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ThegeneralizedRadon transform:Sampling, accuracy and
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Abstract

The generalized Radon (or Hough) transform is a well-known tool for detecting parameterized shapes in an image. The
Radon transform is a mapping between the image space and a parameter space. The coordinates of a point in the latter
correspond to the parameters of a shape in the image. The amplitude at that point corresponds to the amount of evidence
for that shape. In this paper we discuss three important aspects of the Radon transform. The first aspect is discretization.
Using concepts from sampling theory we derive a set of sampling criteria for the generalized Radon transform. The second
aspect is accuracy. For the specific case of the Radon transform for spheres, we examine how well the location of the maxima
matches the true parameters. We derive a correction term to reduce the bias in the estimated radii. The third aspect concerns
a projection-based algorithm to reduce memory requirements.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords:Radon transform; Hough transform; Parameterized shape detection; Multi-dimensional image; Error estimation; Efficient
implementation; Image analysis

1. Introduction

One of the first stages in image analysis is the extrac-
tion of primitives, such as lines, edges, curves or simple
textures, from an image. In this paper we focus on curve
detection, or more precisely,shape detection. In three-
and higher-dimensional spaces, manifolds (N-dimensional),
such as a spherical membrane, are as interesting as curves
(one-dimensional). In general we are interested in a given
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family of shapes. Our assumption is that the members of
this family can be described by a set of parameters. The
task, then, is to find the parameters corresponding to the best
fitting member of the family of shapes. The standard method
for detecting parameterized shapes is based on a family of
transformations, which includes the Radon[1] and Hough
[2] transforms.

The organization of the paper is as follows: we continue
the introduction by briefly discussing shape representation,
followed by a short tutorial overview of the different trans-
formations. The main point of this overview is to show that
the different transformations are in fact different manifesta-
tions of a single unifying transform as has been described
earlier, with some minor differences, in Refs.[3–6]. To clar-
ify the definitions and results obtained, we will use the
detection of hollow hyper-spheres inD-dimensional space
(circles in 2D) throughout the paper.

The transform we describe is continuous and should oper-
ate on continuous images, but to allow computer processing
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wemust work with sampled images. Likewise, the transform
should be discretized. This is one of the main points of the
paper and is discussed in Section 2. To allow discretization
we must, in most cases, replace the original transform by
a regularized version. The consequences of the regulariza-
tion are discussed briefly in Section 3. We study the partic-
ular case of a Radon transform for hollow spheres in more
detail: the regularization in combination with a normaliza-
tion for the surface area of the sphere leads to a bias in
the estimated radius. This is the second contribution of the
paper. The third contribution of the paper is a projection-
based scheme to reduce the memory requirements of the
transform-based approach and is described in Section 4. We
verify our results by performing some experiments on the
aforementioned hollow spheres.

1.1. Shape representation using generalized functions

Before proceeding, we introduce the following notation:

�x The spatial coordinates
I (�x) The D-dimensional image containing theN-

dimensional shapes
�p The vector containing the parameters of the curve. Often
a subset of the parameters specifies the location of the
shape. It is, therefore, sometimes convenient to write�p=
{�q, �xo}, with �xo the location of the shape (the center of
the sphere), and�q the remainder of the parameters (the
radius of the sphere).

c( �p) A member of a class of shapes described by the pa-
rameter vector�p.

�c(�s; �p) The coordinates of a point belonging to the shape
c( �p). The coordinates�s allow us to specify a specific
point on the shape.

C(�x; �p) A set of constraint functions that together define
the shape. The number of constraint functions depends on
the dimensionality of the shape:D − N constraints are
necessary to describe aN-dimensional shape. For a point
that lies on the shape, all the constraint functions evaluate
to zero:Ci (�x; �p) = 0 for all i.

C( �p, �x) A kernel, also called template, that represents the
shape given by�p as an image with spatial coordinates�x.
We can model the imageI as a sum of several of these
templates.

Shapes can be described in different ways. The notation
�c(�s; �p) represents the shape. For a circle in 2D centered at
�xo and with radiusr this becomes

�c(�; {r, �xo}) = �xo + r

(
cos�
sin�

)
, (1)

with � a free coordinate letting us specify an arbitrary point
on the circle. Alternatively, a shape can be defined through
the specification of a constraint; this is known as the implicit
representation. In the case of a circle:

C(�x; {r, �xo}) = 0 with C(�x; {r, �xo}) = ‖�x − �xo‖ − r. (2)

Now recall that the shapes we are looking for are embedded
in an image and not directly available as a set of points. This
means that standard results from differential geometry, such
as the expression for the curvature of a plane curve[7]

� = ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
(3)

are not directly applicable. In this example, the curvature of
a curve embedded in an image in the form of an isophote
can still be obtained through the well-known result for the
isophote curvature[8–10].

