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Abstract

Many algorithms in image analysis require a priority queaidata structure that holds pointers to pixels in the image,vehich
allows efficiently finding the pixel in the queue with the higt priority. However, very few articles describing suclage analysis
algorithms specify which implementation of the priorityeqie was used. Many assessments of priority queues can be ifoun
the literature, but mostly in the context of numerical siatidn rather than image analysis. Furthermore, due to tae@vanging
characteristics of computing hardware, performance etathempirically 10 years ago is no longer relevant. In tlapgp |
revisit priority queues as used in image analysis routieegluate their performance in a very general setting, antecto a very
different conclusion than other authors: implicit heapstiie most efficient priority queues. At the same time, | pegpa simple
modification of the hierarchical queue (or bucket queud)ithmore efficient than the implicit heap for extremely largesues.
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1. Introduction The advantages of using integer values are reduced memory
o ) . ) _usage and faster arithmetic operations. Both these adyesita
A priority queue is a data container that supports insertionyre hecoming less significant: modern computers can perform

of a new data element and extraction of the element with thﬂoating_point calculations just as fast as integer calioies,
highest priority. These operations are often called eng@&d  and memory prices no longer are a limiting factor. The advan-
dequeue, otnsert anddelete-min (Since lower values are tages of using a floating-point representation are the asee
usually associated to higher priority). Various implen@iins  accuracy of the result and the near elimination of problegas r
complement these with other operations, suctfasd-min,  |ated to overflow, underflow and rounding. For these reasons,
merge, delete anddecrease-key. Each of these operations g paper explicitly examines only priority queues thae @s
can be performed in a fraction of a microsecond on moderfipating-point priority value. This excludes the very eféiat hi-
hardware. However, a typical program might perform milBon erarchical queue (also known as bucket queue), in whictether
of these operations, and spend an important fraction of totgs  separate list for each possible priority. In this pageebsent
execution time accessing the queue. Itis therefore impotta 5 sjight modification of the hierarchical queue that makegpit
select an efficient queue implementation. _ plicable when the priority value has a very large range oois n
Many algorithms for image analysis, especially those thajyteger. The computational overhead makes it more efficient
can be described with the “recursive propagation” paradigmnan the heap only when the queue size is very large. Note that
can be implemented efficiently using priority queues. EX&%p or some applications, slightly altering the processingerof
are the distance transform in non-convex domains [1], te§-gr pixels introduces an error smaller than the accuracy of ltpe-a
weighted distance transform [2, 3], fast marching leved 8% yithm. For these cases it is possible to quantise priorityes
morphological reconstruction [5], area and attribute opgs, enabling the use of the hierarchical queue [11].
closings and thinnings [6, 7], the watershed transform&j, Some priority queue algorithms are stable, meaning that el-
gion growing [9] and skeletonisation [10]. All these aldbms  ements with identical priority are dequeued in the samerorde
are implemented using onlnsert anddelete-min. There-  that they were enqueued (in FIFO order, “first in, first out”).
fore, this paper considers only these two operations. Non-stable queues can be made stable with the addition of one
For all of these algorithms, the priority given to the elerisen integer to each enqueued element [12]. Stability hasn’hbee
in the queue are either pixel values in the input image or propeonsidered in this paper, though it is important for sevalgb-
agation distances. Whether this priority value is givemitei  rithms such as the watershed and skeletonisation algasithm
ger or floating-point representation depends on the agjiita Algorithm performance can be evaluated theoretically or
empirically. Theoretical performance, derived from elge t
number of comparisons, is used extensively in the liteegftior
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example, see 13, 14, 15, 16] but is not representative obperf tree (array element 0). When dequeueing, the last element in
mance in practice, due to the complex multilevel caching [17 the array is placed at the root and iteratively swapped wtith i
and pipelined computation cores of modern computing archihighest-priority child until the heap property is restor@d en-
tectures. On the other hand, empirically evaluated perdmiee  queue an element, it is appended to the array, then perdolate
depends on the design of the input data set, and is relevnt onup the tree until the heap property is restored. Both opamati
for the class of computer used in the evaluation. The empiriare O(logN). The dequeue operation typically needs to move
cal evaluation presented here uses a very simple randomlmoden element from the top all the way down, performing roughly
for the input data, and shows how the performance is affecte@log, N comparisons, since that element was originally at the
by the choice of input. Because of this input data model andottom of the tree. An enqueue operation will move the new
because only the two operations needed for image analysis atem up 1.6 levels on average, independenipff all the pri-
gorithms are considered in the evaluation, the resultseptesl  ority values are from the same uniform distribution [22]. W0
in this paper apply specifically to image analysis appl@wai ever, in the image analysis algorithms mentioned in theintr
For an application that stores larger blocks of data withheac duction, new priorities tend to be lower than old prioritiés-
key, and for applications that require other thamsert and ther reducing the cost of the enqueue operation.
delete-min operations, the best option for priority queue will The heap can be generalised tk-aay heap. The heap de-
be different than that recommended here. scribed above is a 2-way heap, since each element has two chil
Good priority queue comparison papers appear occasiordren. It is trivial to adapt this such that each nodeask chil-
ally [18, 19, 20, 21], though | have been able to find only onedren atki + 1, ki + 2, ... ki + k. Increasing reduces the height
dedicated explicitly to image analysis applications [18]that  of the tree, but increases the number of comparisons that nee
paper, Breen and Monro conclude that the splay tree and th® be done at each node. The advantage to using a largér-
AVL tree, two types of self-adjusting binary search trees-p creased memory locality of the elements compared, which can
form better than the heap data structure. These three fyrioriincrease speed when reading data from cached memory [17]
queue algorithms are included the present comparison. Thegee Subsection 3.3).
also evaluated the hierarchical heap and propose the SplayQ
Both were found to outperform other data structures, bubgire 2.2. Binary Search Trees
definition limited to a relatively small set of possible pities, When dequeueing, the implicit heap requires taking the last
and are therefore not considered here. element in the array, an element that is at the bottom of & tr
_Jones [18] concluded from his empirical comparison of pri-moving it to the root, then repeatedly exchanging it with ohe
ority queues that “implicit heaps are [...] consistentlyrse® its children until the heap property is restored, most pbipa
than many other priority queue implementations.” In costira \yhen the element is back at the bottom of the tree. The reason
LaMarca and Ladner [17] concluded the opposite: “the lowihis is necessary is because the heap requires the binary tre
memory overhead of implicit heaps makes them an excelleng pe complete, otherwise the array it is stored in would have
choice as a priority queue.” The difference between these tWyaps. That is, each level, except for the last one, is ful, tae
studies is 10 years of computer hardware development. Ledar|ast |evel has all elements as far to the left as possible. Whe
and Ladner used a computer with 3 levels of cache, and fofepresenting a binary tree using explicit pointers to chisdes,
which main memory access is expensive compared to COMere is more flexibility in the placing of the elements in the
parisons. Their theoretical algorithm evaluation is based {ree. Furthermore, moving nodes around only requires swap-
analysing cache misses rather than number of comparistis. T ping child pointers, not copying the data stored in the nodes
paper will discover what changes are introduced by anotBer 1of course, with small data items as used for image analysis al

