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Abstract

Extraction of primitives, such as lines, edges and curves, is often a key step in an image
analysis procedure. The most popular technique for curve detection is based on the
Hough transform. The original formulation of the Hough transform is inherently discrete.
It is therefore difficult to assess which properties are inherent to the transform-based
technique and which are due to its discrete nature. As other authors have pointed out
before, the Hough transform is closely related to the Radon transform, in fact equivalent,
if one is not too pedantic about the original formulations of the two transforms. With this
report we hope to once again stress this relationship. The Radon transform formalism
has two advantages over the Hough formalism. It has a well-founded mathematical
basis and, in our opinion, is more intuitive as well.
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1 Introduction

One of the first stages in image analysis is the extraction of primitives, such as lines,
edges, curves or simple textures, from an image. In this paper we focus on curve de-
tection, or more precisely, shape detection. In three- and higher-dimensional spaces,
manifolds (N -dimensional), such as a spherical membrane, are as interesting as curves
(one-dimensional). In general we are interested in a given family of shapes. Our as-
sumption is that the members of this family can be described by a set of parameters.
The task, then, is to find the parameters corresponding to the best fitting member of
the family of shapes. The standard method for detecting parameterized shapes is based
on a family of transformations, which includes the Radon [24] and Hough [11] trans-
forms. The purpose of this report is to give a brief introduction to these transforms and
to stress the relationship between them. Before moving on to discuss the transforms
themselves, we first examine how shapes are described.

1.1 Shape representation using generalized functions

Before proceeding, we introduce the following notation:

x The spatial coordinates
I(x) The D-dimensional image containing the N -dimensional shapes
p The vector containing the parameters of the curve. Often a subset of the

parameters specifies the location of the shape. It is, therefore, sometimes
convenient to write p = {q,xo}, with xo the location of the shape (the
center of the sphere), and q the remainder of the parameters (the radius of
the sphere).

c(p) A member of a class of shapes described by the parameter vector p.
c(s;p) The coordinates of a point belonging to the shape c(p). The coordinates s

allow us to specify a specific point on the shape.
C(x;p) A set of constraint functions that together define the shape. The number

of constraint functions depends on the dimensionality of the shape: D − N
constraints are necessary to describe a N -dimensional shape. For a point
that lies on the shape, all the constraint functions evaluate to zero: Ci(x;p) =
0 for all i.

C(p,x) A kernel, also called template, that represents the shape given by p as an
image with spatial coordinates x. We can model the image I as a sum of
several of these templates.

Shapes can be described in different ways. The notation c(s;p) represents the
shape. For a circle in 2D centered at xo and with radius r this becomes

c(φ; {r,xo}) = xo + r

(
cos φ
sinφ

)
, (1)

with φ a free coordinate letting us specify an arbitrary point on the circle. Alternatively,
a shape can be defined through the specification of a constraint; this is known as the
implicit representation. In the case of a circle:

C(x; {r,xo}) = 0 with C(x; {r,xo}) = ||x− xo|| − r. (2)
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Now recall that the shapes we are looking for are embedded in an image and not directly
available as a set of points. This means that standard results from differential geometry,
such as the expression for the curvature of a plane curve [31]

κ =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)
3
2

(3)

are not directly applicable. In this example, the curvature of a curve embedded in an
image in the form of an isophote can still be obtained through the well-known result for
the isophote curvature [15,33,16].
In general, however, it may be beneficial to make the embedding of the shapes

explicit. The basic ingredients for such a description are the constraint-based description
and the Dirac delta function. The theoretical basis for this description can be found
in Gel’fand et al. [9, Chapter III, Section 1, “Generalized Functions Concentrated on
Smooth Manifolds of Lower Dimension”], who give a very lucid account of this subject
matter. It is not our intention to give a complete exposition of this material; we will
merely touch upon the essentials.
Consider an N -dimensional shape in D-dimensional space. At any point on the shape

we can span a local coordinate system. We will denote the local coordinate vector by u.
The first N coordinates u1...N span the subspace in which the shape lies and the D−N
remaining coordinates u(N+1)...D span the subspace normal to the shape. In fact, these
last coordinates act as constraint functions: we can set Ci = ui+N . We can describe the
infinitesimal neighborhood In by

In(u) = δ(u(N+1), . . . , uD). (4)

If we choose an orthogonal coordinate system, then this reduces to

In(u) =
D∏

i=N+1

δ(ui). (5)

The scaling of the ui should be such that they correspond to the Euclidean distance to
the shape. This ensures that a) the points on the shape contribute equally in an integral
and b) the overall scale is such that the D−dimensional volume integral over the image
(assuming there is only the one shape) yields the N -dimensional hyper-volume of the
shape. If the constraint functions are chosen according to these principles, we write

I(x) = δ(C(x;p)). (6)

Let us examine two simple examples in three-dimensional space. The x − y plane is
described by the constraint z = 0. Therefore,

I[x− y plane](x, y, z) = δ(z), (7)

represents a plane in the x−y plane. A line along the x-axis is described by the constraint
y = 0 and z = 0:

I[line along x](x, y, z) = δ(y)δ(z). (8)
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Fig. 1. The normal parameterization of a line. The parameters are the distance d from the line to the origin,
through the normal of the line that intersects the origin, and the angle φ between that same normal and
the x-axis, as indicated in the diagram.