In general, however, it may be beneficial to make the
embedding of the shapes explicit. The basic ingredients for
such a description are the constraint-based description and
the Dirac delta function. The theoretical basis for this de-
scription can be found in Gel’fand and Shilov[11, Chap-
ter III, Section 1, “Generalized Functions Concentrated on
Smooth Manifolds of Lower Dimension”], who give a very
lucid account of this subject matter. It is not our intention to
give a complete exposition of this material; we will merely
touch upon the essentials.

Consider anN-dimensional shape inD-dimensional
space. At any point on the shape we can span a local coor-
dinate system. We will denote the local coordinate vector
by �u. The firstN coordinatesu1...N span the subspace in
which the shape lies and theD −N remaining coordinates
u(N+1)...D span the subspace normal to the shape. In fact,
these last coordinates act as constraint functions: we can set
Ci =ui+N . We can describe the infinitesimal neighborhood
In by

In(�u) = �(u(N+1), . . . , uD). (4)

If we choose an orthogonal coordinate system, then this
reduces to

In(�u) =
D∏

i=N+1

�(ui). (5)

The scaling of theui should be such that they correspond
to the Euclidean distance to the shape. This ensures that
(a) the points on the shape contribute equally in an integral
and (b) the overall scale is such that theD-dimensional
volume integral over the image (assuming there is only the
one shape) yields theN-dimensional hyper-volume of the
shape. If the constraint functions are chosen according to
these principles, we write

I (�x) = �(C(�x; �p)). (6)

Let us examine two simple examples in three-dimensional
space. Thex − y plane is described by the constraintz= 0.
Therefore,

I[x−y plane](x, y, z) = �(z), (7)
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represents a plane in thex−y plane. A line along thex-axis
is described by the constrainty = 0 andz = 0:

I[line alongx](x, y, z) = �(y)�(z). (8)

1.2. The Radon transform

The Radon transform is named after J. Radon who showed
how to describe a function in terms of its (integral) projec-
tions [1]. The mapping from the function onto the projec-
tions is the Radon transform. The inverse Radon transform
corresponds to the reconstruction of the function from the
projections. The original formulation of the Radon trans-
form is as follows:

R{I }(d,�) =
∫

R
I (d cos� − s sin�, d sin� + s cos�)ds,

(9)

with the projection along the linescl(d,�) with the param-
eterization as given inFig. 1a. Within the realm of image
analysis, the Radon transform is mostly known for its role
in computed tomography. It is used to model the process
of acquiring projections of the original object using X-rays.
Given the projection data, the inverse Radon transform, in
whatever form (e.g. back-projection), can be applied to re-
construct the original object.

The Radon transform can also be used for shape detection.
We reformulate the Radon transform:

R{I }(d,�) =
∫
(x,y) on cl(d,�)

I (x, y)dx dy

=
∫

RR
I (x, y)�(x cos� + y sin� − d)dx dy.

(10)

It is now trivial to generalize the Radon transform to arbi-
trary shapesc( �p). We give three equivalent formulations,
leaving it to the reader to decide which is the easiest to in-
terpret:

Rc( �p){I }( �p) =
∫

�x on c( �p)
I (�x)d�x

=
∫

RN
I (�c(�s; �p))

∥∥∥∥��c
��s

∥∥∥∥d�s
=

∫
RD

I (�x)�(C(�x; �p))d�x. (11)

For our study of the discretization of the transform, the
third formulation is the most convenient. The mathematical
properties of this generalized form of the Radon transform
have been extensively studied in Ref.[12].

Now imagine that there is a shape in the image with
parameter set�a. When �p �= �a, the Radon transform will
evaluate to some finite number which is proportional to the
number of intersections between the shapesc( �p) andc(�a),
as illustrated inFig. 1. However, when�p = �a, the Radon
transform yields a large response (a peak in the parameter
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Fig. 1. Illustrating the generalized Radon transform. (a) Thenormal
parameterization of a line. The parameters are the distanced from
the line to the origin, through the normal of the line that intersects
the origin, and the angle� between that same normal and the
x-axis, as indicated in the diagram. (b) Curve detection using the
generalized Radon transform. Integrating the intensity values along
each of the candidate curves P1–P4 yields small numbers. Only if a
candidate curve happens to fully coincide with a curve in the image
(the solid black circle), will the integral yield a large response.

space). This response is proportional to theN-dimensional
hyper-volume of the shape. We can now interpret the Radon
transform as follows: it provides a mapping from image
space to aparameter spacespanned by the parameters�p.
The function created in this parameter space,P( �p), contains
peaks for those�p for which the corresponding shapec( �p)
is present in the image. Shape detection is reduced to the
simpler problem of peak detection.