years of hardware development. gorithms, swapping the data is not much more expensive than
swapping the pointers.

2. Priority Queue Algorithms A binary search tree uses such explicit child pointers te cre
ate a tree where a node’s left child is smaller than the nee# jt

2.1. Implicit Heaps and its right child is larger. To find an element, one compares

The implicit heap is widely used as a priority queue becausdhe value searched for with the root node’s value, and moves
it does not have any memory overhead. It is also the oldedf its left or right child depending on the result. This compa
priority queue implementation with a®(logN) performance SON IS repeated until the rquwed valge is four'ld.' For apymr
(with N the number of items in the queue) [18]. The heap is nofluéue, where the element with the highest priority typjcai|
stable, but can be made stable with the addition of an integdh€ one with the lowest value, no comparisons are necessary.
to each element that stores the enqueue order. In shorly the One simply descents iteratively to the left child until a easl
elements in the queue are stored in an array, which impjicit found without left child. This is the lowest-valued item imet
represents a complete binary tree of heifjbg,N]. Each ar- tree. Deleting this node is accomplished simply by rep@cin
ray element has its two children, at array locations-21 and it with its right child, if it has one. To enqueue an element, a
2i + 2. The heap property, that each element has higher priog€arch is performed, descending all the way to the bottoimeof t
ity (lower value) than its two children, is always maintaine {ree, where the new element can be appended. Binary search
Thus, the highest priority element is always at the root ef th trees are stable priority queues if an element to be insésted
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considered larger than any equal valued element alreadyein t delaying the sorting of enqueued elements. This idea isechrr

tree. further by several much more complex data structures, ssich a
These operations are &@(logN) as long as the tree is bal- the ladder queue.