2 The Radon transform

The Radon transform is named after J. Radon who showed how to describe a func-
tion in terms of its (integral) projections [24]. The mapping from the function onto the
projections is the Radon transform. The inverse Radon transform corresponds to the re-
construction of the function from the projections. The original formulation of the Radon
transform is as follows:

R{I}(d, φ) =
∫

R
I(d cos φ− s sin φ, d sinφ + s cos φ)ds, (9)

with the projection along the lines cl(d, φ) with the parameterization as given in Figure 1.
Within the realm of image analysis, the Radon transform is mostly known for its role in
computed tomography. It is used to model the process of acquiring projections of the
original object using X-rays. Given the projection data, the inverse Radon transform, in
whatever form (e.g. backprojection), can be applied to reconstruct the original object.
The Radon transform can also be used for shape detection. We reformulate the

Radon transform:

R{I}(d, φ) =
∫

(x,y) on cl(d,φ)

I(x, y) dx dy =
∫

RR

I(x, y)δ(x cos φ + y sinφ− d) dx dy. (10)

It is now trivial to generalize the Radon transform to arbitrary shapes c(p). We give
three equivalent formulations, leaving it to the reader to decide which is the easiest to
interpret:

Rc(p){I}(p) =
∫

x on c(p)

I(x) dx =
∫

RN

I
(
c(s;p)

)
||∂c

∂s
|| ds =

∫
RD

I(x)δ(C(x;p)) dx. (11)

The third formulation expresses the Radon transform as a volume integral, a form that is
particularly practical in image analysis. The mathematical properties of this generalized
form of the Radon transform have been extensively studied in [8].
Now imagine that there is a shape in the image with parameter set a. When p 6= a,

the Radon transform will evaluate to some finite number which is proportional to the
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number of intersections between the shapes c(p) and c(a), as illustrated in Figure 2.
However, when p = a, the Radon transform yields a large response (a peak in the
parameter space). This response is proportional to the N -dimensional hyper-volume of
the shape. We can now interpret the Radon transform as follows: it provides a mapping
from image space to a parameter space spanned by the parameters p. The function
created in this parameter space, P (p), contains peaks for those p for which the corre-
sponding shape c(p) is present in the image. Shape detection is reduced to the simpler
problem of peak detection.
The third formulation of the Radon transform in equation (11) demonstrates an

important reason for using generalized functions. In this notation, we can recognize the
form of a linear integral operator1 LK with kernel C:

(LCI)(p) =
∫

RD

C(p,x)I(x) dx. (12)

Therefore, if we allow the kernel C to be a generalized function, the Radon transform
can be treated as any other linear transformation. In fact, using generalised functions,
the identity operator (using the Dirac delta) as well as differential and integral operators
(using derivatives and primitives of the Dirac delta) can be described in integral form.
Dirac [6] introduced these in order to develop a continuous equivalent to matrix algebra
in his work on quantum mechanics.
In case of a Radon transform, the kernel C is of the form: C(p,x) = δ(C(x;p)).

In terms of shape detection, the role of the operator LC is to compute the match (the
inner product) between the image and a template C for a given parameter set p. Here
we see the connection between the Radon transform and template matching.
Often, the parameters p consist of the position of the shape xo and the actual shape

parameters q. In this case the kernel has a special (shift-invariant) structure:

C({q,xo},x) = C({q,xo + d},x + d) for any d. (13)

The operator LC now reduces to a set of convolutions:

(LCI)(q,xo) =
(
KC(q) ∗x I

)
(xo) with KC(q,x) = C({q,x},0). (14)

This implies a large speed-up: using the convolution property of the Fourier transform,
each convolution reduces to a multiplication in the Fourier domain.
Use of the Radon transform for shape detection dates back to 1965 [4]. The tech-

nique these authors describe is essentially a Radon transform. Rosenfeld [25] describes
this technique (for straight lines) in Section 8.4.e “Coordinate Conversion”. Neither [4]
nor [25] identify this technique as the Radon transform.

3 The Hough transform

Rosenfeld [25] describes two techniques for curve detection: the first corresponds, as
stated in the previous section, to the Radon transform. The second is a transform due
to Hough [11], which through work by early adopters [7,13,20,26] has become very
1 This is known as a Fredholm operator.
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Fig. 2. The Radon and Hough transforms explained. Left: the Radon transform. Integrating the intensity
values along each of the candidate curves P1–P4 yields small numbers. Only if a candidate curve happens
to fully coincide with a curve in the image (the solid black circle), will the integral yield a large response.
Right: the Hough transform. The indicated point can be accounted for by the presence of any of the
indicated candidate curves C1–C4. If we consider all the points in the image in turn, we get many curves
that account for individual points, but only candidate curves that correspond to a true curve (in this case
the solid circle) will account for all of the points.