The third formulation of the Radon transform in
Eq. (11) demonstrates an important reason for using gen-
eralized functions. In this notation, we can recognize the
form of a linear integral operator3 LC with kernelC:

(LCI)( �p) =
∫

RD
C( �p, �x)I (�x)d�x. (12)

3 This is known as a Fredholm operator.
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Therefore, if we allow the kernelC to be a generalized func-
tion, then we can express the Radon transform in this for-
mat, which is particularly convenient to study its discretiza-
tion. In case of a Radon transform, the kernelC is of the
form: C( �p, �x) = �(C(�x; �p)). In terms of shape detection,
the role of the operatorLC is to compute the match (the
inner product) between the image and a templateC for a
given parameter set�p. Here we see the connection between
the Radon transform and template matching.

Often, the parameters�p consist of the position of the
shape�xo and the actual shape parameters�q. In this case the
kernel has a special (shift-invariant) structure:

C({�q, �xo}, �x) = C({�q, �xo + �d}, �x + �d) for any �d. (13)

The operatorLC now reduces to a set of convolutions:

(LCI)(�q, �xo) = (KC(�q) ∗ �xI )(�xo)
with KC(�q, �x) = C({�q, �x}, �0). (14)

This implies a large speed-up: using the convolution prop-
erty of the Fourier transform, each convolution reduces to a
multiplication in the Fourier domain.

Use of the Radon transform for shape detection dates
back to 1965[13]. The technique these authors describe
is essentially a Radon transform. Rosenfeld[14] describes
this technique (for straight lines) in Section 8.4.e “Coordi-
nate Conversion”. Neither Ref.[13] nor Ref. [14] identify
this technique as the Radon transform. Our study of the dis-
cretization of the Radon transform in the next section also
applies to the popular Hough transform which is often used
for shape detection. The Hough transform itself can be con-
sidered a particular discretization of the Radon transform
[15,3–5].

2. Sampling the Radon transform

The errors produced by discrete versions of these trans-
forms have been investigated by several authors, most no-
tably in the context of the Hough transform. Here, we will
investigate the effects of sampling on the continuous for-
mulation of the Radon/Hough transform and whether these
may be avoided.

It is important to discriminate between two models for
the input data. In the first model[16,6] the data consists of
a set of points on a continuous input space:

I (�x) =
∑
i

�(�x − �xi). (15)

In this model, noise corresponds to perturbations in the po-
sition of the points. Given this model, the conditions un-
der whichP( �p) can be sampled were given by Kiryati and
Bruckstein[16].

In our work we consider a different model. In most image
analysis problems we start out with a continuous gray value

image, which is subsequently sampled for computer pro-
cessing. Assuming the image is band-limited and properly
sampled according to the Nyquist criterion[17], the sam-
pled image represents the continuous function perfectly: the
original can be reconstructed from the sampled image. The
sampled image still contains all the subtleties of the contin-
uous original, including sub-pixel information. Curves em-
bedded in the image are faithfully represented. Sethian[18]
has used this property to implement curve evolution schemes
on a fixed grid, embedding the curves as zero-crossings in
a sampled gray value image.
A large class of images is band-limited by virtue of the

image acquisition process, for example those obtained using
a diffraction-limited optical system. If, however, the image
is not band-limited, such as input data of the form given
in Eq. (15), the image must be low-pass filtered to make it
band-limited, implying a certain loss of resolution.
We now arrive at one of the key points of the paper: it is

not sufficient that the sampled input image is a faithful rep-
resentation. The discrete processing and the result thereof
must be faithful to their original continuous counterparts as
well: the continuous operation and the chain of operations
consisting of sampling, a discrete operation, and reconstruc-
tion must be identical. An operation for which this is possi-
ble, is said to besampling invariant, a concept introduced by
Verbeek[9] and van Vliet[19]. They have considered con-
volutions and multiplicative combinations of convolutions.