anced (i.e. its leaves are all at the same depth). When tae tre

becomes severely unbalanced, performance will degrade si@.3. Ladder Queue

r_1ificant|y. In the extreme, the tree can become a linear tinke  The two-list structure [29] simply divides the set of queued
list. elements into near future (NF) and far future (FF). Elements
Many techniques have been described to maintain the tre@ the NF are sorted, those in the FF are not. When enqueue-
balanced, most notably the AVL tree [23], the red-black treeing, only elements that fall in the NF section need to be sorte
[23] and the splay tree [24]. They all use node rotationsbake  other elements can simply be appended to the FF list. When
ance the tree, but use different techniques to determinehwhi dequeueing, the first element for the sorted list can diydu!
rotations are needed. Self-balancing trees are also stable extracted. Only when the NF becomes empty is it necessary to
The AVL tree adds a balance value to each node, that keepg, any work. In this case, a new threshold is determined and a
track of the difference in height of its left and right braesh g ,pset of the FF is sorted into the NF list.
When this difference is larger than 1, one or two node rota-  Thjs structure has been refined as the lazy queue [30] and
tions bring the balance at that node back to 0. After insgiiin  |ater the ladder queue [31]. These two queues divide thesta
deleting a node, the algorithm walks back to the root, updati  jnto three groups. The NF is again a sorted list. The FF is some
checking and rebalancing nodes. data structure with many unsorted bins, such that elements i
The red-black tree adds a colour to each node, and thereljfe first bin all have higher priority than the elements in the
the binary tree can simulate a 2-3-4 tree (i.e. a tree wheak ea second bin, and so forth. Finally, the very far future (VF§) i
internal node has either two, three or four children). A 2-3- 5, ynsorted list, which is completely emptied into the FFwhe
tree has all leafs at the same level. In the red-black trezh ea needed. Adding the middle layer improves performance, and
red node is part of the same 2-3-4 node as its parent. Thereforyne structure of this middle layer is the difference betwten
each red node must have only black children. To keep this in|-azy queue and the ladder queue. The ladder queue is a multi-
variant, rotations of nodes need to be performed when imgert scale structure, where, if a bin is too large to sort into tie N
or deleting a node, and thereby the tree is kept in balance. Thjst, a new rung in the ladder can be added. The bin can now be
code for a red-black tree is very complex when compared tQorted over many smaller bins, one of which can be sorted into
either the AVL tree or the splay tree. Sedgewick [25] regentl the NF. The ladder queue is the only queue in this comparison
presented a small modification to the red-black tree, inthfc 5t is expected to have &1(1) amortized cost for enqueue and
a node has only one red child, it is required that the red dhild dequeue operations [31].
to the left. This greatly reduces the number of possible genfi As opposed to the heap and the binary search trees, the lad-
urations to examine when keeping the tree invariance, tiyere ggr queue expects newly enqueued elements to be larger than
simplifying the code. He calls this structure the left-I€@n  the |ast dequeued element, and becomes highly inefficiestwh
red-black tree. This. is the version of the red-black tregduse  tpjg requirement is not met. Similarly, the queue is most effi
the p'resent comparnison. _cientwhen all newly enqueued elements can be insertediato t
Finally, the splay tree, introduced by Sleator and Tarjanyrr rather than the FF or NF. Thus, this data structure is po-
[24], has the advantage of not requiring an extra integereto btentially very efficient for algorithms such as the grey-gteied
stored with each node. Instead, both insertions and daketio gistance transform, which tends to produce new priorityigal
are performed through an operation called splaying, in tvhic {nat are larger than most of the values currently in the quisute
the accessed node is moved to the root of the tree. For inseis not at all applicable to an algorithm such as the seedeerwat

tion, the node closest in value to the new element is splayeghed, which can enqueue pixels with a lower priority valuth
to the root, then the new item is inserted as the new root. Fogny seen previously.

dequeueing, the lowest-valued node is splayed to the rabt an
removed. The splay tree is not designed as a priority queug 4. Hjerarchical Queue
but rather as a search tree in which elements are accessed mul

tiple times. The splay operation keeps frequently accesbed digital images often have 8-bit or 12-bit integers as pixal v

ements near the root of the tree, thereby optimising thechear ues when they come off the imaging sensor), it is possible to

tree. However, Breen and Monro [12] found the splay tree to 4 S
work better as a priority queue than other self-balancimgiy allocate a FIFO queue (bucket) for each possible priorityea

An array contains a pointer to each of these buckets, and when
trees. . ; .
engueueing an element, the correct bucket can be directly in

the-{ﬁrzree deexsl;(s:trikr)ne %ngbrg\?ereT\/ﬁgagfgicir}ntgi(;;edei,:rlﬁren,;;gaeﬁeXEd using the priority value. Both enqueue and dequeue are
’ Y O(1) operations. This is called a hierarchical queue in the-liter

s_tudy because _thelr main str_ength IS _not releyant o th('}."’Ilgoature [e.g. 12]. As mentioned in the introduction, the latidn
rithms used for image analysis. The Fibonacci heap [26]4s ex - . .

- of priority values to small integers makes this data striecio-
pected to be efficient wheterge ordecrease-keyare needed.

The relaxed heap [27] and the 2-3 heap [28] are improvement%ppIICabIe n a.general algorithm, though it is the best choi
. . . nder certain circumstances. Breen and Monro [12] sugbest t
on the Fibonacci heap. All three are based on the premise of
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SplayQ as an alternative to the hierarchical queue. They§pla enlarged; it does not need to copy any data in this case. df dat
is a splay tree with a FIFO queue at each node, and its advaneeds to be copied, this is &{N) operation. To amortise this
tage is that it is not limited to small integers. However,egwge ~ cost and keep the average enqueue operati@(lagN), the

and dequeue still require traversing a binary search tréiekvi  array needs to be doubled in size every time a new element
nodes,k being the number of different priority values on the does not fit [33]. That is, the memory block is always between
queue. This means thatkifis small compared to the total num- N and 2 in size.

ber of elementd in the queue, the SplayQ is an efficient data  An alternative implementation of resizeable arrays digide
structure. However, when priority values are taken fromigve the array into equal-sized blocks. The array index must then
large setk will be close toN, and the algorithmic complexity be translated to a block number and an index into the block.

reverts to that of the splay tree. Some additional overhead is required to manage these blocks
either keep a list of pointers to the blocks, or put the bldoks
2.5. Hierarchical Heap linked list or binary tree. For more elegant approaches sge e

