Figure 4, that is, the queue is larger than the cache size.

5. Conclusions and Discussion

As can be seen in Figure 2, the implicit heap easily outper-
forms any of the tested self-balancing trees at all queue sizes,
and its performance is very consistent across platforms. Among
the self-balancing trees, the AVL tree, the oldest of all trees
tested, is also the best in performance. On Solaris the splaytree
outperforms the AVL tree probably because the version of the
AVL tested uses recursive code that is not tail-recursive. Only
for very small queues, up to a few hundred elements, a small
time gain might be obtained by using plain binary search trees.
If the queue size exceeds the cache size, it is worth while to use
the more complex hierarchical heap. However, the added com-
plexity does not pay off for smaller queues. The ladder queue
is very efficient at all sizes, though only beats the hierarchical
heap in the range of 100-104 element queue size. Considering
the complexity of implementation and its erratic behaviour, it is
questionable whether this is a good method for general use.

The improvements to the implicit heap suggested by LaMarca
and Ladner [17] to improve data locality and reduce cache misses
were also tested. We implemented a four-way heap, that indeed
shows a slightly better consistency than the two-way heap for
very skewed input data, but only for very large queue sizes.
Very large queue sizes are better handled by the hierarchical
heap. The other improvement suggested by LaMarca and Lad-
ner is to add an offset to the array that stores the heap data
so that the children of one node do not fall in separate cache
blocks. In this test, this modification only led to a slightlyworse
performance (data not shown). This is one of the clear cases
where programming tweaks for a specific architecture have ad-
verse effects on other architectures.

A clear lesson here is that simpler algorithms are better
suited for simple tasks. Unless the problem is very complex
(such as storing huge amounts of data in a priority queue), it
is not worth while to implement a complex solution. Advances
in hardware and compiler optimisation techniques oftentimes
make hand-tweaking of code unnecessary. Hand tweaking not
only makes code more difficult to maintain, but indeed can
make it more difficult for the compiler to optimise the object
code.

It is clearly necessary to occasionally re-evaluate the per-
formance of basic algorithms and techniques, since computer
architectures change so rapidly. In this paper I have mainly
followed Jones [18], Breen and Monro [12], and LaMarca and
Ladner [17]. Of these papers, only the latter suggests the im-
plicit heap as a good (but not optimal) solution. Breen and
Monro’s paper is the only one that considers the constraintsof
image analysis problems, though in my view these constraints
have changed over the years. For current image analysis pro-
grams, the best implementation of the priority queue is the im-
plicit heap. It has the smallest possible memory usage and is
faster than all other implementations tested, with the exception
of the hierarchical heap and the ladder queue for very large
queue sizes. The one disadvantages of the heap that needs to
be considered is that it is not inherently stable, requiringthe ad-
dition of an integer to each enqueued element to obtain a stable
priority queue.
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some of his computers to generate the Figures 2(b), (c) and (d),
and Figure 3(b).

Appendix: Ladder Queue Implementation

I implemented the ladder queue for this comparison follow-
ing the details given by Tang et al. [31]. Such a data structure
is much more complex than the other structures in the com-
parisons, and requires much more memory. The test program
loads the queue with many data elements before extracting a
single one. The ladder queue accumulates all these elements
into the VFF list, which makes enqueueing very efficient, but
also makes this list grow unreasonably large. To avoid extreme
memory usage, the VFF was emptied into the FF the first time it
contained 900000 elements. Subsequent enqueueing will hap-
pen mostly in the FF, which affects the speed of enqueueing, but
does not affect the measured speed of the hold operation. The
value of 900000 was chosen ad hoc, and is clearly reflected in
the experiment that compares memory usage.

There are two further deviations from the paper. All un-
sorted lists (that is, VFF and the bins in FF) are simple arrays
rather than linked lists. These are initialised to 50 elements and
double in size when required. To avoid infinite recursion when
a block of elements with identical priority does not fit into the
NF, this implementation copies as many elements as can fit in
the NF, rather than enlarging the NF as suggested in the paper.
This was easier to implement, and since it is not a common
occurrence, should not affect the measured performance.
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