Here we follow van Ginkel[20] and study the conditions
under which Eq. (12) is sampling-invariant. There are two
aspects. Keeping�p fixed, we will first consider under which
conditions we may replaceI andC by sampled (along�x)
versions and the integral by a summation. If these conditions
are satisfied, wemay computeP( �p) for an arbitrarily chosen
�p. We must then show that it is possible to sample the
parameter spaceP( �p), so that we only need to evaluate
P( �p) on a discrete set of points. For simplicity we restrict
ourselves to a one-dimensional example:�p → p and �x →
x. The Fourier axes corresponding top andx are denoted
by p̃ and x̃ respectively. The sampling distance alongx is
�x. The discrete coordinate corresponding tox is n, i.e.
the sampled version ofI (x) is I (n�x). We first investigate
under which conditions the following is true:

P(p) =
∫

R
C(p, x)I (x)dx = �x

∑
n∈Z

C(p, n�x)I (n�x).

(16)

We denote the band-limit (alongx) of the product
C(p, x)I (x) by bx{CI }. With p fixed, the sampling crite-
rion for the computation of this integral is a relaxed version
of the Nyquist criterion[9],

x̃ >bx{CI }. (17)

Also the band-limit ofCI can be expressed in that ofCandI,

bx{CI }�bx{C} + bx{I }. (18)



2498 C.L. Luengo Hendriks et al. / Pattern Recognition 38 (2005) 2494–2505

It follows that both the kernelC and the imageI must be
band-limited to allow discretization. Proper sampling of the
imageI is a prerequisite for any image analysis and there-
fore introduces no new restrictions. This is not true for the
kernelC, which in general is not band-limited. We must im-
pose a bandwidth limitation onC. This clearly leads to a dif-
ferent Radon transform, but reflects a conscious choice with
well-understood consequences. These will be discussed in
Section 2.1. The alternative, samplingC without imposing
a band-limit first, leads to aliasing effects.
We can computeP(p) for an arbitrary value ofp. If

P(p) is band-limited, it can be safely sampled, provided the
correct (Nyquist) rate is used. We determine whetherP(p)

is band-limited by computing its Fourier transform:

F{P }(p̃) = F

{∫
R
C(p, x)I (x)dx

}
(p̃)

=
∫

R
Fp{C(p, x)}(p̃, x)I (x)dx. (19)

If C is band-limited along thep-axis with band-limit bp{C},
then the integral above evaluates to zero forp̃ >bp{C},
which means thatP(p) is band-limited as well.

The discussion above also holds for the complete multi-
dimensional operation: our argument holds for each spatial
dimensionxi separately and for each parameter dimension
pj as well. The same ideas also extend trivially to other
sampling schemes, such as the hexagonal grid.

2.1. Band-limiting the kernelC( �p, �x)

The Gaussian filter is approximately band-limited with
critical sample spacing� [19] and corresponding band-limit
b = 1

2�−1. Its properties, in particular good simultaneous
frequency and spatial localization[21], and not introducing
new structure[22], make it a good choice for band-limiting
C( �p, �x). We obtainCb, a band-limited version ofC, as
follows:

Cb( �p, �x) = C( �p, �x) ∗ G( �p, �x; �). (20)

The diagonal covariance matrix� reflects that we impose
band-limitation along each dimension separately.

By its nature the functionC( �p, �x)=�(C(�x; �p)) is in gen-
eral very sparse: for any given�p, the points�x which belong
to the shape span some curve or manifold inC( �p, �x). The
Radon transform for hyper-spheres provides a convenient
example to investigate the structure ofC( �p, �x) and the ef-
fects of band-limitation. The parameter vector�p consists of
the center�xo of theD-dimensional sphere and its radiusr:
�p = (x1, . . . , xD, r). The kernelC becomes

C({r, �xo}, �x) = K(r, �xo − �x)
with K(r, ��) = �

(
1
2

√
2(‖��‖ − r)

)
. (21)

The functionK represents a cone. Each point on the sur-
face of this cone should have equal weight as discussed in

ξ

 r

 K (r, ξ ) surface
normal

Dirac profile  
along this axis

 u

Fig. 2. The functionK(r, �x) is a cone. For correct normalization,
it is required that this function behave like the Dirac delta function
along the normal to the surface.