To make the hierarchical queue applicable when priorityBrodnik etal. [34] or Demaine [33]. A block-based approazht
values are not limited to small integers, | propose usingan i the array might be efficient in environments that do not rejiv
plicit heap instead of a FIFO queue for each bucket, and a sinRUPPOrt resizing memory blocks.
ple linear mapping of priority values to bucket indices (as i ,
the computation of the histogram of an image). Computing thé-2- Dedicated Memory Management

bucket index from the priority valuep is thus accomplished The binary search tree and its derivatives are composed of
with nodes, small blocks of data containing one enqueued element
D Dni (a pointer) and its priority value (a floating-point numbemd
=] — K (1)  two pointers to the node’s children. On a 64-bit computes thi
Prmax = Pmin is a 32 byte block. When allocating such a node through the

wherek is the number of bucketsin, is the lowest anne  C library’smalloc function on my Linux computer, this block

is the highest expected priority value. This still limitsquity ~ actually requires 40 bytes of storage, the overhead is fer th

values to a predefined range, but it is no longer necessary ®ystem to know how large the block is. This means that 20% of

have as many buckets as different values exist in that réfgre. the memory used by the queue is wasted. If instead the nodes

added flexibility, when exceedk — 1, the element can simply are allocated in larger groups of, for example, 1000 nods, t

be added to the last bucket. In this case, when most elemer@yerhead is reduced to 0.025%.

exceed the expected priority range, the algorithmic comiple To manage these allocated but unused nodes, my implemen-

of the hierarchical heap reverts to that of the implicitheap  tation links them in a list. When a new node is needed, the first
By dividing the N elements in the queue ovkrbuckets, one in the linked list is used. When a node is deleted, it is in-

the average size of each heap is reduced by a fagtand  serted at the beginning of this linked list. Both operatians

the enqueueing and dequeueing operations thus are of ordepnstant-time operations that do not depend on the number of

O(logN/K) if the buckets are chosen correctly. Of course, thenodes allocated in each block.

actual algorithmic complexity depends strongly on therdist

bution of priority values. Calculating the bucket index add ~ 3-3- Memory Cache

constant time to the enqueue operation that needs to be amor- Processor speeds have increased far beyond the speed at

tised by theO(logk) reduction in time to enqueue the elementWwhich data can be moved from the main memory to the pro-

in the implicit heap. It is therefore necessary to chdotrge  cessor. To alleviate this bottleneck, processors inclusiaall
enough. amount of memory that works at the same clock speed as the

processor itself. Often there will be a second or third level
cache that is larger but works at a lower speed. When a mem-
ory address is accessed, a block of memory around it is moved
oto the cache, under the assumption that the program will ac-
cess nearby addresses. Cache management logic has become
very complex, to better predict what pieces of memory will
be needed and what pieces of memory can be moved out of
3.1. Dynamically Increasing Array Size the cache. _ Consequently, programs perform differentl)ayod_
. . ) ) than they did when Jones [18] or LaMarca and Ladner [17] did
The implicit heap is implemented in an array, a cONtiguOUShair priprity queue comparisons. Currently, caches atéebe
block of memory of a fixed size. Usually, at the start of theadapted to real-world algorithms, meaning it is less imguatrt
image analysis algorithm it is not possible to know how argey, 5jjor the algorithms to match the system’s cache. Omegthi

thel queurel: will become. Therefori itis impqr.taln_t tolbe.able il holds true: if all the data that a program uses fit in thefe,
enlarge the array as necessary. The most trivial implerienta o ,roqram will run faster than if the data do not fit. Further

[32] is to allocate a new, larger array, and copy the data.ovel, e if the data do not fit in the cache, the program will run
The C functionrealloc can do this efficiently when there is ¢, qyor if the subset of the data it needs for one task is gibtepe
a block of free memory available directly after the array @ b yether in memory, rather than scattered over the address spa

3. Implementation Aspects

When implementing the algorithms described in Section
itis possible to include many optimisations. This sectietads
some of the optimisations mentioned in the literature.
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LaMarca and Ladner [17] and Naor et al. [35] describe meth- . ) ) .
L . . Table 1: Algorithms implemented for this comparison, aneithames as ref-

ods to cluster the nodes in implicit heaps and binary trees t@enceq in the figures.

improve their performance on cached memory.

Name Description

3.4. Recursion Heap (PA) The implicit heap with the array split over blocks,
Heaps and binary search trees, like many other algorithms, and an array with pointers to these blocks.

can be described very elegantly using recursive functiGosn- Heap  The implicit heap with the array dynamically

puter science classes typically teach to remove recursion f grown, usingeealloc.

4-heap The implicit 4-way heap, usimgalloc.

H-heap The hierarchical heap (Subsection 2.5), using
1024 buckets in the range [0,100]. Each bucket
is implemented as ‘Heap'.

better performance. This is not necessary if the functidails
recursive, that is, it calls itself just before exiting. hig case,
any good optimising compiler will create object code that is

just as efficient as the non-recursive version of the codi([86 BST (SM)  The binary search tree, with each node allocated
even more efficient, as can be seen in the experimental sesult independently usingalloc.

in Section 4). If the function is not tail-recursive, remogire- BST The binary search tree, with nodes allocated in
cursion is more complex. The performance hit of functiorscal groups of 1024.

is platform-dependent. BST (NR) The binary search tree, with nodes allocated in

groups of 1024, using non-recursive code.
) AVL tree  The AVL tree, using code from Pfaff [37], and
4. Comparison nodes allocated in groups of 1024.
LLRBtree Left-leaning red-black tree, using code from

All experiments, except where indicated, were performed Sedgewick [25], and nodes allocated in groups of

on a Hewlett Packard workstation with an Intel Xeon E5430 1024.