popular. Many authors have since noted that the Radon and Hough transforms are very
closely related.
The Hough transform was originally defined to detect straight lines in black and

white images, and seemingly inherently discrete. As it is trivial to generalize the Hough
transform to other shapes and grey-value images, we describe it in this extended form.
We set up an N -dimensional accumulator array, each dimension corresponding to one of
the parameters of the shape looked for. Each element of this array contains the number
of votes for the presence of a shape with the parameters corresponding to that element.
The votes themselves are obtained as follows. Consider each point in the input image
in turn. Now we consider which shapes this point, with grey value g, could potentially
be a member of, see Figure 2. We increment the vote for each of these shapes with g.
Of course, if a shape with parameters p is present in the image, all of the pixels that
are part of it will vote for it, yielding a large peak in the accumulator array. The Hough
transform, like the Radon transform, is a mapping from image space to a parameter
space.
What is the relation between the Hough transform and the Radon transform? The

Radon transform is a mapping. A mapping can be approached from two points of view.
In the first we consider how a data point in the destination space is obtained from the
data in the source space: the reading paradigm. This is how the Radon transform is
usually treated. The alternative is to consider how a data point in the source space
maps onto data points in the destination space: the writing paradigm. This is exactly
what the Hough transform does, albeit in a discrete setting. According to this picture
the Hough transform is a discretisation of the (continuous) Radon transform.
The mathematical formalism for the two methods is equivalent and given by equa-

tion (12) with kernel functions of the form δ(C(x;p)). The mathematical formalism allow
two different computational interpretations:

Reading paradigm (Radon): For each p, collect all the values of I(x), apply the tem-
plate weights K(x;p), and sum everything.
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Writing paradigm (Hough): Initialize the entire function P (p) to zero. For each point
x in the input image determine its contribution, weighted with K(x;p), to
each of the points in P (p) and update P (p).

The difference in interpretation can be beneficial: if the input data is sparse, the Hough
paradigm offers an immediate reduction in computation time. Vice versa, if we are
interested in only a view points in parameter space, then the Radon paradigm is to be
preferred.
With their respective roles clear, we benefit from both the mathematical formalism of

the Radon transform and the literature on practical issues and extensions surrounding
the Hough transform that have been published the last couple of decades: error anal-
ysis [26,27,28,32,21,14,23,1], reduction of the computational complexity (references
in [19]), extensions [3,2,10] (to e.g. other shapes or use of additional information, such
as orientation), and choosing the appropriate parameterization [7,34,35]. An extensive
survey of the Hough transform literature up to 1988 is given in [12].
The equivalence of the Radon transform, Hough transform and template matching

has been discussed by several authors. Stockman and Agrawala [30], and Sklansky [29]
have used arguments similar to those above to demonstrate the equivalence of the
Hough transform and templace matching. The formulation by Gel’fand et al. [8] of
the Radon transform in terms of the Dirac delta function is in fact a form of template
matching. Deans [5] was the first to establish the equivalence of the Radon and Hough
transforms, as well as the first to bring the work of Gel’fand et al. to the attention of the
field of image analysis.
Finally, Princen et al. [22] have given a continuous formulation of the Hough trans-

form, using an interesting approach that is perhaps more in the spirit of the “Hough
frame of mind”. At the basis for their formulation are the constraint functions C. For
any given point x in the input space, the constraint(s) C(x;p) trace out a manifold
in the parameter space spanned by the parameters p. Multiple points x give rise to
multiple manifolds. These will intersect each other at the point p0 in parameter space,
thus identifying the curve. The mathematical formulation of this principle is given by
the familiar relation (12), thus unifying this approach with the others given above. Their
claim that the Radon and Hough transforms are not equivalent, seems to be based on
a) comparing the continuous Radon transform to the original discrete Hough transform,
rather than comparing the continuous definitions, and b) not recognising that the Radon
transform can be written in the form of equation (12), despite using the Dirac delta in
their own formulation of the Hough transform.

4 Discussion

The insight that the Radon transform, Hough transform are equivalent and that both
can be seen as a form of template matching is not new nor unknown. Yet, most of
the literature on shape detection is based on the Hough formalism. Many authors do
acknowledge the link between the two, but it is often presented as just an interesting
titbit. There are textbooks that do discuss both transformations, but usually with the
Radon transform in the context of computed tomography, and the Hough transform in
that of shape detection.
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It is our hope that this document acts as a reminder to some and brings the
Radon/Hough unity to the attention of others. We feel that the Radon transform for-
malism provides an intuitive understanding and a sound mathematical basis, whereas
the Hough transform can be seen as a clever discretisation for a particular class of input
data. Also, due to the large interest in the Hough transform over the last few decades, it
boasts a large body of literature containing both theoretical and practical results. Aware-
ness of both the Radon transform and the Hough transform can therefore be particularly
fruitful.
On a final note, the first steps towards the Radon formalism overtaking the Hough

formalism may already have been taken: Leavers, author of a book on the Hough trans-
form [17], has recently published an interesting paper on shape descriptors based on
the Radon transform [18].
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