Section 1.1. The cone has a single coordinateu normal
to the cone, seeFig. 2. This coordinate is chosen such
that it corresponds to the Euclidean distance to the surface:
u= 1

2

√
2(‖��‖− r). In Section 3 we discuss some issues that

lead to a different choice for the normalization.
What is the effect onK of the Gaussian smoothing applied

to C? Let us first consider the effect of the smoothing ap-
plied along the�p-axes. All parameters share the same units
and it is therefore logical to use the same�K along each
dimension. The effect on a local surface patch, if it can be
considered planar locally (�K>r), is that the Dirac profile
is substituted by a Gaussian profile

Kb(r, �xo − �x; �K)

= K(r, �xo − �x) ∗ �xo,rG(�xo, r; �K)

≈ G
(
1
2

√
2(‖�xo − �x‖ − r); �K

)
= √

2G(‖�xo − �x‖ − r; √
2�K). (22)

The next step is to apply a Gaussian along the�x-axes. Be-
cause the structure ofK along axes�xo and�x is not indepen-
dent, the Gaussian smoothing along�xo implies a Gaussian
smoothing along�x. This is evident from Eq. (22). Therefore
it is unnecessary to apply the Gaussian smoothing along the
�x-axes, unless the required smoothing�s along the�x-axes
is larger than that required along the�p-axes. A consequence
is that applying the regularization in parameter space only,
as proposed in Ref.[16], is in this case sufficient to avoid
discretization errors.

On a rectangular grid, the maximum frequency allowed
depends on the orientation of the signal component with
respect to the Cartesian axes (in 2D up to

√
2 times the

highest frequency along the Cartesian axes). Given that the
cone has a 45◦ angle with respect to the Cartesian axes
in ‖�x‖–r space, we can relax the Gaussian regularization
reducing its size by a factor of

√
2:

Kb(r, �x; �K) = √
2G(‖�x‖ − r; �K). (23)

The consequences of the imposed band-limit are as follows:
as long as the Gaussian is small with respect to the curvature
of C, the effects of the Gaussian are negligible. In fact, it
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is possible to interpolate in�p-space and obtain sub-pixel
accuracy. High-curvature structures ofC correspond either
to highly curved shapes or to shapes which vary rapidly as a
function of the parameters with respect to the sampling rate
chosen for these parameters. In neither case is it reasonable
to expect good results anyway. The band-limitation does
lead to a bias in the estimated radius. This effect and how
it can be compensated for using a normalization term is the
topic of Section 3.

2.2. A perfect discretization?

Under some circumstances it is possible to avoid dis-
cretization errors altogether. We first consider the convo-
lution case[23, Section 8.4, “Discrete-time processing of
continuous-time signals”]. Let l(x) be an ideal low-pass fil-
ter with a cut-off frequency that corresponds to the band-
limit of the imageI (x), andf (x) the filter to be sampled.
Applying l(x) to I (x) has no effect:I (x) ∗ l(x) ≡ I (x).
This leads to

I (x) ∗ f (x) = [I (x) ∗ l(x)] ∗ f (x) = I (x) ∗ [l(x) ∗ f (x)],
(24)

both I (x) and the term between the brackets are band-
limited and can be sampled.

This principle is also applicable to Eq. (12), but only along
the �x dimensions. Only in special cases, such that of the
hyper-spheres, is this sufficient. In the general case it remains
necessary to impose a band-limit along the parameter axes.

Ideal low-pass filters have some undesirable properties;
ringing artifacts being the most important. In practice, the
effects of using a Gaussian filter, optionally oversampling
first, instead of an ideal low-pass filter should be limited.

3. Accuracy of the parameter space

Due to the definition of the functionKb(r, �x; �K) in Eq.
(22), large hyper-spheres will produce a higher value (higher
confidence) than small ones in the parameter space. The
consequence is two-fold:

• a few disconnected sections in the input will be selected
as a large hyper-sphere with a higher confidence than a
smaller but complete hyper-sphere, and

• the radii of hyper-spheres with thick walls will be over-
estimated.

To avoid this, the spheres that composeKb(r, �x; �K) should
be normalized. That is, the integral of their gray-values
should remain constant for anyr. This results in

Kb(r, �x; �K) = 1

SD(r)
G(‖�x‖ − r; �K), (25)

r r = llxll

exact
approximation

llxll

Fig. 3. The normalized functionKb(r, �x,�K) from Eq. (25) is
distorted according to Eq. (27). The correction we use is an ap-
proximation valid for largerr, and given by Eq. (28).

where SD(r) = Qr−(D−1) is the surface area of aD-
dimensional hyper-sphere of radiusr, andQ is a constant
that depends onD.