CPU (a quad-core, 64-bit processor clocked at 2.66 GHz) and Splay tree  The splay tree, using code from Sleator [38] (top-
16 GiB! of memory, running Red Hat Linux 5. This computer down splaying, non-recursive code), and nodes
is representative for the systems typically used today rfor i allocated in groups of 1024.

age analysis applications, though measurements vary fyem s Ladder Q The ladder queue, according to Tang et al. [31];
tem to system. Code was compiled using the GNU C compiler additional details in Appendix.

(GCC) version 4.1.2 with the -O3 option, which turns on all

optimisations. ) _
Figure 1(a) shows the RSS for the test program when using

4.1. The Algorithms the various priority queues, for a wide range of queue siZes.

. . . . simplicity, only data for five of the algorithms are plottexhch

| implemented and tested the algorithms listed in Table 1.Of the other priority queues produced (nearly) identicabies

;Ii—r:]eea(;;Ode used for this empirical comparison is available ONz . one of the five plotted algorithms.

The various versions of the heap all occupy roughly the
http://www.cb.uu.se/ cris/priorityqueues.html, P Py gnly

. : ! .. same amount of memory, close to the theoretical minimum. The
and includes everything required to reproduce the graptigsn . .
paper splay tree and the binary search trees need about twice & muc

memory as the heap needs (the two child pointers take up as
much space as the data stored in each node). The left-leaning
red-black tree and the the AVL tree occupy 25% more than the

| used the Linux commangs to measure the amount of pinary search tree. This is because these two data streatsee
memory used by a process. Two of the values it can return, regine extra bookkeeping value in each node. Both the AVL and
ident set size (RSS) and virtual memory size (VSZ), are Usefune red-black trees can be implemented by writing the book-
for this task. RSS indicates the amount of memory that a progeeping values to the lower bits of the child pointers, whioh
cess has in use and is not swapped out to the page file. As loRgt ysed because of the alignment to 8-byte boundaries.el hav
as the process does not exceed the available main mematy, thiot implemented this, as it complicates the code and inegeas
number will indicate the amount of physical memory used bycomputational cost. The binary search tree using the system
that process. This is not the same as the amount of memogy, 114 requires almost 50% more space than the same tree
allocated by that procesaalloc reserves a contiguous block using a dedicated memory management. This does not match
in the address space, but only the portion of this block that h \ith the overhead estimated in Subsection 3.2. The hierarch
been accessed is mapped to the physical memory. VSZ is thgy heap has some memory overhead when compared to the im-
size of the address space reserved for the process. When a pflicit heap, because it starts off with 1024 small heaps. hs t
gram starts, the system reserves a fixed amount of address spaymount of enqueued elements increases, the relative @arhe
forit. A call to malloc will increase the virtual memory size pecomes smaller. Finally, the ladder queue has a huge @aaerhe
when the requested block size exceeds the space available. pecause the VEF and the EF are both large enough to hold the
full initial data set. The imposed limit of 900000 elements i
the VFF (see Appendix) can clearly be seen in the horizontal

4.2. Memory Requirements

1n this paper | use 1 GiB =% MiB = 220KiB = 230 bytes.
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Figure 1: Memory usage of the queue. (a) The resident setisite non-swapped physical memory used by the program. dd@s not reflect memory that
was allocated but not addressed. (b) The virtual memoryisitee total size of the program, and is given by the numberagieg assigned to the process by the
operating system. In both graphs, the horizontal black ethdihe is the size reported for a program that uses the ‘nuiéue (that doesn'’t store any information);
the diagonal black dashed line is the amount of memory nagess only store the data enqueued. The black dashed cutlre 8im of these two gquantities, and
represents the smallest possible size of the program. Netrsh4-heap’ is identical to ‘Heap, ‘LLRB tree’ is identd to ‘AVL tree,’ and ‘Splay tree’ is identical

to ‘BST.

portion of the graph starting at §@tems. an element with this new priority. As discussed later, therén
Figure 1(b) shows the VSZ of the test program using thament used to generate new priorities influences the measured

various priority queue algorithms. Note that the initiattual ~ times. Most papers using the hold model apply various prob-

memory size is very large compared to the amount of memorgbility distributions. The reported differences in perfance

used by the program. Also note that the heap, which doublesaused by changing the distribution are relatively smaitj a

in size when it needs to be expanded, now shows the expectékerefore only the uniform distribution is considered here

staircase-like behaviour, which it didn’t show in the RSSpdr. The hold operation was repeated 1ines on each queue,

The amount of memory allocated by the heap is at most twicso that the C functiorlock can report accurate timing infor-

as much as needed, which makes it at worst equal in size to theation even though it only has a 10 ms resolution. The timing

binary search tree. The hierarchical heap is composed g@hea of a ‘null’ queue, one that doesn’t actually store any datas w

and therefore also shows the same behaviour. measured in the same way to determine the overhead of gener-
_ ating the random numbers. This value was subtracted from all
4.3. Time Requirements the measured times.

In many applications it is acceptable to increase the mem- Figure 2(a) shows the measured times for all the priority
ory usage if it will make the program faster. Both Jones [18]queue algorithms listed in Subsection 4, the number of
and Breen and Monro [12] found certain self-balancing ttees elements in the queue, was varied exponentially from 2 fo 10
outperform the more memory-efficient heap. | performed sim{equivalent of enqueueing all pixels in a large 3D imagey- Fi
ilar experiments to see if the increased memory usage oéthedire 2(b) is the same experiment run on a similar system, a
data structures indeed is justifiable. FineTec server with two AMD Opteron 248 processors (a single

The classic performance experiment uses the hold modelore, 64-bit processor clocked at 2.2 GHz), and 4 GiB of mem-
[12, 18, 17, 20]. A queue is set up with elements, then the ory, running the Fedora Core 6 distribution of Linux. Some
average time it takes for one hold cycle (one dequeue operati minor differences aside, these two graphs are very sinsilgy;
followed by one enqueue operation) is measured. This modedorting the claim made earlier that the computer used inethes
is very simple and does not recognise the dynamic nature afxperiments is representative of the systems used todagdn p
queue sizes [21]. | will, non-the-less, use this model asiits tice.
plicity avoids making many assumptions on the input data set  Figure 2(c) and (d) show the results on yet another plat-
The priority queue is filled with random priority values frean  form, a Sun Blade 2500 workstation with two UltraSPARC Illi
uniform distribution in the the interval [0,50]. The holda&p  processors (a single-core, 64-bit processor clocked a6H5),
ation dequeues an element, adds a random value to its prioriand 4 GiB of memory, running SunOS 5.8. Figure 2(c) shows
(using a uniform distribution in the interval [0,2]) and ereyes
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10°
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Number of elements on the stack

Number of elements on the stack

(c) Sun UltraSPARC Illi/ Sun C5.3 (d) Sun UltraSPARC llli/ GCC 2.95

Figure 2: Speed of a hold operation. (a)-(d) Time for a sitglel (dequeue one element, enqueue a new element) versgsahe size, for various architectures.
All except the binary search tree (yellow) a@¢logN) operations, meaning we expect straight lines in this graphs

the results on code compiled with Sun WorkShop C versiordrawn in Section 5.
5.3 and the -O4 optimising option, Figure 2(d) shows the re- Except for the binary search tree and the ladder queue, all
sults on code compiled with GCC version 2.95.2 and the -O3lgorithms are supposed to ¥logN). This means that, in
optimising option, generating a 32-bit executable. Thegybgy these semi-logarithmic plots, the time should be represtoy
difference between these two graphs is the vertical axisstmo a straight line. This is (approximately) only the case fa tti-
algorithms took 50% longer to run when compiled as 32-bit ex-erarchical heap. All other algorithms are affected by thehea
ecutables. Many other differences are caused by the compilsize. Figure 3 shows the portion of the graphs in Figure 2(a)
quality. Most notably, GCC 2.95 does not do tail recursion op and (c) for smalleN. Note that these algorithms do behave as
timisation, severely degrading the performance of the lyina expected in this domain. For very lar§ethe plots also form
search tree with recursive code. straight lines, but with a higher slope. This reflects thehbig
There are several striking things in these graphs, thabwill cost of memory access when the amount of data exceeds the
analysed in the remainder of this subsection. Conclusioms a cache size. Figure 4 plots time against memory usage, wéth th
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Figure 4: Speed of hold operation versus memory usage. Teslsyf the algo-

T T T rithms changes dramatically when the memory occupied bytieele becomes

=

—~Heap o larger than the cache size. The data for each algorithmesfittth two logn)
0.9 i‘:_';]eap / T lines: one to the points where the queue is smaller than ttieecsize, and one
+AVLet?epe / a where it is larger than the cache size. For the hierarchioaug a single line
0.8[_, -Splay tree R b was fitted. The data for the splay tree is not shown for claftthe graph, the
e . fits were similar to the other balanced binary search trees.
ol Ladder Q o |

o©
o

more unbalanced the tree is, the longer the hold operati@sia
For a tree that initially is larger thaN = 2- 10°, the chosen
priority increment distribution does not debalance the sig-
nificantly with 10 hold operations. In these cases, its perfor-
mance is better than any of the self-balancing trees, which p
form node rotations that are unnecessary. When the pratyabil
distributions are changed so that the tree is debalancedi muc
quicker (Figure 5, using an initial uniform distribution the
range [0,1], and a uniform increment distribution in thegan
[1,2]), the binary search tree’s performance is degraden-en

Time it takes to do one hold operation (us)
© © o o o
= N w N [$)]

o .

10 10 10 10 10 mously, whereas the self-balancing trees perform comarab
Number of elements on the stack . . .
On the Sun workstation only £hold operations were done in
(b) Sun UltraSPARC Illi/ Sun C 5.3 each test, and hence the BST graphs peak one decade etrlier, a
N=2-10%
Figure 3: Speed of a hold operation. (a),(b) Detail of thepgsin Fig- Whereas the various heap implementations behave similarly
ure 2(a),(c), respectively. on the various architectures, the binary search trees dfd se

balancing trees do not. In particular, the splay tree haightb}

O(logN) model fitted separately to the data to the left and to theteeper §Iope than the AVL tree on all architectures when the
right of the “border” at 6 MiB, the cache size on the test sys-dUeue size exceeds th_e cache size, but for small queues the
tem. The hierarchical heap has the advantage that enqlgeueiﬁ‘VL trr]ee perfohrms reIaLmver much worseTc;]n thel Sun worksta-
an element does not require moving data across the fuIIHnengttlon than O?]t e two Linux cc:cmputersl. ne sp:yldtree Seems
of an array of lengtiN, but only across an array of approximate to access the memory more frequently in one hold operation,
lengthN /k. but the AVL tree does many more function calls (it contains re