This normalization causes a distortion of the shape of
the cone, which in turn leads to an underestimation of the
radius. We showed in Ref.[24] that the error in the position
of a maximum inP( �p) along ther-axis, assumingr?�K , is
dominated by the position of the maximum along ther-axis
of Kb(r, �x; �K). To correctly estimate the radius of hyper-
spheres, this maximum should lie at‖�x‖, but is shifted to
‖�x‖ + �(‖�x‖) by the normalization (seeFig. 3). We find the
position of the shifted maximum by equating the derivative
of Eq. (25) to zero,

�Kb

�r
= Q

[
−(D − 1)

rD
+ ‖�x‖ − r

�2
K
rD−1

]

× G(‖�x‖ − r; �K) = 0, (26)

−(D − 1)�2K − (‖�x‖ − r) r = 0, (27)

and solving for� = r − ‖�x‖, which yields

�(‖�x‖) ≈ − (D − 1)�2
K

‖�x‖ − (D − 1)2 �4
K

‖�x‖3 + O(‖�x‖−5).

(28)

We will be using only the first term of this equation. As
shown in Ref.[24], when taking into account the shapes in
the image a new term ofO(‖�x‖−3) should be added. How-
ever, it is not possible to correct for it since no assumptions
about the image can be made.
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Thus, the measured radius,Rm, is given byRm = ‖�x‖ +
�(‖�x‖). We substitute‖�x‖ byRc, which we then can change
such thatRm becomes equal to‖�x‖. Rc is the radius we use
for the creation of the convolution kernelKb(r, �x; �K) at r.

‖�x‖ = Rc − �(Rc)

�⇒ Rc = 1
2 ‖�x‖ +

√
1
4 ‖�x‖2 − (D − 1)�2

K
. (29)

Kb(r, �x; �K) = 1

SD(r)
G(‖�x‖ − Rc(r); �K). (30)

4. Reducing memory requirements

The parameter space for the Radon transform typically
has more dimensions than the input image. This implies that
these parameter spaces might not fit into the available com-
puter memory. This constraint has traditionally prevented
wide-spread use of these transforms for 3D images.

Many authors have tackled this problem in a variety of
manners. Most notably, Ballard and Sabbah[25] propose to
partition the parameter space into two or more spaces with
independent parameters, which can be computed sequen-
tially. For example, it is possible to first locate all the object
centers, and in a second stage determine the sizes. For (hol-
low) spheres, this requires the use of gradient information to
locate centers[26], and is only practical for very few objects
due to the cost of the second stage. Atherton and Kerbyson
[27] encode the radius as the phase in the complex parame-
ter space, thereby simplifying this approach. Hsu and Huang
[28] also use a dimensionality reduction to detect 3D ellip-
soids (with six parameters, the axes are supposed to lie on
the grid). They split the 6D parameter space into two 4D
parameter spaces, which have to be combined to find the
objects.
Another method often employed involves splitting the

parameter space into overlapping regions, from which the
maxima are extracted. This does not involve a reduction of
dimensionality, but incurs a penalty in computational cost
because of the overlap. In the case of a sphere, it is natural
to split the parameter space along ther-axis, since a slice
P(ri , �xo) is computed by a single convolution. We will call
this method the Sliding Window method (SW).
We propose a different approach to reduce the memory

requirements. Spheres can be detected very efficiently by
storing only the maximum projection along ther-axis ofP,
together with the location of these values on ther-axis (if
one is prepared to ignore concentric spheres). That is, we
keep

S(�xo) = max
r

{P(r, �xo)} (31)

and

R(�xo) = arg max
r

{P(r, �xo)}. (32)

The local maxima inS(�xo) indicate the location of the center
of the spheres, andR(�xo) gives the corresponding radii.
Both of these can be computed by a small modification of
the Radon algorithm. Instead of storing all theP(ri , �xo)
slices, we propose to take the point-wise maximum of each
slice with the previously computed intermediate result. This
does not add any computational cost to the algorithm, since
finding the local maxima needs to be done anyway. This
maximum projection even simplifies this task. We call this
method the Maximum Projection method (MP), and is both
faster and much less memory-hungry than the SW method.

The resulting parameter spaceS(�xo) is not band-limited.
But, if the spheres are clearly identifiable and well separated,
it turns out to have nicely-shaped peaks (i.e. the neighbor-
hoods of the local maxima are band-limited or nearly so).
Thus, it is still possible to obtain the center of the sphere
with sub-pixel accuracy. However, ther-axis at each position
has been discretized to sampling locations. The accuracy to
which r can be estimated depends on the number of samples
taken, not the band-limit ofKb(r, �xo; �K) along ther-axis.

It is possible to implement such a Radon transform for
other shapes as well, in which case the maximum projection
can be taken over more than one dimension. That is, only
the spatial dimensions need to be kept, all other dimensions
can be collapsed into one maximum image and one or more
maximum position images, of which there are as many as
parameter dimensions are reduced.