The execution time of the binary search tree peaks aroungu’sive coc}e.that is not tail-recursive, and. hence the (,:Mp'
N = 2.1CP. This is an artifact of the testing method. After cannot optimise away). On the Sun machine the relative costs

creating the tree, it is fairly well balanced because the dat of these operations favour the splay tree, whereas on tkeé Int

entered unsorted. During the timing of the hold operatiamyh ~21d AMD machines they balance out aimost exactly.

ever, the tree becomes increasingly unbalanced becausg new The ladder queue produces results that are more difficult to

enqueued elements are larger than the dequeued elemeats. @terpret, due to the complexity of the data structure arel th

elay in sorting. It is possible that the knee af* Elements
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vided byN to get an average time per enqueue or dequeue. Note
that this is not the time it takes to perform one operation on a
queue of sizé\, but rather the average time to perform the op-
‘ s eration on a queue as it grows from ONbor shrinks fromN
10 10 10° 10 10’ 10° to 0. Only the times for larghl are plotted, because th@ock
Number of elements on the stack . N . .
function used for measuring times is rather coarse. The en-
gqueue operation on the heap is, on average, independéht of
Figure 5: Influence of input on performance. The continudoesl are the g explained by Doberkat [22], whereas the dequeue operatio
corresponding lines from Figure 2(a), the dashed lines el dperation times . th . h ' d to bi ¢ In csint
for those same algorithms, but with input that quickly ssges the range of IS ratheér expensive W én compare O_ Inary trees. In tra
data initially in the queue. the enqueue operation on any of the binary trees takes up much
more time than the dequeue operation if the queue is verg larg

] . (please note the difference in scaling of the vertical axis)
is caused by the need of a second rung in the FF. On the Sun

workstation there is a peak presumably caused by the 9000005 prjority Queuesin Practice
element limit imposed on the VFF. When this limit was not

imposed, the performance on this platform degraded exponen To demonstrate the importance of selecting a good priority
; ' o gqueue when implementing an algorithm, | took a grey-weidhte
tially for larger queues, though it did not affect perfornoaren distance transform algorithm from the DIPIib libréryDelft

the Linux mgchmes. | guess that this phenomenon is related tUniversity of Technology, The Netherlands), and replade t
the less efficientealloc on the Sun machine, but was unable o . . )
calls to the priority queue with calls to the algorithms imepl

to test this hypothesis. In the debalancing graph (Figurié 5) . .
can be seen that for 1®r more elements the hold operation ”?e”ted fof this baper. | then genergte_d a smalll 3D image of
. . size 128 pixels filled with Normally distributed noiseu(= 0,
can be even faster than for very small queue sizes. This ia aga o . o
. . 2 . o = 10), smoothed this image using a Gaussian fikes=(10),
an artifact of the testing method. Only 1Rold operations are _ . .
and added Normally distributed noise again=€ 0, o0 = 1).
performed on the queue, and all of thesé aéw elements have : : N T
To insure a strictly positive image, | subtracted the minimu

a priority larger than any on the initial queue. With suchrgéa value and added 16. | then generated a seed image by setting

gqueue, none of the elements enqueued during the test need . . X
be sorted, since the queue already contains enough eletnentsé9 randomly selected pixels. The grey-weighted distaraestr

satisfy all the dequeue operations. When the time needed tfgrm computes the distance to the nearest seed, whereéstan

. . . IS defined as the integral of grey values along the path. When

dequeue all _elements in the queue is taken into account, thﬂssing the splay tree or the AVL tree, as recommended by Breen

advantage disappears. and Monro [12], this algorithm took, respectively, 19.65w%la

. . 17.11 s to complete. In contrast, using a very simple implici

4.4. Enqueueing and_Dequeua ng Times heap the time is significantly reduced, to 11.72 s. With the hi
The hold operation does not represent all of the work dongarchical heap the time is further decreased to 9.25 s. This

by a priority queue when used in an image analysis routineshows that, in this type of algorithm, the priority queuesiae

Typically, the queue is first initialised by enqueueing sgbe gy significant portion of the computation time. Increasine

els, for example all the pixels on the border of the object® T jmage size makes these times more important, see Table 2. In

pixels in the queue are then processed one by one, each potgRs table one can see that for a large 3D image, computation

tially resulting in the enqueueing of some of its neighboBwt  {ime can be reduced from 40 minutes to 20 minutes by using a
at some point all pixels have been processed or are in theequeWierarchical heap rather than an AVL tree.
to be processed, and no further enqueueing happens. Pixels

are dequeued until the queue is empty. To measure the perfor-

mance in this initial enqueueing-only and final dequeueinty- 2Obtainable fronhttp: //www.diplib.org/.
stages, | plotted in Figure 6 the times for filling and empgyin

the queues used to measure hold times. These values were di-

—— Heap Table 2: Execution time (in seconds) for the grey-weightistiadice transform
—=—4-heap , using various priority queues. The algorithm ran out of mgmehen using