5. Results

5.1. Evaluation

To demonstrate the claims made in the previous sections,
we computed the Radon transform of 25 synthetically gen-
erated, 3D test images, 1283 pixels in size, each contain-
ing 20 spheres of different radii (between 6 and 18 pixels)
at random, sub-pixel locations. Some of the spheres were
touching, but none were overlapping. These spheres had a
Gaussian profile (with�i =1), thereby approximating band-
limitness. We computed the Radon transform with the two
methods explained above (SW and MP), using the normal-
ized kernel of Eq. (25) and the corrected kernel of Eq. (30)
(setting�K =1). To determine the position of the peaks with
sub-pixel accuracy, we used a cubic spline interpolator to re-
sample the immediate vicinity of the maximum with a 100-
fold pixel density along each of the axes. The SW method
uses a window of seven slices in the radius direction, from
which two slices overlap the previous region. It required
five times as much memory, and took about twice as much
time to finish, as compared to the MP method. Apparently
the algorithm we used to find the local maxima is relatively
expensive compared to the convolutions themselves.
We evaluated both methods by computing the differences

between the true parameters of the spheres and the estimated
ones.Table 1compares the errors in the location for the
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Table 1
Error made when estimating the position of spheres in synthetic
3D images

std(�x) std(�y) std(�z)

Noiseless image Non-corrected SW 0.0387 0.0360 0.0383
Corrected SW 0.0406 0.0381 0.0405
Corrected PM 0.0432 0.0445 0.0462

Noisy image Non-corrected SW 0.0503 0.0487 0.0507
Corrected SW 0.0520 0.0498 0.0525
Corrected PM 0.0578 0.0579 0.0579

The numbers shown are standard deviations of the error (in pix-
els) in thex, y andz-directions for the various methods (estimated
from 500 spheres of radius between 6 and 18 pixels).

different methods. We found that both SW and MP found
the location of the spheres with the same accuracy (for any
given sphere the parameters found by the two methods are
almost identical; differences are in the order of 2%). The
bias is very small, not significant in relation to the standard
deviation.Fig. 4 shows the errors in the estimated radii for
the SW method with and without correcting the kernel for
bias. The MP method found the rounded values of the radii
found by the SW method.

To examine the influence of noise, we added Gaussian
noise to the images used above and repeated the experi-
ments; the results are also shown inTable 1andFig. 4. The

input images had a SNR of 2 (with SNR=maxI (�x)−min I (�x)
�N ,

I (�x) the uncorrupted image and�N the standard deviation
of the noise probability density distribution). The standard
deviation in the errors do not increase much for this noise
level. This shows that the projection method is a good ap-
proximation with or without noise, and shows that the Radon
transform itself is robust with respect to noise.

The graphs inFig. 5 are computed without the use of
interpolation (by densely sampling along ther-axis), and
show the attainable accuracy in the estimation of the radius
with and without normalization and/or correction. They also
show the effect of the width�K of the probes and the width
�i of the spheres in the image. The non-normalized method
is heavily influenced by�i , but not at all by�K . Normalizing
the kernel makes the transform almost independent of�i , but
it becomes dependent on�K . The bias correction proposed
in Eq. (30) removes this dependency, but the assumption
made (r?�) breaks down for smaller radii and larger�.

5.2. Ballotini

As a demonstration application, we used a rather poor-
quality X-ray micro-CT image of ballotini (small, hollow
glass beads, seeFigs. 6a and7a). Some of the glass walls
give a very wide response in the imager (probably caused
by refraction or reflection). In one such region many small
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Fig. 4. Error made when estimating the radius of spheres in syn-
thetic 3D images, in (a) with SNR= ∞ and in (b) with SNR=2.
The bias of the corrected method is due to the approximations used
when computing Eq. (28). The oscillatory nature of the line is due
to the interpolation along ther-axis: the error is smaller for values
near sample points.

spheres can be fitted. To avoid this, we replaced the kernel
Kb by a kernelK ′

b
that penalizes for high gray-values inside

the sphere:

K ′
b(r, �xo; �K) = Kb(r, �xo; �K) − Kb(r − d, �xo; �K), (33)

with Kb the corrected kernel as given in Eq. (30) andd the
difference in radius. By requiring that the inner part of the
sphere be empty, the discriminating abilities of the transform
(for these images) are greatly enhanced (compare image b to
e in Figs. 6and7). The computational complexity remains
the same.We setd=4�K , such that the sphereKb(r, �xo; �K)

is not affected too much (seeFig. 8), since that would cause
a large underestimation of the radius. In the synthetic test
images of the evaluation we performed earlier, this setting
leads to a slightly larger bias: an underestimation of about