— gl|——H-heap / the ladder queue with the largest image size.

e BST

5 | AvLtree Image size (pixels) 138 256 5128

§ 25— tadderQ number of seeds 27 216 1728

S H-heap 9.25 1264 1228

S 2 Ladder Q 10.77 138.3 -

g Heap 11.72 153.4 1517

S 15 AVL tree 17.11 217.0 2401

o Splay tree 19.65 261.8 2875

$
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Figure 6: Average enqueue and dequeue speed per elemeBngague speed shows measured time to engNeelements on an initially empty queue, divided
by N. (b) Dequeue speed shows measured time to dequeue all ¢defreen a queue wittN elements, divided biX. Note the different scaling of thgaxis on the
two graphs. Due to the coarseness of the time measuremergs d@nly possible to plot timings for very large All the data points are in the right-side domain of
Figure 4, that is, the queue is larger than the cache size.

5. Conclusions and Discussion A clear lesson here is that simpler algorithms are better
suited for simple tasks. Unless the problem is very complex
As can be seen in Figure 2, the implicit heap easily outper(sych as storing huge amounts of data in a priority queue), it
forms any of the tested self-balancing trees at all quewssiz s not worth while to implement a complex solution. Advances
and its performance is very consistent across platformso#an  jn hardware and compiler optimisation techniques ofteatim
the self-balancing trees, the AVL tree, the oldest of alesre 5Ke hand-tweaking of code unnecessary. Hand tweaking not
tested, is also the best in performance. On Solaris the siay  only makes code more difficult to maintain, but indeed can
outperforms the AVL tree probably because the version of thgnake it more difficult for the compiler to optimise the object
AVL tested uses recursive code that is not tail-recursivelyO  ~qge.
for very small queues, up to a few hundred elements, a small ; js clearly necessary to occasionally re-evaluate the per
time gain might be obtained by using plain binary searchstree formance of basic algorithms and techniques, since compute
If the queue size exceeds the cache size, itis worth whilseo u 5y chitectures change so rapidly. In this paper | have mainly
the more complex hierarchical heap. However, the added comMp|iowed Jones [18], Breen and Monro [12], and LaMarca and
plexity does not pay off for smaller queues. The ladder queug gqner [17]. Of these papers, only the latter suggests the im
is very efficient at all sizes, though only beats the hieraadh plicit heap as a good (but not optimal) solution. Breen and
heap in the range of 100-1@lement queue size. Considering \onro's paper is the only one that considers the constraints
the complexity of implementation and its erratic behavjdus image analysis problems, though in my view these consgaint
questionable whether this is a good method for general use. pgye changed over the years. For current image analysis pro-
The improvementsto the implicit heap suggested by LaMar@aams, the best implementation of the priority queue is ttite i
and Ladner [17] toimprove data locality and reduce cachsesis picit heap. It has the smallest possible memory usage and is
were also tested. We implemented a four-way heap, thatthdegaster than all other implementations tested, with the ptica
shows a slightly better consistency than the two-way heap foof the hierarchical heap and the ladder queue for very large
very skewed input data, but only for very large queue sizesqueye sizes. The one disadvantages of the heap that needs to
Very large queue sizes are better handled by the hieraichicge considered is that it is not inherently stable, requitiregad-

heap. The other improvement suggested by LaMarca and Ladition of an integer to each enqueued element to obtain estab
ner is to add an offset to the array that stores the heap dagiority queue.

so that the children of one node do not fall in separate cache
blocks. In this test, this modification only led to a slighiigrse

performance (data not shown). This is one of the clear casecknowledgements
where programming tweaks for a specific architecture have ad

) I would like to thank Dr. David Knowles at Lawrence Berke-
verse effects on other architectures.

ley National Laboratory, Berkeley, California, for lettjme use
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some of his computers to generate the Figures 2(b), (c) gnd (d13]
and Figure 3(b).

(14]

Appendix: Ladder Queue I mplementation [15]

| implemented the ladder queue for this comparison follow-
ing the details given by Tang et al. [31]. Such a data strectur[ie]
is much more complex than the other structures in the com-
parisons, and requires much more memory. The test progral[ﬁ”
loads the queue with many data elements before extracting @]
single one. The ladder queue accumulates all these elements
into the VFF list, which makes engueueing very efficient, butl19]
also makes this list grow unreasonably large. To avoid ext¢re
memory usage, the VFF was emptied into the FF the first time iy
contained 900000 elements. Subsequent enqueueing will hap
pen mostly in the FF, which affects the speed of enqueueing, b [21]
does not affect the measured speed of the hold operation. The
value of 900000 was chosen ad hoc, and is clearly reflected ipy
the experiment that compares memory usage.

There are two further deviations from the paper. All un- [23]
sorted lists (that is, VFF and the bins in FF) are simple &1y 5y
rather than linked lists. These are initialised to 50 eleimeand
double in size when required. To avoid infinite recursion whe [25]
a block of elements with identical priority does not fit inteet
NF, this implementation copies as many elements as can fit iﬁe]
the NF, rather than enlarging the NF as suggested in the paper
This was easier to implement, and since it is not a commoi7]
occurrence, should not affect the measured performance.

(28]
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