2502 C.L. Luengo Hendriks et al. / Pattern Recognition 38 (2005) 2494–2505

5 10 15 20 25 30 35 40
1

0.5

0

0.5

1

Radius of sphere (pixels)

E
rr

or
 in

 e
st

im
at

ed
 r

ad
iu

s 
(p

ix
el

s)

σ
i
=1

σ
i
=2

σ
i
=4

σ
K

K

=1

σ =2

(a)

1

0.5

0

0.5

1

5 10 15 20 25 30 35 40

Radius of sphere (pixels)

E
rr

or
 in

 e
st

im
at

ed
 r

ad
iu

s 
(p

ix
el

s)

σ
i
=1

σ
i
=2

σ
i
=4

σ
K

=1

σ
K

=2

(b)

1

0.5

0

0.5

1

5 10 15 20 25 30 35 40

Radius of sphere (pixels)

E
rr

or
 in

 e
st

im
at

ed
 r

ad
iu

s 
(p

ix
el

s)

σ
i
=1

σ
i
=2

σ
i
=4

σ
K

=1

σ
K

=2

(c)

Fig. 5. Minimal error in estimation of the radius of spheres
in synthetic 3D images, obtained without interpolation, with (a)
non-normalized kernel, (b) normalized kernel and (c) corrected
kernel. These graphs show the effectiveness of the normalization
and correction of the kernelKb(r, �x;�K), as well as the effect of
�K and the�i used to create the input images.

Fig. 6. One slice of the 3D ballotini image and the corresponding
slices of the results of the Radon transform. (a) Slice of the in-
put image. (b)S(�xo) and (c)R(�xo) obtained using the modified
K ′
b
(r, �xo;�K) from Eq. (33). (d) Image generated with the found

parameters. (e)S(�xo) and (f) R(�xo) obtained using the regular
Kb(r, �xo;�K) from Eq. (30).

0.1 pixel for large spheres, seeFig. 9. This bias might be
corrected for in the same manner as before.

To find the spheres in the parameter spaceS(�xo), a thresh-
old is used to decide which local maxima are important
enough to represent a sphere in the input images. More com-
plex decision rules could be used, but are outside the scope
of this paper.Figs. 6and7 show the results for two different
slices of the 3D image.

6. Conclusions

We have given the conditions under which the Radon
transform can be computed free of discretization errors.
Assuming that the input image is correctly sampled, these
conditions are met by imposing a band-limit on the oper-
ator functionC. This has no consequences for sufficiently
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Fig. 7. One slice of the 3D ballotini image and the corresponding
slices of the results of the Radon transform. (a) Slice of the in-
put image. (b)S(�xo) and (c)R(�xo) obtained using the modified
K ′
b
(r, �xo;�K) from Eq. (33). (d) Image generated with the found

parameters. (e)S(�xo) and (f) R(�xo) obtained using the regular
Kb(r, �xo;�K) from Eq. (30).
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Fig. 8. Effect of the negative inner sphere: if it is too close to
the outer sphere, the profiles will overlap too much, causing an
outwards shift of the outer sphere. A distance of 4� introduces
only a small error (in this graph,� = 1).
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Fig. 9. Error made when estimating the radius of spheres in syn-
thetic 3D images, using a negative inner sphere in the convolution
kernel. Compare to the results for the corrected kernel inFig. 4a,
which is computed on the same images. The underestimation here
is about 0.1 pixel for large spheres.

smooth shapes. The parameter space that results is band-
limited, which allows sampling and interpolation, and thus
sub-pixel accuracy in the estimated parameters.

To avoid a larger weight being assigned to larger shapes,
the convolution kernel should be normalized. We studied
the effect of this normalization in the case of the Radon
transform for spheres, and propose a way of correcting for
the bias this introduces in the estimated radius.

The Radon transform reduces to a convolution for
position-type parameters, yielding a large speed-up. We
propose a memory-efficient implementation, computing
(through convolution) a singler-slice of P(r, �xo) at a
time. We keep track of the maximum projection and the
argument-maximum projection along ther-axis as we com-
pute the slices. We argue that this approach can be used for
other shapes as well.
We have applied this modified Radon transform to a 3D

image of glass hollow beads. To compute its parameter space
we have employed a convolution kernel that contains not
only a sphere, but also a second, smaller, concentric sphere
with negative gray-values. The resulting parameter space has
a much higher discriminating ability than that which would
result from the same transform with a single sphere.
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